* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download X - Read
Weakly-interacting massive particles wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Double-slit experiment wikipedia , lookup
Electron scattering wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Standard Model wikipedia , lookup
Compact Muon Solenoid wikipedia , lookup
ATLAS experiment wikipedia , lookup
Monte Carlo methods for electron transport wikipedia , lookup
Particle Filters 大连理工大学 金乃高 2009-01-03 1 Introduction Sequential Monte Carlo Methods in Practice, Springer-Verlag,2001 IEEE Transactions on Signal Processing Special issue on Monte Carlo Methods for Statistical Signal Processing 2002,50(2) Proceedings of the IEEE, Special Issue on Sequential State Estimation, 2004,92(3) Beyond the Kalman Filter: Particle Filters for Tracking Applications, Artech House Publishers, 2004. 2 Monte Carlo Method 3 Ulam von Neumann Metropolis Fermi Buffon 投针实验 N:投针次数 M:与平行线相交次数 D:间距 L:针长度 2L N DM 4 4 S1 S2 Monte Carlo Methods Important Sampling Rejection Sampling Metropolis-Hastings Gibbs采样 5 Sequential Monte Carlo Bootstrap filtering (Gordon 1993) Condensation Particle 6 algorithm(Isard and Blake 1996 ) filtering (Doucet 2001) Sequential Monte Carlo 7 20世纪50年代,Hammersley便采用基于序贯重 要性采样(Sequential importance sampling,SIS) 的蒙特卡洛方法解决统计学问题。 20世纪60年代后期,Handschin与Mayne使用序 贯蒙特卡洛方法解决自动控制领域的相关问题。 20世纪70年代,Handschin、Akashi,Zaritskii Sequential Monte Carlo 8 Tanizaki、Geweke等采用基于重要性采样的蒙特卡洛方 法成功解决了一系列高维积分问题。 Smith与Gelfand提出的采样-重采样思想为Bayesian推理 提供了一种易于实现的计算策略。 Smith与Gordon等人合作,于20世纪90年代初将重采样 (Resampling)步骤引入到粒子滤波中,提出Bootstrap滤波 算法。 美国海军集成水下监控系统中的Nodestar便是粒子滤波 应用的一个实例 Applications of Particle Filters Navigation, Channel 9 Positioning, Tracking equalization Fundamental Concepts 10 Bayesian inference Monte Carlo Simulation Sequential Importance Sampling Resampling Bayesian Inference 11 X is unknown-a random variable or set (vector) of random variables Y is observed-also a set of random variables We wish to infer X by observing Y. The probability distribution p(x) models our prior knowledge of X. The conditional probability distribution p(Y|X) models the relationship between Y and X. Bayesian Filtering 12 General problem statement State Space Formulation 13 Bayes Theorem The conditional distribution p(x|y) represents posterior information about x given y. p( y | x) p( x) p( x | y )= p( y ) 14 Recursive Bayesian Estimation 15 Recursive Bayesian Estimation 16 Monte Carlo Sampling State space model Solution Estimate posterior Integrals are not tractable Monte Carlo Sampling Difficult to draw samples Importance Sampling 17 Problem Monte Carlo Simulation The posterior distribution p(x|y) may be difficult or impossible to compute in closed form. An alternative is to represent p(x|y) using Monte Carlo samples (particles): – Each particle has a value and a weight x x 18 Monte Carlo Simulation 19 Importance Sampling 20 Ideally, the particles would represent samples drawn from the distribution p(x|y). – In practice, we usually cannot get p(x|y) in closed form; in any case, it would usually be difficult to draw samples from p(x|y). 重要性采样引入一个已知的易于采样的期望分布,权值 用来描述期望分布与实际后验分布的差异。重要性采样 是蒙特卡罗积分中的一种方差缩减策略,在贝叶斯滤波 中,我们可以将重要性函数看成对后验概率密度函数的 加权近似。 Importance Sampling 21 Importance Sampling 22 Importance Sampling 23 Importance Sampling 24 Sequential Importance Sampling 粒子权值的递归形式可以表示为 p( x0:(ik) | Yk ) w q( x0:(ik) | Yk ) (i ) k p( yk | xk(i ) ) p( xk(i ) | xk(i)1 ) p( x0:(ik) 1 | Yk 1 ) q( xk(i ) | x0:(ik) 1 , Yk )q( x0:(ik) 1 | Yk 1 ) wk(i)1 25 p( yk | xk(i ) ) p( xk(i ) | xk(i)1 ) q( xk(i ) | x0:(ik) 1 , Yk ) Resampling 26 我们希望经过若干次迭代,方差趋近于零以得到 正确的估计。然而在SIS算法中的方差随着时间 增加,产生权值退化现象。 1993年 Gordon提出重采样的思想克服了这个问 题,推广了粒子滤波技术的应用范围。 重采样的基本思想是舍弃权值较小的、肯定不感 兴趣的粒子,代之以较大的权值的粒子。 Resampling 27 In inference problems, most weights tend to zero except a few (from particles that closely match observations), which become large. We resample to concentrate particles in regions where p(x|y) is larger. x x Resampling 破坏算法的并行性 粒子差异性丧失 解决方案 增加粒子数 重采样之后加入随机噪声 Markov chain Monte Carlo 移动 核平滑:核函数代替狄拉克函数 28 粒子滤波示意图 29 Variations Use a different importance distribution Use a different resampling technique: – – 30 Resampling adds variance to the estimate; several resampling techniques are available that minimize this added variance. Our simple resampling leaves several particles with the same value; methods for spreading them are available. Variations Reduce the resampling frequency: – – Our implementation resamples after every observation, which may add unneeded variance to the estimate. Alternatively, one can resample only when the particle weights warrant it. This can be determined by the effective sample size. Nˆ eff 1 N (i ) 2 ( w k) i 1 31 Rao-Blackwellization Rao-Blackwellization: – – 32 Some components of the model may have linear dynamics and can be well estimated using a conventional Kalman filter. The Kalman filter/Extended Kalman filter/Unscented Kalman filter/ Gauss-hermit filter is combined with a particle filter to reduce the number of particles needed to obtain a given level of performance. Advantages of Particle Filters 33 Under general conditions, the particle filter estimate becomes asymptotically optimal as the number of particles goes to infinity. Non-linear, non-Gaussian state update and observation equations can be used. Multi-modal distributions are not a problem. Disadvantages of Particle Filters 34 Naïve formulations of problems usually result in significant computation times. The Number of particles. The best importance distribution and/or resampling methods may be very problem specific. Conclusions Particle filter is a tractable exercise for previously difficult or impossible problems. 35 综述文章 M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking, IEEE Transactions on Signal Processing, 2002 ,50(2)174-188 36 相关网站 Google Sequential Monte Carlo http://www-sigproc.eng.cam.ac.uk/smc/papers.html 37 谢谢大家! 38