Download BME lecture 9 - cardiovascular modeling (Sept 23, 2004)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Cardiac contractility modulation wikipedia , lookup

Cardiovascular disease wikipedia , lookup

Electrocardiography wikipedia , lookup

Mitral insufficiency wikipedia , lookup

Cardiac surgery wikipedia , lookup

Jatene procedure wikipedia , lookup

Arrhythmogenic right ventricular dysplasia wikipedia , lookup

Heart failure wikipedia , lookup

Antihypertensive drug wikipedia , lookup

Hypertrophic cardiomyopathy wikipedia , lookup

Myocardial infarction wikipedia , lookup

Aortic stenosis wikipedia , lookup

Quantium Medical Cardiac Output wikipedia , lookup

Transcript
BME Class (Lecture 9 – cardiovascular modeling)
September 23, 2004
Lecture #9 – Cardiovascular Modeling
1. Left Heart Model
ARTERIAL
MODEL
AoP(t)
AV
RAV
IAo(t)
+
-
LLV
LVP(t)
MV
CLV
PT(t)
RMV
ILV(t)
ILA(t)
LLA
+
-
LAP(t)
CLA
PT(t)
A. Filling Phase
LAP(t)  ILV (t)RMV  LLA
dILV (t)
1

 ILV (t)dt  PT (t)  0
dt
CLV
(Eq. 1)
B. Ejection Phase
LVP(t)  I Ao (t)R AV  L LV
Steven C. Koenig, Ph.D.
1
dI Ao (t)
 AoP(t)  0
dt
(Eq. 2)
BME Class (Lecture 9 – cardiovascular modeling)
September 23, 2004
C. Parameter Estimation - integral approach (ejection phase)
t1
t1
 [LVP(t)  AoP(t)]dt - R AV  I Ao (t)dt  L LV [I(t 1 )  I(t 0 )]  0
t0
t0
t2
t2
 [LVP(t)  AoP(t)]dt - R  I
AV
t1
Ao
(t)dt  L LV [I(t 2 )  I(t 1 )]  0
(Eq. 3a)
(Eq. 3b)
t1
2. Background: ‘old’ modeling concepts
Introduction to Myocardial Mechanical Properties: Myocardial visco-elastic properties
can be described by two parameters: elastance and resistance. Elastance is defined as
the ratio of the pressure response to changes in volume. The time-varying theory of
elastance was constructed to explain the pressure volume behavior of the contracting
heart (Robinson 1965, Suga 1969). The concept of viscous losses (friction) within the
shortening myocardium is commonly referred to as resistance and has been quantified
by numerous investigators, and is a critical element in the Hill relationship (Sonnenblick
1962a and 1962b).
Current Elastance-based Methods of Evaluating Cardiac Performance: For years, it was
thought that the end-systolic-pressure-volume-relationship (ESPVR) and other
elastance-based methods were indicative of cardiac performance (Sunagawa 1980,
Takeuchi 1991, Shih 1997, Senzaki 1996, Shishido 2000). Recently, however, more
investigators have shown that ESPVR is not as predictive of cardiac contractility as
once thought. In an excellent review of four elastance-based techniques, Kjorstad et al
(2002) concluded that, “It is therefore doubtful whether any of the methods allow for
single-beat assessment of contractility.”
Introduction to Elastic Pressure and Source Resistance Concepts: Others (Campbell
1990, 1997, Hunter 1980,1983, Chang 1997) have unified the elastance and resistance
concepts in an elastance-resistance (E-R) cardiac model and perhaps the most intuitive
E-R model to understand is a mechanical model, as shown in Figure 9.1. Here the time
varying elastance is denoted by a variable spring element and the viscous (frictional)
loss is represented by a dashpot element. As the elastance becomes greater, the
spring produces a greater force and pushes upward producing a force (pressure) of
PELAST. When the left ventricular pressure becomes greater than the aortic pressure,
the aortic valve opens and volume is ejected as the piston moves upward. As it moves
upward, there is a resisting force (pressure) due to the dashpot (PDASHPOT) that reduces
the net force upward (PELAST - PDASHPOT) and it is balanced by LVP. Thus whenever
there is motion as in ejection (or filling), the pressure due to the elastic (force-producing)
element, PELAST, is no longer equal to the left ventricular pressure (Figure 9.2).
Steven C. Koenig, Ph.D.
2
BME Class (Lecture 9 – cardiovascular modeling)
September 23, 2004
Aortic
Flow
Reviewer's Note: This model is an
intuitive abstraction of a more
complex process. However, while
the exact details of elastanceresistance models may vary, the
mathematical findings are valid for
more complex processes.
Aortic
Valve
Mitral
Valve
Left
Ventricle
LVP
dVol
Elastance generates PELAST and is
dt
opposed by friction, PDASHPOT and
ventricular pressure, LVP. PELAST
Atrial Inflow
PDASHPOT
Time varying
elastance
Frictional Element (Dashpot)
RS
Figure 9.1 Simple Elastance and Resistance Model
LVP
PELAST
PDASHPOT
Figure 9.2 Pressure Balance Diagram
The mathematical relationships between the pressures are given in equations 9.1-9.3.
Note that the time rate of volume change is the negative of the aortic flow (AoF) during
ejection.
LVP  PELAST  PDASHPOT
Equation 9.1
LVP  PELAST  RS
dVol
dt
LVP  PELAST  RS * AoF
Equation 9.2
Equation 9.3
A major consequence of equations 9.1-9.3 is that LVP can be measured using a
traditional pressure catheter, but neither PELAST or PDASHPOT can be directly measured.
PELAST can only be indirectly estimated whenever PDASHPOT = 0 as this is when LVP =
PELAST (i.e. during an isovolumic phase, Equation 1). Finally, traditional E-R models
have fallen short of predicting cardiac performance, particularly in the late systole and
Steven C. Koenig, Ph.D.
3
BME Class (Lecture 9 – cardiovascular modeling)
