Download Calixarene Complexes with Transition Metal, Lanthanide and

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Jahn–Teller effect wikipedia , lookup

Metal carbonyl wikipedia , lookup

Metalloprotein wikipedia , lookup

Spin crossover wikipedia , lookup

Hydroformylation wikipedia , lookup

Coordination complex wikipedia , lookup

Evolution of metal ions in biological systems wikipedia , lookup

Stability constants of complexes wikipedia , lookup

Transcript
CROATICA CHEMICA ACTA
CCACAA 75 (1) 131¿153 (2002)
ISSN-0011-1643
CCA-2788
Review
Calixarene Complexes with Transition Metal,
Lanthanide and Actinide Ions
Wanda B
Sliwa
Institute of Chemistry and Environmental Protection, Pedagogical University,
al. Armii Krajowej 13/15, 42-201 Czeu stochowa, Poland
(E-mail: [email protected])
Received December 13, 2000; revised April 9, 2001; accepted May 2, 2001
Selected calixarene complexes with transition metal as well as lanthanide and actinide ions are described, showing their syntheses
and possible applications.
Key words: actinides, calixarenes, complexes, lanthanides, nickel,
platinum, rhodium, tantalum, transition metals, tungsten.
INTRODUCTION
Due to their structure and properties, calixarenes are a topic of many
works.1-8 Numerous metal ion complexes of calixarenes are known,9-14 among
them those with transition metal ions.15-18 Title complexes are interesting
from both theoretical and practical viewpoints, for example they are used in
the extraction of lanthanides and actinides from nuclear waste.19,20
The following complexes are described in the present review:
– calixarene complexes with nickel, copper, zinc and silver ions,
– calixarene complexes with chromium, tantalum, tungsten and niobium
ions,
– calixarene complexes with lanthanide and actinide ions,
– calixarene complexes with ruthenium, rhodium, palladium and platinum ions.
References of works that appeared during the years 1998-2000 are cited.
W. bSLIWA
132
CALIXARENE COMPLEXES WITH NICKEL, COPPER,
ZINC AND SILVER IONS
Nickel-thiolato-calixarene complexes have been investigated.21 The reaction of dichloroethylcalix[4]arene (1) with nickel(II)thiolate (2) in the presence of NaI affords nickel(II) and bis-nickel(II)-calixarene complexes (3 and
4), Scheme 1.
S
N
HO
O
OH
O
2
1
HO
O
OH
O
S
S
O
+
2I -
HO
OH
O
2I -
S
S
N
N
S
S
Ni
Ni
Ni
N
S
N
Cl
Cl
NaI / MeCN
Ni
+
N
N
N
4
3
Scheme 1.
Nickel ion can be removed from complex 3 by treatment with KCN. The
formed free ligand 5 of a crown ether structure contains two nitrogen, two
oxygen and two sulfur electron-donors convenient for further complexation
(Scheme 2).
O
HO
OH
O
O
HO
OH
KCN / MeCN
S
S
S
S
Ni
N
N
2I
-
N
N
3
5
Scheme 2.
O
133
CALIXARENE COMPLEXES
In the study of fluorescent chemosensors for optical detection of transition metal ions, bispyrenylcalixarene 6 has been synthesized.22 This compound exists in CDCl3 solution at room temperature as a mixture of cone
and partial cone conformers 6a and 6b (Scheme 3).
Me
O
O
O
Me
R
O
R
O
O
Me
R
O
R
O
Me
6b
6a
OH
N
*
O
R=
Scheme 3.
Fluorescence intensity in methanol-water solution is sensitive to pH and
the presence of transition metal ions. Addition of Cu2+ and Ni2+ ions induces
a strong, pH dependent quenching of fluorescence of 6. Calixarene 6, acting
as an excimer-forming photoresponsive ligand is therefore a selective chemosensor for the detection of Cu2+ and Ni+ ions. The proton induced decomplexation makes it possible to distinguish CuII and NiII ions in solution via
fluorescence emission enhancement.22
Dinuclear CuII and ZnII complexes 7 and 8 (Scheme 4) have been investigated as enzyme models of phosphodiesterase.18,23,24
Me
2+
Cu
N
Me
N
HO
Cu2+
N
N
N
N
Me
Me
O
O
N
OO
O
O
Me
Me
Me
N
N
N
Zn 2+
Zn 2+
N
N
Me
OH
O
Me
N
N
O
O
O
7
OO
O
O
8
Scheme 4.
