Download V to

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Variable-frequency drive wikipedia , lookup

Electromagnetic compatibility wikipedia , lookup

Transistor wikipedia , lookup

Electrical ballast wikipedia , lookup

Power inverter wikipedia , lookup

Pulse-width modulation wikipedia , lookup

Electrical substation wikipedia , lookup

Ohm's law wikipedia , lookup

Islanding wikipedia , lookup

Tube sound wikipedia , lookup

Distribution management system wikipedia , lookup

Amplifier wikipedia , lookup

Capacitor wikipedia , lookup

Current source wikipedia , lookup

Surge protector wikipedia , lookup

Two-port network wikipedia , lookup

Rectifier wikipedia , lookup

Power electronics wikipedia , lookup

Stray voltage wikipedia , lookup

Alternating current wikipedia , lookup

Voltage regulator wikipedia , lookup

Metadyne wikipedia , lookup

Mains electricity wikipedia , lookup

Voltage optimisation wikipedia , lookup

Schmitt trigger wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Buck converter wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Network analysis (electrical circuits) wikipedia , lookup

Opto-isolator wikipedia , lookup

CMOS wikipedia , lookup

Transcript
12.5 Common Source
Amplifiers
vin?
vo ?
Voltage gain
Av=vo/ vin?
Common-Source Amplifiers
•C1 and C2 are coupling capacitors and Cs is
the bypass capacitor. The capacitors are
intended to have large impedances for the dc
signal and very small impedances for the ac
signal.
1
Zc 
j 2fC
 Zc  , f  0

 Zc  0, f  0, or C is large
Common-Source Amplifiers
•For DC analysis, the capacitors are replaced
by open circuits to determine the quiescent
operation point (Q point). The
transconductance gm for the small-signal
equivalent circuit is also determined.
•For AC analysis, the capacitor are replaced
by short circuits to determine the ac voltage
gain Av=vo/vin.
DC Analysis
Coupling capacitors
DC voltage sources
Bypass capacitors
The Small-Signal Equivalent
Circuit
•In small-signal midband analysis of FET
amplifiers, the coupling capacitors, bypass
capacitors, and dc voltage sources are
replaced by short circuits.
•The FET is replaced with its small-signal
equivalent circuit. Then, we write circuit
equations and derive useful expressions for
gains, input impedance, and output
impedance.
AC Analysis
DC voltage sources
Coupling capacitors
Bypass capacitors
DC voltage sources
Coupling capacitors
Bypass capacitors
SMALL-SIGNAL EQUIVALENT
CIRCUITS (12.4)
id (t )  g m v gs (t )
A more complex equivalent circuit consider drain resistance rd
1 rd 
id (t )  g m vgs (t )  vds / rd
iD
v DS
Q  point
Common Source Amplifiers: FET source 端接ground
Common Source Amplifiers:
Equivalent load resistance
1
RL 
1 rd  1 RD  1 RL
Input voltage & output voltage
vo   g m v gs RL

vin  v gs
Voltage Gain
vo
Av 
  g m RL
vin
Common Source Amplifiers:
Input Resistance
vin
Rin 
 RG  R1 R2
iin
Output resistance
•disconnect the load,
•replace the signal source by
the internal resistance,
• find the resistance by looking
into the output terminals.
1
Ro 
1 RD  1 rd
Example 12.4
Analyze the following circuit. KP=50uA/V2, Vto=2 V,
L=10um, W=400um (identical to example 12.2).
Assume
v(t )  100 sin( 2000t )mV

rd  
Find
•midband voltage gain
•input resistance
•output resistance
•output voltage
Example 12.4
Analyze the following circuit. KP=50uA/V2, Vto=2 V,
L=10um, W=400um (identical to example 12.2).
DC Analysis
Fine Q point (see example 12.2)
I DQ  K (VGSQ  Vto )2  0.784mA
Example 12.4
Analyze the following circuit. KP=50uA/V2, Vto=2 V,
L=10um, W=400um (identical to example 12.2).
AC Analysis
Fine gm(see Ch 12.4)
g m  2 K (VGSQ  Vto )  2 KP W / L I DQ  1.77mS
Equivalent load resistance
1
RL 
 3197
1 rd  1 RD  1 RL
Voltage Gain
( rd   )
vo
Av 
  g m RL  5.66
vin
Example 12.4
Analyze the following circuit. KP=50uA/V2, Vto=2 V,
L=10um, W=400um (identical to example 12.2).
Input Resistance
vin
Rin 
 RG  R1 R2  750k
iin
1
 RD  4.7 k
1 RD  1 rd
Rin
vin (t )  vgs (t )  v(t )
 88.23 sin( 2000t )mV
Rin  R
Output Resistance R 
o
Input voltage
Output voltage
vo (t )  Av vin (t )  500 sin( 2000t )mV
12.7 CMOS Logic Gate
CMOS: Complementary Metal-Oxide- Semiconductor (互補
式金氧半導體是一種積體電路製程,可在矽晶圓上製作出
PMOS(P-channel MOSFET)和NMOS(N-channel
MOSFET)元件,由於PMOS與NMOS在特性上為互補性
,因此稱為CMOS。
MOSFET Summary
VGS=VDD (high)
VGS= −VDD
NMOS ON
PMOS ON
VGS=0 (low)
NMOS OFF
VGS=0
PMOS OFF
CMOS Inverter
NMOS VGS=Vin
Vin=VDD (high)
PMOS VGS= Vin -VDD
NMOS VGS= VDD ON,
PMOS VGS= 0 OFF,
Vout=0 (low)
Vin=0 (low)
NMOS VGS= 0 OFF
PMOS VGS= -VDD ON,
Vout= VDD (high)
CMOS NAND Gate
1. A= high & B= high
M1 and M2 OFF
M3 and M4 ON
Vout low
2. A= low & B= low
M1 and M2 ON
M3 and M4 OFF
Vout high
CMOS NAND Gate
3. A= high & B= low
M1 OFF and M2 ON
M3 ON and M4 OFF
Vout high
4. A= low & B= high
M1 ON and M2 OFF
M3 OFF and M4 ON
Vout high
CMOS NOR Gate
1. A= low & B= low
3. A= high & B= high
M1 and M2 ON
M1 and M2 OFF
M3 and M4 OFF
M3 and M4 ON
Vout high
Vout low
2. A= high & B= low
M1 and M4 OFF
M2 and M3 ON
Vout low