September 23, 2004
diastolic relaxation phases, leading some researchers to suggest that E-R approaches
may not adequately describe this sub-process (Campbell 1990). A significant aspect of
using PELAST and RS is that volume need not be measured and Vo (the ventricular filling
volume) need not be determined using a vena caval occlusion, making this approach
more clinically suitable.
Previous Approaches to Estimating PELAST. Sunagawa assumed that the isovolumic
contraction and relaxation phases of an ejecting beat could be used to predict the
pressure waveform of an isovolumic beat. He used an inverted cosine function and
adjusted its amplitude, PMAX, its duration, T and its phase term, , until both the
isovolumic contraction and relaxation phases of an ejecting beat each lay along
opposite tails of the inverted cosine curve. The portion of the inverted cosine curve
between the two isovolumic phases described the pressure the beat would have
attained had it not ejected. In other words, the inverted cosine curve described PELAST
of an isovolumic beat. Two significant problems can arise when using this approach.
First, the duration of an isovolumic beat is longer than an ejecting beat, when both start
at the same ventricular volume. Sunagawa's approach assumed the isovolumic and
ejecting waveforms had equal duration, T. Second, the cosine basis function requires
that the isovolumic contraction and relaxation phases to be mirror images in the sense
that they each would both lie along the respective tails of an inverted cosine curve,
which is often not the case.
In fact, the ejecting beat diastolic relaxation dynamics are often different than the
isovolumic contraction dynamics, prompting some investigators to model the two
isovolumic phases of an ejecting beat with different exponential-form equations with
different time constants (Regen 1994). It is very important to note that Sunagawa’s
PMAX estimate is fundamentally different that our PELAST estimate. Sunagawa’s PMAX was
considered to be the isovolumic pressure, while our PELAST is the pressure that results
from a lossless ventricle during an ejection process. PELAST and PMAX are equivalent only
when the beat is completely isovolumic.
Determining PELAST and RS during Ejection: Any shortening of the cardiac muscle (i.e.
ejection) results in less generated LVP, as energy that could have been used to develop
LVP is lost in the myocardial friction or resistance, RS, (PELAST - PDASHPOT = LVP).
Since there is no aortic flow during the contraction and relaxation regions of a beat there
are no losses due to RS and therefore PELAST is equal to LVP in these regions. PELAST is
not known during the ejection portion of a beat because aortic flow is not zero and a
pressure loss occurs due to resistance, RS. In order to determine PELAST during ejection
a method was developed using a cubic spline interpolation to predict what the pressure
would have been over this region similar to the approach taken by Kjorstad (2002).
Briefly, the beginning and end of ejection was selected using dpdt maximum and
minimum respectively. These points correspond to the end of contraction and
beginning of relaxation. Next, a threshold on LVP dp/dt was employed to determine the
beginning of contraction and the end of the relaxation region. With these four points
selected, the analysis region of the ejecting beat was established. PELAST from the
Steven C. Koenig, Ph.D.
4
BME Class (Lecture 9 – cardiovascular modeling)
September 23, 2004
isovolumic regions was used as input data in a cubic spline interpolation to predict
PELAST during ejection. Once PELAST is known RS was determined using the following
formula.
P
 LVP
RS  ELAST
AoF
The programs for this procedure were developed and implemented in Matlab. The
application of this technique to normal and failing hearts is described below.
Canine Heart Failure PELAST and RS (Data Courtesy of L. Mulligan, Medtronic Heart
Failure Group): A rapid pacing model in a canine was used to create heart failure. Data
were obtained in normal and heart failure models and the results of the preliminary
study are depicted in the following three figures.
Clearly, and not surprisingly, PELAST is depressed in heart failure indicating that the
pressure generation component has been affected and its isovolumic relaxation phase
is prolonged, which may be partly explained by the increase in RS in heart failure.
Overall RS is increased for all values of PELAST. An increase in RS may increase the time
constant of relaxation, resulting in a sluggish isovolumic relaxation phase. Also, RS has
a unique behavior in heart failure as it starts out very high and then drops as P ELAST
increases. Next as PELAST decreases in the latter part of ejection, RS drops in proportion.
In fact this early elevated RS may be indicative of a static friction (“stiction”)
phenomenon. In stiction, the sliding elements are “sticky” at first, then as motion begins
they become “unstuck” resulting in less friction. The response of heart failure
Panel A
Figure 9.3
Panel B
PELAST waveforms (Panel A) for control and heart failure, (Panel B) RS
under normal and heart failure conditions. In (Panel B) the circles in the