O
O
Me
W. bSLIWA
134
Soft metal ions, such as Ag+, have high affinity to p-coordinating groups,
e.g. to allyl or phenyl. t-Butyl[4]arenes have been chosen as examples of such
neutral carriers containing p-coordinating substituents for Ag+ sensors. It
was observed that tetraallylether 9a has good ionophoric properties; it shows
very high silver ion selectivity against sodium ion. The calixarene tetraallylester 9b, however, has only low silver ion selectivity with a considerable
sodium ion interference (Scheme 5).25,26
4
OR
R
9a
9b
O
O
Scheme 5.
Selenium containing calixarenes 10 and 11 have been synthesized and
their complexing abilities have been investigated.27 For comparative purposes,
sulphur and oxygen analogues of 10, i.e. calixarenes 12 and 13, have been
prepared (Scheme 6).27
The highest Ag+ extraction selectivity was found for selenium calixarenes
10 and 11, and for sulphur compound 12, while oxygen calixarene 13 shows
only very low affinity to Ag+ ion. These complexing properties of selenium
calixarenes are of interest in their application for the detection of Ag+ ions
O
HO
OH
Y
O
O
Se
Y
10
12
13
HO
Y
Se
S
O
Me
Se
Me
11
Scheme 6.
OH
O
135
CALIXARENE COMPLEXES
and for the recovery of Ag+ from industrial waste water.27 A rather unexpected observation was that there was almost no affinity of calixarenes 10–13
towards Pb2+ ion, whose size is similar to that of Ag+.27,28
In order to obtain calixarene based ion-selective electrodes sensitive to soft
heavy metal ions such as Ag+, Pb2+ and Hg2+, calixarene should be functionalized with groups containing nitrogen and sulphur atoms; in this case, the
binding of soft heavy metal ions is higher than that of alkali metal ions. For
this purpose, compounds 14a,b bearing benzothiazolylthioalkoxy moieties have
been synthesized by treating calixarenes 15a,b with 2-mercaptobenzothiazole
(Scheme 7).29 Calixarenes 14a,b adopt cone conformations; it was found that
they are convenient ionophores for silver ion-selective electrodes.29
SH
N
S
HO
O
HO
O
O
OH
nX
NaHCO 3
n S
n
Y
N
15a
15b
X
Y
n
Cl
Br
Br
Br
1
2
O
OH
n
S
S
S
14a
14b
N
n
1
2
Scheme 7.
CALIXARENE COMPLEXES WITH CHROMIUM, TANTALUM,
TUNGSTEN AND NIOBIUM IONS
In the study of the calixarene chromium complexes, the reaction of 16
with [CrCl3(thf)3] leading to [Cr{p-t-Bucalix[4](O)2(OMe)2}(Cl)(thf)] was carried out (Scheme 8).30
[CrCl3(thf)3]
MeO
NaO
O
O
OMe
MeO
ONa OMe
Cr
Cl
THF
16
17
Scheme 8.
W. bSLIWA
136
Complex 17 reacts with LiMes and NaCp to give mesityl and cyclopentadienyl derivatives 18 and 19, respectively (Scheme 9).30 Complex 18 crystallizes with toluene in 1:2 ratio, one toluene molecule being hosted in the calixarene cavity.
O
O
O
OMe
MeO
O
OMe
MeO
Cr
Cr
Me
Me
19
Me
18
Scheme 9.
The reactivity of CrIII in 18 and 19 is very low, even under photochemical or thermal conditions. Compound 17, however, undergoes one electron
reduction leading to 20 by treatment with sodium in the presence of naphthalene in THF. Complex 20 crystallizes with THF in 1:2 molar ratio, one of
the two THF molecules being encapsulated in the calixarene cavity. This species is air sensitive, it readily undergoes oxidation to give 21 via a bridged
peroxodichromium derivative 22, undergoing a cleavage of the O–O bond
(Scheme 10).30
O
17
1. O2 in n-hexane
2. toluene reflux
Na / C 8H10
O
O
O
OMe
MeO
Cr
THF
O
O
OMe
O
Cr
Cr
MeO
O
O
OMe
Cr
Cr
O
O
MeO
O
MeO
OMe
MeO
O
O
OMe
20
22
21
Scheme 10.
The reaction of calixarene 23 with TaCl5 affords the bis-tantalum complex 24, and the reaction of 25 with TaCl5 results in its demethylation leading to complex 26 (Scheme 11).31
137
CALIXARENE COMPLEXES
O
O
TaCl5
HO
OH
OH
O
O
Cl
Ta
Ta
Cl
O
OH
O
O
O
23
24
TaCl5
MeO
HO
OH
O
OMe
O
O
MeO
25
Ta
Cl
Cl
26
Scheme 11.
