* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download ECE 342 – Jose Schutt-Aine
Mains electricity wikipedia , lookup
Public address system wikipedia , lookup
Stray voltage wikipedia , lookup
Nominal impedance wikipedia , lookup
Audio power wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Buck converter wikipedia , lookup
Negative feedback wikipedia , lookup
Current source wikipedia , lookup
Two-port network wikipedia , lookup
Zobel network wikipedia , lookup
Wien bridge oscillator wikipedia , lookup
ECE 342 Solid-State Devices & Circuits 10. MOS Amplifiers Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected] ECE 342 – Jose Schutt-Aine 1 Biasing of MOS Transistors • Bias Characteristics – Operation in saturation region – Stable and predictable drain current 1 W 2 I D nCox VGS VT 2 L ECE 342 – Jose Schutt-Aine 2 Two-Supply MOS Bias 1 W 2 I D nCox VGS VT 2 L RG provides DC ground at gate and high input resistance to signal source. ECE 342 – Jose Schutt-Aine 3 Single-Supply MOS Bias – – – – Choose R1 and R2 to fix VG Choose RS and R2 to fix VS VGS determines ID Choose RD to fix VD ECE 342 – Jose Schutt-Aine 4 Bias with Feedback Resistor VGS VDS VDD RD I D VDD VGS RD I D Negative feedback (degeneration) provided by RG ECE 342 – Jose Schutt-Aine 5 Common Source MOSFET Amplifier Bias is to keep MOS in saturation region ECE 342 – Jose Schutt-Aine 6 Common Source MOSFET Amplifier Small-Signal Equivalent Circuit for MOS (device only) 1 'W 2 I D kn VGS VT 2 L I D VGS Which leads to 2I D Veff g m 2kn' W / L where VGS VT Veff gm is proportional to gm VGS VGSQ ECE 342 – Jose Schutt-Aine ID W /L 7 MOSFET Output Impedance To calculate rds, account for l VDS rds I D VGS VGSQ I DP 1 2 W l Cox VGS VT 2L 1 l I DP 1 'W 2 kn VGS VT 2 L rds, accounts for channel width modulation resistance. ECE 342 – Jose Schutt-Aine 8 Midband Frequency Gain Incremental model for complete amplifier AMB vout rds RD RB gm vin RB Rg rds RD ECE 342 – Jose Schutt-Aine 9 Example In the circuit shown, VT=1 V, l=0, CoxW/2L=0.1 mA/V2. Select RD and R1 to result in midband voltage gain of –4 and VDSQ=7 V. RD VDD VDSQ I DQ AMB g m RD g m AMB 4 0.1 I DQ ECE 342 – Jose Schutt-Aine 5 I DQ 5 I DQ 5 I DQ 3.162 4 I DQ 10 Example (Cont’) 2 I DQ 5 3.162 8 k 0.625 mA RD 0.625 4 0.625 0.1VGS 1 leads to 6.25 1 VGS 3.5 V 2 VDD R2 80 960 12 3.5 80 R1 194 k R1 R2 80 R1 3.5 RD 8 k R1 194 k ECE 342 – Jose Schutt-Aine 11 Example For the circuit shown, k=75 mA/V2, VT=1 V, l=0 (a) Find VDQ, VSQ (b) Find the midband gain VGQ VDD R2 20 5 4V R1 R2 25 VGSQ VGQ VSQ 4 2 I DQ 2 I DQ K VGSQ VT 0.075 4 2 I DQ 1 2 2 I DQ 0.075(9 12 I DQ 4 I DQ ) 2 2 4 I DQ 12 I DQ 9 13.3I DQ I DQ 6.33I DQ 2.25 0 ECE 342 – Jose Schutt-Aine 12 Example (Cont’) 6.33 9 3.167 0.378 mA or 5.953 mA 2 reject since voltage 2 I DQ I DQ 0.378 mA drop across RD will be too large VDQ VDD RD I DQ 20 10 0.378 16.22 V VSQ RS I DQ 2 0.378 0.756 V VDQ 16.22 V VSQ 0.756 V ECE 342 – Jose Schutt-Aine 13 Example (Cont’) W g m 2k I DQ 4 0.075 0.378 0.337 L ' n AMB gm RD 0.337 10 3.37 AMB 3.37 ECE 342 – Jose Schutt-Aine 14 MOS Body Effect • The threshold voltage VT – Depends on equilibrium potential – Controlled by inversion in channel • The body effect – VT varies with bias between source and body – Leads to modulation of VT ECE 342 – Jose Schutt-Aine 15 Body Effect Potential on substrate affects threshold voltage 1/ 2 VT (VSB ) VTo 2 F VSB 2 F kT F q Na ln n i 2qN a s 1/ 2 Fermi potential of material 1/ 2 Cox Body bias coefficient ECE 342 – Jose Schutt-Aine 16 Body Effect – (Con’t) Define gmb as the body transconductance g mb Can show that I D VBS VGS constant VDS constant gmb gm VT where VSB 2 F VSB ECE 342 – Jose Schutt-Aine 17 Source Follower Configuration Since source is not tied to the substrate, we need to model the body effect. Note: substrate is always tied to ground. 1 GL RL 1 Define g ds and G g ds g mb GL rds ECE 342 – Jose Schutt-Aine 18 Source Follower vout g mvgs G g m vin vout G vout g ds vout GL g mbvout g mvgs vout G g mvgs vout g mvgs G g m vin vout G vout G gmvin gmvout ECE 342 – Jose Schutt-Aine 19 Source Follower vout G g mvgs vout G g m g mvin gm gm AGS g m G g m g mb g ds GL gm gm AGS g m G g m g mb g ds GL ECE 342 – Jose Schutt-Aine 20 Source Follower Neglecting GL and gds (since they are small) gm AGS 1 g m g mb This value is close to 1 Output impedance of source follower Rout 1 gm 1 rds RL g mb Internal output impedance 1 rout gm 1 rds This value is low g mb ECE 342 – Jose Schutt-Aine 21 Common Gate Amplifier Circuit Small-Signal Model ECE 342 – Jose Schutt-Aine 22 Common Gate Amplifier AMB g m g mb g ds GL g ds g m g mb g ds GL / Gg g ds gm gmb to get g m g mb RL AMB 1 g m g mb Rg • Common Gate (CG) – CG amplifier is non-inverting – CG amplifier has low input impedance – CG is unity current-gain amplifier ECE 342 – Jose Schutt-Aine 23 MOS Topologies - Ideal CS Avo gm RD Rin Rout RD CG SF gm RD 1 1 gm RD 1 gm ECE 342 – Jose Schutt-Aine 24