lower left indicate the end of ejection.
RS in early ejection decreases with increasing Pelast and opposite to that observed by
Hunter (1979) in isolated hearts. RS seen in the normal condition increase with Pelast
and agrees with experimental observations of Hunter.
Steven C. Koenig, Ph.D.
5
BME Class (Lecture 9 – cardiovascular modeling)
September 23, 2004
Preliminary Swine PELAST and RS: A Yorkshire pig was used as the animal model to
obtain ejecting hemodynamic data to estimate both PELAST and RS. Shown below in
Figure 9.4 are representative plots of PELAST for a normal porcine heart.
One can see that for a healthy swine heart, PELAST exceeds LVP significantly during
ejection and matches the isovolumic phases exactly. The reduction of PELAST to LVP
during ejection is due to the internal frictional losses (RS). Overall, RS is roughly
proportional to PELAST, as one expects from experimental observations (Hunter et al) and
is not appreciably different at the higher heart rate. However, it does exhibit different
behavior for increasing PELAST than for decreasing PELAST. The largest RS occurs at or
near the largest PELAST, which coincides with the largest ventricular outflow. The result
of this is that the largest frictional losses occur at the largest flow values, just when RS is
at its greatest value. This demonstrates our ability to make these calculations and this
data set will be used to compare to normal human hearts in assessment of
hemodynamic compatibility of xenotransplantation.
Panel A
Figure 9-4.
Panel B
Panel A at heart rate of 90 beats per minute (bpm) and Panel B at heart
rate of 130 bpm. Top Panel A and B shows PELAST estimates derived from
LVP and lower panel A and B shows similar RS for a swine heart. Here
the circle denotes the beginning of ejection.
Steven C. Koenig, Ph.D.
6
BME Class (Lecture 9 – cardiovascular modeling)
September 23, 2004
Preliminary Human Heart Failure PELAST and RS: After informed consent, patients just
prior to undergoing a partial left ventriculectomy were instrumented according to
procedures approved by IRB. Briefly, left ventricular and aortic pressure, and aortic flow
were recorded for a two-minute period under steady state conditions. PELAST and RS
were estimated from the recorded waveforms using the new technique described above
(AHA grant 0051419Z). The figures below show the results of one test patient. This
demonstrates that we have the expertise to make calculations in human subjects in a
clinical setting. Further, this patient set will be analyzed and the results compared to
normal human hearts (pre-CABG) to establish baseline differences in normal and failing
human hearts.
In the Panel A of Figure 9.5, it is evident that PELAST is not very much higher than LVP
during ejection. Overall the LVP diastolic pressures are very high and the systolic
pressures are very low. Interestingly, RS, displays the same behavior as the failing dog
heart – that is it starts out elevated and drops as PELAST increases to its maximum value,
then as PELAST falls, so does RS (as shown in Figure 9.6).
Figure 9.5
Human heart in heart failure with showing small PELAST as compared to
LVP. Right panel shows RS vs. PELAST and “stiction” phenomenon. Here
the circle denotes the beginning of ejection.
Steven C. Koenig, Ph.D.
7
BME Class (Lecture 9 – cardiovascular modeling)
Figure 9.6
September 23, 2004
Illustration of similarity of shape of source resistance vs PELAST for heart
failure in canine and humans.
Summary. It is believed that cardiac function can be cleaved into two components – a
pressure generating function (PELAST) and the ability to empty volume effectively (RS).
We have shown that clear differences in PELAST and RS exist between normal and failing
canine hearts, where PELAST is depressed and RS is elevated in heart failure. In fact RS
is very high at the start of ejection for both failing canine and human hearts, perhaps
indicating a type of ‘stiction” (static friction). In heart failure, PELAST was depressed
indicating an inability of the heart to generate adequate pressure, concurrently, RS is
elevated making the ejection process less effective. Thus in these failing hearts both
components have been adversely affected.
Ultimately, cleavage of cardiac function into these two components -- pressure
generation (PELAST) and effective ejection(RS) may offer a better way to assess various
treatment options. For example, PELAST might be improved with treatment A and RS
might be improved with treatment B and a combined therapy improves both.
Importantly, PELAST and RS may provide metrics to analyze the mechanisms (genetic
and metabolic) responsible for changes in pressure generation and volume ejection.
Steven C. Koenig, Ph.D.
8
BME Class (Lecture 9 – cardiovascular modeling)
September 23, 2004
Lumped Parameter Vascular Models:
C
R
(a)
Zo
L
C
R
(b)
R’
C
R
C
R
(c)
L
LP
C
R
Zo
(d)
(e)
Figure 9.1 Assorted lumped parameter models of systemic vasculature: (a) 2element Windkessel, (b) 3-element Winkessel, (c) 3-element inductance, (d) 4-element
Noordergraf, and (e) 4-element Windkessel or Buratini model.
A. Time Domain Analysis (2-element Windkessel model (a))
The model equations for estimating the parameters are defined by,
t1
t1
t