The alkylation of 24 gives 27a-c, which are in equilibrium with their
monomeric forms 28a-c. Similar alkylation of 26 leads to 29a-c, which in
the presence of pyridine undergo demethylation to give 28a-c (Scheme 12).31
26
RMgX
or RLi
24
RMgX
or RLi
O
O
O
MeO
Ta
O
O
R
O
29a
29b
29c
O
R
Ta
Ta
R
O
O
O
O
R
pyridine
O
R
27a Me
27b CH2Ph
27c p-MeC6H4
O
O
Ta
R
R
28a Me
28b CH2Ph
28c p-MeC6H4
Scheme 12.
O
W. bSLIWA
138
Complex 26 may be used for the synthesis of derivatives containing unsaturated carbon groups bonded with metal, as shown in Scheme 13.31
L
L
Li
26
LiC
CPh
O
LiC
O
CPh / Et2O
O
MeO
O O
Ta
Ta
C
C
C
C
O
MeO
C
C
Ph
C
Ph
Ph
Ph
C C
C
Ph
L = Et2O
Scheme 13.
The reaction of 26 with Mg(C4H6) leads to the tantalum-butadiene complex 30, converted by treatment with acetone into dioxo metallacycle 31
(Scheme 14).31
26
Mg(C4H6)
O
O
MeO
Me2CO
O
O
O
O
MeO
Ta
Ta
O
Me
Me
30
O
C
Me
C
Me
31
Scheme 14.
In the study of tungsten complexes of calixarenes, the following reactions of 32 were performed (Scheme 15).32,33
It was observed that complex 33 reacts with Ph3SnCl to give 34, useful
in transmetalation reactions with transition metal derivatives.34,35 The reaction of 33 with phosgene affords the ketenyl derivative 35, which by treatment with another molecule of 33 gives an equimolar mixture of 36 and 37;
this reaction proceeds via intermediate 38 (Scheme 16).34
139
CALIXARENE COMPLEXES
+
B(C6F 5)3
O
O
O
O
W
[MeB(C6H5)3] -
Me
O
O
O
O
ZnMe2
O
O
W
W
Me
Cl
Cl
O
O
Me
32
O
SnCl4
O
O
O
W
Me
Cl
Scheme 15.
Ph3SnCl
O
O
-
O
O
W
C
Ph
SnPh3
34
O
O
O
O
W
C
+
Mg 0.5 . 6 THF
Ph
COCl2
O
O
33
O
O
W
Cl
C C O
Ph
35
-
O
Ph
C
W
C
O
Ph
35
C
33
Cl
W
O
O
O
O
O
O
O
- Cl-
O
O
O
O
W
C
36
Scheme 16.
O
37
Ph
38
O
O
C
Ph
O
W
C
+
Mg 0.5 . 6 THF
+
O
W. bSLIWA
140
Complex 33 may be used for the synthesis of phosphanylalkylidenes and
their transformation into dimetallic complexes; its reaction with ClPPh2 gives
39, which by treatment with [(thf)Cr(CO)5] and [CuCOCl] affords dimetallic
complexes 40 and 41, respectively (Scheme 17).34
[(thf)Cr(CO)5]
O
O
O
O
W
C
P Cr(CO)5
Ph2
Ph
40
33
ClPPh2
O
O
O
O
W
C
Ph
[CuCOCl]
PPh2
39
O
O
O
O
O
O
O
W
W
C
Ph
O
C
Cl
P Cu
Ph2
Ph
P
Ph2
Cl
41
Scheme 17.
Oxidation of 33 by I2 leads to complex 42, in which the iodine atom may
be replaced by various organometallic nucleophiles. For example, the reaction of 42 with NaNMe2 affords aminoalkylidene 43 (Scheme 18).34
NMe2-
I2
33
O
O
O
O
O
O
W
C
Ph
O
O
W
C
I
NMe2
Ph
42
43
Scheme 18.
141
CALIXARENE COMPLEXES
Treatment of complex 32 with butyl carboanion gives rise to alkylidyne
44, which was converted into alkylidene 45 by protonation (Scheme 19).36
_
Bu32
O
O
O
H+
_ +
H
O
O
O
W
O
O
W
C
C
Pr
Pr
H
45
44
Scheme 19.
The following reactions (Scheme 20) of 32 have also been performed.32,35
Na
O
O
O
Na
O
O
O
O
O
W
W
Cl
Cl
32
O
O
W
O
O
O
O
O
O
W
hn
C
t-Bu
C
H
Scheme 20.
Activation of small molecules like O2, N2, CO and CO2 by metallacalixarenes is possible; an example of dinitrogen activation and cleavage is shown
(Scheme 21).36,37
W. bSLIWA
142
O
O
Na
2-
O
O
O
O
L L L
Na
O
Nb
Nb
1. N2, THF
2. digly
L L
O
O
O
O
O
O
1. Na / THF
Nb
2. O
N
O
N
Na
L
O
O
O
O
O
O
Nb
O
Na
N
N
O
O
Na
O
Nb
Nb
O
O
O
O
O
O
O
L = THF
2[Na(digly)]+
digly =
O
O
Na
O
O
O
Scheme 21.
CALIXARENE COMPLEXES WITH LANTHANIDE
AND ACTINIDE IONS
Lanthanide complexes of calixarenes have been investigated.38,39 Complexation of trivalent lanthanide ions by calixarenes is promising in terms
of their use for the design of luminescent devices and for the extraction of
lanthanide ions from nuclear waste. It was observed that calixarenes with
phosphorus-containing pendant arms40 are better extractants for lanthanides(III) and actinides(IV) than TOPO (trioctylphosphine oxide) or CMPO
((N,N-diisobutylcarbamoylmethyl)octylposphine oxide) used in the nuclear
waste management. Calixarene 46 forms with Ln3+ ions (Ln = La, Eu, Tb)
1:1 hydrated and anhydrous complexes 47 and 47' as well as 2:1 complexes
48 (Scheme 22).40-42
In the hydrated 1:1 complex 47a the La3+ ion is coordinated by the four
P=O groups and by water molecules, while in the anhydrous complex 47'a
the La3+ ion is situated deeper in the calixarene cavity.
In the study of extractants for lanthanides and actinides contained in
nuclear waste, calixarene 49 (Scheme 23), functionalized at the upper rim
by CMPO analogue, was investigated.43 Calixarene 49 is a more powerful
extractant than CMPO and shows high selectivity for lighter lanthanides
and actinides.44 For this purpose, calixarenes 50 (Scheme 23) functionalized
143
CALIXARENE COMPLEXES
O
O
O
O
P
P
Me Me
Me Me
O Me P
Me Me
O
Me
O
O
46
P
O
Me2 P
Me2 P
OO
O
O
O
O
O
O
Me2P
P Me2
O
Me2 P
PMe2
O
O
O
O
P Me2
O
O
PMe2
= Ln3+
anhydrous
Ln
47'a La
47'b Eu
47'c Tb
hydrated
Ln
47a La
47b Eu
47c Tb
O
O
O
Me2
P
O
Me2
P
O
O
P
Me2
O
O
P
Me2
Me2
P
Me2 O
P
O
O
O
O
P
Me2
O
O
P
Me2
O
Ln
48a La
48b Eu
48c Tb
Scheme 22.
W. bSLIWA
144
Ph
Ph
O
P Ph
O
N
O
Oct
P Ph
O
O
P
Ph O
P Ph
Ph
O
O
NH
O
NH
O
HN
Ph O
P Ph
NH
O
O
O
O
(CH2)n
NH
NH
CMPO
O
O
O
O
O
Ph P
O Ph
O
O
(CH2)n
O
(CH2)n (CH )n
2
NH
O
Ph
P
O Ph
NH
O
P
Ph
O
O
P
Ph
Ph O Ph
n
50a 2
50b 3
50c 4
49
Scheme 23.
by CMPO analogue at the lower rim are also promising. It was found that
calixarenes 50 show increased extraction of La3+, Eu3+, Yb3+ and Th4+. Compounds 49 and 50 are selective extractants of thorium over lanthanides, 50b
being the most selective extractant for Th4+/Eu3+ and Th4+/La3+.45
Calixarenes 51a-f (Scheme 24) bearing phosphine oxide moieties have
been investigated in view of their complexing properties towards trivalent
lanthanides (exemplified by europium(III)) and tetravalent actinides (exemplified by thorium(IV)), separations of lanthanides and actinides being of great
importance in the management of nuclear waste.46 Calixarenes 51a and 51d
exist in stable cone conformations in solution, while compounds 51a,c,e,f are
conformationally mobile.
R
4
O
PPh2
51a
51b
51c
51d
51e
51f
R
t-Bu
t-Bu
t-Bu
H
H
H
n
4
6
8
4
6
8
O
Scheme 24.