1 1


I
dt

C
dAoP(t)
dt

AoP(t)
RAP(t)
dt


Ao


R  t0
t0
t0

t2
t2
t1
t1
 IAodt  C dAoP(t)dt
t

1 2
  AoP(t) - RAP(t) dt 
R  t1

(Eq. 9.1a)
(Eq. 9.1b)
where, the aortic flow (IAo), aortic pressure (AoP(t)), and right atrial pressure (RAP(t))
can be measured. Using this 2 equations and 2 unknowns approach, we can solve for
R and C by:
Area(IAo) = C[(AoP(t1) – AoP(t2)] + 1/R[Area(AoP – RAP)]
B. Spectral Analysis (3-element Inductance model (c))
Steven C. Koenig, Ph.D.
9
BME Class (Lecture 9 – cardiovascular modeling)
September 23, 2004
Theory – The impedance equations for the arterial models (b-e) can be derived by
taking the Laplace Transform of the model equations. Define P(t) = aortic pressure and
Q(t) = aortic flow.
The transformed arterial parameters and measurements are defined as,
Time
Domain
R
C
L
P(t)
Q(t)
Transformation
(S-Domain)
R
1/(sC)
sL
P(s)
Q(s)
In the case of the 3 element inductance model (c), the impedance equation is derived
as follows:
 1 
R 
P(s)
sC
(Eq. 9.2)
T(s) 
 sL   
1
Q(s)
R
sC
  1 
 R  
P(s)
R
sC  Cs 
T(s) 
 sL        sL 
(Eq. 9.3)

1  Cs 
Q(s)
(RC)s  1
R 

sC 

T(s) 
P(s)

Q(s)

 (RC)s  1  (RC)s  1(sL)  R
R
 sL 


(RC)s  1  (RC)s  1 
(RC)s  1

(Eq. 9.4)
s2 (LCR)  s(L)  R
(Eq. 9.5)
T(s) 
(CR)s  1
and, evaluating the impedance equation at s = j = j2f,
R  j (LC 2R2 ) 3  (L  CR2 )
(Eq. 9.6)
T(j) 
(C 2R2 ) 2  1
The impedance equation evaluated at s = j (Eq. 9.6) can then be broken into real and
imaginary components (Eqs. 9.7a and 9.7b).
A
R
Re( j )  Re  2 2 2
(Eq. 9.7a)
D (C R )  1