It was established that calixarenes 51a-f are more efficient extractants
for europium and thorium than TOPO and CMPO, with the exception of europium extraction by 51c. Extraction of europium is lower than that of thorium. Dealkylated calixarenes 51d-f are more efficient than alkylated compounds 51a-c for both europium and thorium extraction.46
145
CALIXARENE COMPLEXES
CALIXARENE COMPLEXES WITH RUTHENIUM, RHODIUM,
PALLADIUM AND PLATINUM IONS
Complexes of calix[4]arenes 52-54 (Scheme 25) containing phosphine moieties have been investigated.47,48
O
Ph2P
O
O
Ph2P
O
O
O
Me
PPh2 PPh2
O
Ph2P
52
O
O
O
PPh2 PPh2
Ph2P Ph2P
OH
OH
54
53
Scheme 25.
Reactions of 52 with [Mo(CO)3(C7H8)] and [RuCl2(dmso)4] lead to complexes 55 and 56, compound 53 treated with [Mo(CO)3(C7H8)] and with AuCl(tht)
(tht = tetrahydrothiophene) affords complexes 57 and 58, and calixarene 54 reacts with [PtCl2(cod)] (cod = cycloocta-1,5-diene) to give 59 (Scheme 26).
O
O
Ph2P
O
O
Ph2P
Ph2P
PPh2
Ph2P
Mo
OC
C
O
O
O
Ph2P
O
Ph2P
O
PPh2
Ru
CO
Cl
Cl
56
55
O
O
Me O
O
PPh2 PPh2
Ph2P
C
O
57
Au
CO
O
O
O
Ph2P
Mo
OC
O
O
Me
Ph2P
PPh2
Au
Au
Cl Cl
Cl
58
Scheme 26.
PPh2
Cl
Cl
Pt
O
OH
PPh2
59
OH
W. bSLIWA
146
Treatment of 52 with [PtCl2(cod)] results in formation of 60, which could
not be isolated due to oligomerization. To prevent oligomerization, the mild
oxidation of uncoordinated phosphine groups by addition of urea · H2O2, leading to 61, may be applied. Another method involves complexation of the remaining phosphine groups with [AuCl(tht)], affording the trinuclear complex
62 (Scheme 27).
H2NCONH2 . H2O2
O
O
Cl
Cl
52
Pt
PPh2
PPh2
O
O
PPh2
O
PPh2
O
61
[PtCl2(cod)]
O
O
PPh2
Pt
Cl
Cl
O
O
PPh2 PPh2 PPh
2
60
O
O
AuCl(tht)
Cl
Cl
Pt
O
PPh2
PPh2
O
PPh2
Au
Cl
PPh2
Au
Cl
62
Scheme 27.
Using the first procedure, the reaction of 53 with [PtCl2(cod)] and the
subsequent oxidation with urea · H2O2 leading to 63 were performed (Scheme 28).
Me
1. [PtCl2(cod)]
2. H2NCONH2.H2O2
O
O
O
O
PPh2
O
O
Ph2P
Me
Ph2P
O
O
PPh2
63
53
Scheme 28.
Ph2P
O
PPh2
Pt
Cl
Cl
147
CALIXARENE COMPLEXES
In complexes 59 and 61–63, the platinum centre is a part of a 12-membered metallamacrocycle.47
It was found that P-bridged calixarenes La,b form rhodium complexes with
[Rh(CO)2(acac*)] (acac* = t-BuCOCHCO-t-Bu) which are catalysts of the following hydroformylation reaction (Scheme 29).49
O
CO / H2 / Rh catalyst
R
R
+
R
O
Scheme 29.
Calixarenes La,b were synthesized from compounds 64a,b by treatment
with CF3COOH (Scheme 30).50 Calixarenes La,b are thermally stable even
in refluxing toluene and are not hydrolyzed by aqueous HCl or NaOH.50
R
R
R
R
R
R
R
OH
CF3COOH
HO
O
P
O
O
+
NHMe2
O
- [CF3COO][NH2Me2]
O
O
P
R
R
La H
Lb t-Bu
R
64a H
64b t-Bu
Scheme 30.
Dissolved in CH2Cl2 calixarenes La,b were treated with [Rh(CO)2(acac*)]
to give complexes 65a,b while the reaction of Lb with [Rh2(m-Cl2)(CO)4] afforded a 1:4 mixture of cis-66 and trans-66 (Scheme 31).51
O
OC
OC
L
O
L
65a
65b
Cl
Rh
Rh
Lb
OC
CO
Rh
Cl
Lb
cis - 66
La
Lb
Scheme 31.
Cl
Rh
+
Lb
Lb
Rh
Cl
trans - 66
CO
W. bSLIWA
148
Rhodium complexes of La and Lb were tested as catalysts of the hydroformylation of 1-hexene. It was found that they are very active and chemoselective catalysts, however their regioselectivity is low.49-51
Calixarenes 67–70 (Scheme 32) form with [Rh(CO)2(acac*)] very active
catalysts for hydroformylation of 1-octene, their efficiency being influenced
by the conformation of the ligand.49,50,52
O
O
P
RO
O
R
67
68
69
70
i -Pr
CH2Ph
C(O)Me
C(O)Ph
Scheme 32.
It was established that also palladium, iridium, platinum and gold complexes of La and Lb are promising with regard to their use as hydroformylation
catalysts.49-51 Reaction of La with [PdCl2(NCPh)2] affords 71, while Lb gives
binuclear palladium(II) complex 72 under these conditions, the latter being
converted into 73–75 by ligands A (A = CO, MeCN, t-BuCN) (Scheme 33).
La
Cl
Cl
La
Cl
71
Lb
Lb
Cl
Pd
Pd
Pd
Cl
72
Cl
Cl
Lb
73
74
75
Cl
Pd
A
A
CO
MeCN
t-BuCN
Scheme 33.
Calixarenes La and Lb react with [Ir2(m-Cl)2(cod)2] to give complexes 76a,b
and the reaction of La with K[PtCl3(C2H4)] results in mononuclear species
77, while in the case of Lb the binuclear platinum(II) complex 78 is formed
(Scheme 34).
Treatment of La and Lb with [Pt(nor)3] (nor = h-norbornene) in CH2Cl2
leads to non-isolable mixtures of complexes 79a,b and 80a,b,50,53 and complexes 81a,b are obtained with [AuCl(tht)] (Scheme 35).50
149
CALIXARENE COMPLEXES
Cl
La
Ir
Cl
Cl
Pt
L
La
L
76a
76b
Cl
Pt
Cl
Pt
Lb
Cl
77
Lb
Cl
78
La
Lb
Scheme 34.
L
Pt
L
Pt
L
L
L
La
Lb
79a
79b
80a
80b
L
La
Lb
Au Cl
81a
81b
L
La
Lb
Scheme 35.
In the study of selective extraction of uranium dissolved in seawater in
the form of uranyl cation UO22+, it was observed that the biscalix[4]arenebased receptor 82 binds and extracts uranyl cation into organic solvent media.54 The complexation of uranyl proceeds as follows (Scheme 36).
O
HO
OH
O
UO2(OAc)2(H2O)2
O
COOH
HOOC
- AcOH
- H2O
O
HO
HO
O
OH O
O
82
Scheme 36.
O
U
O
O
HO
O
OH
O
O
OH O
W. bSLIWA
150
The synthesis of 82 involves condensation of calix[4]arene 23 with methyl 2,6-bis(bromomethyl) benzoate leading to dimer 83 and trimer 84; the
hydrolysis of the former affords receptor 82 (Scheme 37).
COOMe
+
HO
HO
OH
Br
K2CO3 / MeCN
Br
OH
23
O
HO
OH
O
O
HO
OH
O
COOMe
MeOOC
R
R
+
O
O
O
OH
OH O
HO
HO
OH
OH
O
O
COOMe
R
83 COOMe
1. t-BuOK / DMSO
2. HCl / H2O
84
82 COOH
Scheme 37.
CONCLUSION
Investigations of calixarene complexes with transition metal as well as
lanthanide and actinide ions are developing rapidly. In the above paper, an
attempt has been made to present a concise survey of this theme. The described species are attracting growing attention, among others due to their
usefulness in nuclear waste management, important in environmental protection.
151
CALIXARENE COMPLEXES
REFERENCES
1. C. D. Gutsche, in: J. F. Stoddart (Ed.), Calixarenes Revisited, Monographs in Supramolecular Chemistry, The Royal Society of Chemistry, Cambridge, 1998.
2. F. Ugozzoli, in: L. Mandolini and R. Ungaro, (Eds), Calixarenes Action, Imperial
College Press, London, 2000, pp. 144–171.
3. V. Böhmer and A. Shivanyuk, in: L. Mandolini and R. Ungaro (Eds), Calixarenes
Action, Imperial College Press, London, 2000, pp. 203–240.
4. A. D. Cort and L. Mandolini, in: L. Mandolini and R. Ungaro (Eds), Calixarenes
Action, Imperial College Press, London, 2000, pp. 85–110.
5. J. Rebek Jr., Chem. Commun. (2000) 637–643.
6. W. Sliwa, Heterocycles 55 (2001) 181–199.
7. W. Sliwa, Polish J. Chem. 75 (2001) 921–940.
8. W. Sliwa, Calixarenes, Pedagogical University, Czestochowa, 2000.
9. F. Arnaud-Neu, Z. Asfari, B. Souley, J. Vicens, P. Thuéry, and M. Nierlich, J.
Chem. Soc., Perkin Trans 2 (2000) 495–499.