(LC2R2 ) 3  (L  CR2 )
AIm
Im( j) 

D
(C2R2 ) 2  1

The magnitude and phase at each frequency (f 1, f2, … fn) can be calculated:
Steven C. Koenig, Ph.D.
10
(Eq. 9.7b)
BME Class (Lecture 9 – cardiovascular modeling)
September 23, 2004
Magnitude =
Re(jω)2  Im(jω)2
(Eq. 9.8a)
 Im(jω) 

Phase = tan 1 
(Eq. 9.8b)
Re(jω
)


Using Eq. 9.8a and 9.8b, we can then calculate the magnitude and phase for n
frequency terms.
Now, to estimate L-R-C paramters, … Look at magnitude and phase information by
applying the Fast Fourier Transform (FFT) to the measured aortic pressure, P(t), and
aortic flow, Q(t). We can then adjust the R-L-C parameters until a ‘good fit’ between the
measured and calculated magnitude(s) and phase(s) for n frequency terms is achieved.
Parameter Estimation Technique
We can estimate the R-L-C parameters in Matlab with the ‘fminsearch’ function.
FILENAME: 3element_Lmodel.m
global Zexp nharm w Zmod
AoF=AoF1*1000/60;
fs=400;
Zexp=fft(AoP1)./fft(AoF);
nharm=3;
w=fs/length(AoP1);
XX=fminsearch('Z_freq', [1,1])
% convert from L/min to cc/sec
% sampling frequency (Hz)
% experimental input impedance
% number of harmonics
% fundamental frequency (Hz)
% call fminsearch and initial
conditions [C L]
FILENAME: Z_freq.m
function error=Z_freq(pp)
% Function minimizes error between experimental and model impedances
% by iteratively adjusting L and C
global nharm w Zexp Zmod
harm=[1:nharm];
% Calculate impedance for model for 'nharm' harmonics for 3L model
for ii=1:nharm-1
Z1(ii)=-j/(ii*w*pp(1));
% impedance of capacitor
Z2(ii)=Zexp(1);
% impedance of resistor
Z3(ii)=j*ii*w*pp(2);
% impedance of inductor
Zp(ii)=Z1(ii)*Z2(ii)./(Z1(ii)+Z2(ii));% impedance of R-C parallel
Zmod(ii)=Zp(ii)+Z3(ii);
% impedance of Zp + L series
real_e(ii)=(ii.^2)*(real(Zexp(ii+1))-real(Zmod(ii))); % weighting
imag_e(ii)=(ii.^2)*(imag(Zexp(ii+1))-imag(Zmod(ii))); % weighting
end
error=sum(real_e.^2)+sum(imag_e.^2);
AA=abs(Zmod);
BB=abs(Zexp);
plot(harm,[Zexp(1) AA(1:nharm-1)],'*',harm,BB(1:nharm),'.')
pause(0.1)
Steven C. Koenig, Ph.D.
11
BME Class (Lecture 9 – cardiovascular modeling)
September 23, 2004
Assignment #4
1. Derive the impedance equations for the 4-element Windessel model (e).
2. Using ‘patient001’ and ‘patient002’, data files and approach discussed in lecture
modify sample code, and estimate R and C parameters for the 4-element
Windkessel model (a) for the first 3 beats of data. Compare parameter values for
each data set. Are they different? If so, why do you think they are different (i.e.
what is the condition of the ‘patient’ in each of these data sets (normal, failure, or
recovery)?
Note: Data were sampled at 400 Hz (or 1 sample every 2.5 msec).
AoP = aortic pressure (mmHg)
AoF = aortic flow (L/min)
*Assignment #9 - due in class on Tuesday, September 30, 2004)
Reference:
1. Essler S, MJ Schroeder, V Phaniraj, SC Koenig, RD Latham, and DL Ewert. Fast
estimation of arterial vascular parameters for transient and steady beats with
application to hemodynamic state under variant gravitational conditions. Ann.
Biomed. Eng., 27:486-97, July 1999.
Steven C. Koenig, Ph.D.
12