10. M. T. Blanda, D. B. Farmer, J. S. Brodbelt, and B. J. Goolsby, J. Am. Chem. Soc.
122 (2000) 1486–1491.
11. Y. Okada, M. Mizutani, F. Ishii, and J. Nishimura, Synlett (2000) 41–44.
12. Y. Chen, F. Yang, and S. Gong, Tetrahedron Lett. 41 (2000) 4815–4818.
13. L. Prodi, F. Bolletta, M. Montalti, N. Zaccheroni, A. Casnati, F. Sansone, and R.
Ungaro, New J. Chem. 24 (2000) 155–158.
14. W. Sliwa, Chemia, Dydaktyka, Ekologia, Metrologia, Tow. Chemii i Inzynierii Ekologicznej (Soc. of Chemistry and Ecology Engineering), Opole, in press.
15. M. J. Hardie and C. L. Raston, J. Chem. Soc., Dalton Trans. (2000) 2483–2492.
16. A. Caselli, E. Solari, R. Scopelliti, and C. Floriani, J. Am. Chem. Soc. 122 (2000)
538–539.
17. T. Shinohara, S. Wakisaka, K. Ohto, and K. Inoue, Chem. Lett. (2000) 640–641.
18. P. Molenveld, J. F. J. Engbersen, and D. N. Reinhoudt, Chem. Soc. Rev. 29 (2000)
75–86.
19. T. N. Lambert, L. Dasaradhi, V. J. Huber, and A. S. Gopalan, J. Org. Chem. 64
(1999) 6097–6101.
20. J.-F. Dozol, A. Garcia Carrera, V. Böhmer, and S. E. Matthews, PCT Int. Appl. WO
00 31,087 (2000); Chem. Abstr. 133 (2000) 17635.
21. B. Tomapatanaget, B. Pulpoka, and T. Tuntulani, Chem. Lett. (1998) 1037–1038.
22. B. Bodenant, T. Weil, M. Businelli-Pourcel, F. Fages, B. Barbe, I. Pianet, and M.
Laguerre, J. Org. Chem. 64 (1999) 7034–7039.
23. P. Molenveld, J. F. J. Engbersen, and D. N. Reinhoudt, Eur. J. Org. Chem. (1999)
3269–3275.
24. P. Molenveld, J. F. J. Engbersen, and D. N. Reinhoudt, Angew. Chem., Int. Ed.
Engl. 38 (1999) 3189–3192.
25. K. Kimura, K. Tatsumi, S. Yajima, S. Miyake, H. Sakamoto, and M. Yokoyama,
Chem. Lett. (1998) 833–834.
26. K. Kimura, S. Yajima, K. Tatsumi, M. Yokoyama, and M. Oue, Anal. Chem. 72
(2000) 5290–5294.
27. X. Hu, Y. Chen, Z. Tian, and J. Xue, J. Chem. Res. (S) (1999) 332–333.
28. T. Sokalski, A. Ceresa, M. Fibbioli, T. Zwickl, E. Bakker, and E. Pretsch, Anal.
Chem. 71 (1999) 1210–1214.
152
W. bSLIWA
29. X. Zeng, L. Weng, L. Chen, X. Leng, Z. Zhang and, X. He, Tetrahedron Lett. 41
(2000) 4917–4921.
30. J. Hesschenbrouck, E. Solari, C. Floriani, N. Re, C. Rizzoli, and A. Chiesi-Villa, J.
Chem. Soc., Dalton Trans. (2000) 191–198.
31. B. Castellano, E. Solari, C. Floriani, N. Re, A. Chiesi-Villa, and C. Rizzoli, Chem.
Eur. J. 5 (1999) 722–737.
32. L. Giannini, S. Dovesi, E. Solari, C. Floriani, A. Chiesi-Villa, and C. Rizzoli, Angew. Chem. Int. Ed. Engl. 38 (1999) 807–810.
33. L. Giannini, E. Solari, C. Floriani, A. Chiesi-Villa, and C. Rizzoli, J. Am. Chem.
Soc. 120 (1998) 823–824.
34. S. Dovesi, E. Solari, R. Scopelliti, and C. Floriani, Angew. Chem. Int. Ed, Engl. 38
(1999) 2388–2391.
35. L. Giannini, G. Guilemot, E. Solari, C. Floriani, N. Re, A. Chiesi-Villa, and C.
Rizzoli, J. Am. Chem. Soc. 121 (1999) 2797–2807.
36. C. Floriani, Chem. Eur. J. 5 (1999) 19–23.
37. A. Zanotti-Gerosa, E. Solari, L. Giannini, C. Floriani, A. Chiesi-Villa, and C. Rizzoli, J. Am. Chem. Soc. 120 (1998) 437–438.
38. M. P. O. Wolbers, F. C. J. M. Vanveggel, F. G. A. Peters, E. S. E. Vanbeelen, J. W.
Hofstraat, F. J. Geurts, and D. N. Reinhoudt, Chem. Eur. J. 4 (1998) 772–780
39. L. J. Charbonnière, C. Balsiger, K. J. Schenk, and J.-C. G. Bünzli, J. Chem. Soc.,
Dalton Trans. (1998) 505–510.
40. L. Le Saulnier, S. Varbanov, R. Scopelliti, M. Elhabiri, and J.-C. G. Bünzli, J.
Chem. Soc., Dalton Trans. (1999) 3919–3925.
41. C. Fischer, G. Sarti, A. Casnati, B. Carrettoni, I. Manet, R. Schuurman, M. Guardigli, N. Sabbatini, and R. Ungaro, Chem. Eur. J. 6 (2000) 1026–1034.
42. L. Prodi, S. Pivari, F. Bolletta, M. Hissler, and R. Ziessel, Eur. J. Inorg. Chem.
(1998) 1959–1965.
43. A. Arduini, V. Böhmer, L. Delmau, J.-F. Desreux, J.-F. Dozol, M. A. Garcia Carrera, B. Lambert, C. Musigmann, A. Pochini, A. Shivanyuk, and F. Ugozzoli, Chem.
Eur. J. 6 (2000) 2135–2144.
44. L. H. Delmau, N. Simon, M. J. Schwing-Weill, F. Arnaud-Neu, J. F. Dozol, S.
Eymard, B. Tournais, V. Böhmer, C. Grüttner, C. Musigmann, and A. Tunayar,
Chem. Commun. (1998) 1627–1628
45. S. Barboso, A. Garcia Carrera, S. E. Matthews, F. Arnaud-Neu, V. Böhmer, J. F.
Dozol, H. Rouquette, and M.-J. Schwing-Weill, J. Chem. Soc., Perkin Trans. 2 (1999)
719–723.
46. F. Arnaud-Neu, J. K. Browne, D. Byrne, D. J. Marrs, M. A. McKervey, P. O'Hagan,
M. J. Schwing-Weill, and A. Walker, Chem. Eur. J. 5 (1999) 175–186.
47. C. B. Dieleman, C. Marsol, D. Matt, N. Kyritsakas, A. Harriman, and J.-P. Kintzinger, J. Chem. Soc., Dalton Trans. (1999) 4139–4148.
48. C. B. Dieleman, D. Matt, I. Neda, R. Schmutzler, H. Thönessen, P. G. Jones, and
A. Harriman, J. Chem. Soc., Dalton Trans. (1998) 2115–2121.
49. F. J. Parlevliet, C. Kiener, J. Fraanje, K. Goubitz, M. Lutz, A. L. Spek, P. C. J.
Kamer, and P. W. N. M. Leeuwen, J. Chem. Soc., Dalton Trans. (2000) 1113–1122.
50. C. J. Cobley, D. D. Ellis, A. Guy Orpen, and P. G. Pringle, J. Chem. Soc., Dalton
Trans.(2000) 1101–1107.
51. C. J. Cobley, D. D. Ellis, A. Guy Orpen, and P. G. Pringle, J. Chem. Soc., Dalton
Trans. (2000) 1109–1112.
153
CALIXARENE COMPLEXES
52. F. J. Parlevliet, M. A. Zuideveld, C. Kiener, P. C. J. Kamer, H. Kooijman, A. L.
Spek, and P. W. N. M. van Leeuwen, Organometallics 18 (1999) 3394–3405
53. C. J. Cobley and P. G. Pringle, Inorg. Chim. Acta 265 (1998) 107–115
54. P. Schmitt, P. D. Beer, M. G. B. Drew, and P. D. Sheen, Tetrahedron Lett. 39 (1998)
6383–6386.
SA@ETAK
Kompleksi kaliksarena s prijelaznim metalima,
ionima lantanoida i aktinoida
b liwa
Wanda S
Opisani su odabrani kompleksi kaliksarena s ionima prijelaznih metala, lantanoidâ i aktinoidâ, te njihova priprava i mogu}nosti primjene.