Download ECE 342 – Jose Schutt-Aine

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Transistor wikipedia , lookup

Mains electricity wikipedia , lookup

Public address system wikipedia , lookup

Stray voltage wikipedia , lookup

Nominal impedance wikipedia , lookup

Audio power wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Buck converter wikipedia , lookup

Negative feedback wikipedia , lookup

Current source wikipedia , lookup

Metadyne wikipedia , lookup

Two-port network wikipedia , lookup

Zobel network wikipedia , lookup

Tube sound wikipedia , lookup

Wien bridge oscillator wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Amplifier wikipedia , lookup

Opto-isolator wikipedia , lookup

Transcript
ECE 342
Solid-State Devices & Circuits
10. MOS Amplifiers
Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
[email protected]
ECE 342 – Jose Schutt-Aine
1
Biasing of MOS Transistors
• Bias Characteristics
– Operation in saturation region
– Stable and predictable drain current
1
W
2
I D  nCox VGS  VT 
2
L
ECE 342 – Jose Schutt-Aine
2
Two-Supply MOS Bias
1
W
2
I D  nCox VGS  VT 
2
L
RG provides DC ground at gate and high input
resistance to signal source.
ECE 342 – Jose Schutt-Aine
3
Single-Supply MOS Bias
–
–
–
–
Choose R1 and R2 to fix VG
Choose RS and R2 to fix VS
VGS determines ID
Choose RD to fix VD
ECE 342 – Jose Schutt-Aine
4
Bias with Feedback Resistor
VGS  VDS  VDD  RD I D
VDD  VGS  RD I D
Negative feedback (degeneration) provided by RG
ECE 342 – Jose Schutt-Aine
5
Common Source MOSFET Amplifier
Bias is to keep MOS in saturation region
ECE 342 – Jose Schutt-Aine
6
Common Source MOSFET Amplifier
Small-Signal Equivalent Circuit for MOS (device only)
1 'W
2
I D  kn VGS  VT 
2 L
I D
VGS
Which leads to
2I D
Veff
g m  2kn' W / L
where VGS  VT  Veff
gm is proportional to 
gm 

VGS VGSQ
ECE 342 – Jose Schutt-Aine
ID
W /L
7
MOSFET Output Impedance
To calculate rds, account for l
VDS
rds 
I D

VGS VGSQ
I DP
1
2
W
l Cox VGS  VT 
2L
1

l I DP
1 'W
2
 kn VGS  VT 
2 L
rds, accounts for channel width modulation resistance.
ECE 342 – Jose Schutt-Aine
8
Midband Frequency Gain
Incremental model for complete amplifier
AMB
vout
rds RD
RB


gm
vin
RB  Rg rds  RD
ECE 342 – Jose Schutt-Aine
9
Example
In the circuit shown, VT=1 V, l=0, CoxW/2L=0.1
mA/V2. Select RD and R1 to result in midband
voltage gain of –4 and VDSQ=7 V.
RD 
VDD  VDSQ
I DQ

AMB   g m RD   g m
AMB  4  0.1 I DQ 
ECE 342 – Jose Schutt-Aine
5
I DQ
5
I DQ
5
I DQ
3.162

 4
I DQ
10
Example (Cont’)
2
I DQ
5
 3.162 

 8 k
  0.625 mA  RD 
0.625
 4 
0.625  0.1VGS  1 leads to 6.25  1  VGS  3.5 V
2
VDD R2
80
960

 12  3.5 
 80  R1  194 k 
R1  R2 80  R1
3.5
RD  8 k
R1  194 k
ECE 342 – Jose Schutt-Aine
11
Example
For the circuit shown, k=75 mA/V2, VT=1 V, l=0
(a) Find VDQ, VSQ
(b) Find the midband gain
VGQ  VDD
R2
20  5

 4V
R1  R2
25
VGSQ  VGQ  VSQ  4  2 I DQ
2
I DQ  K VGSQ  VT   0.075  4  2 I DQ  1
2
2
I DQ  0.075(9  12 I DQ  4 I DQ
)
2
2
4 I DQ
 12 I DQ  9  13.3I DQ  I DQ
 6.33I DQ  2.25  0
ECE 342 – Jose Schutt-Aine
12
Example (Cont’)
6.33  9
 3.167 
 0.378 mA or 5.953 mA
2
reject since voltage
2
I DQ
I DQ  0.378 mA
drop across RD will
be too large
VDQ  VDD  RD I DQ  20  10  0.378  16.22 V
VSQ  RS I DQ  2  0.378  0.756 V
VDQ  16.22 V
VSQ  0.756 V
ECE 342 – Jose Schutt-Aine
13
Example (Cont’)
W
g m  2k
I DQ  4  0.075  0.378  0.337
L
'
n
AMB   gm RD  0.337 10  3.37
AMB  3.37
ECE 342 – Jose Schutt-Aine
14
MOS Body Effect
• The threshold voltage VT
– Depends on equilibrium potential
– Controlled by inversion in channel
• The body effect
– VT varies with bias between source and body
– Leads to modulation of VT
ECE 342 – Jose Schutt-Aine
15
Body Effect
Potential on substrate affects threshold voltage
1/ 2

VT (VSB )  VTo    2 F  VSB    2 F

 kT
F  
 q
  Na 
 ln  n 
  i 
2qN a s 



1/ 2


Fermi potential of material
1/ 2
Cox
Body bias coefficient
ECE 342 – Jose Schutt-Aine
16
Body Effect – (Con’t)
Define gmb as the body transconductance
g mb
Can show that
I D

VBS
VGS  constant
VDS  constant
gmb   gm
VT

where  

VSB 2 F  VSB
ECE 342 – Jose Schutt-Aine
17
Source Follower Configuration
Since source is not tied to the substrate,
we need to model the body effect. Note:
substrate is always tied to ground.
1
GL 
RL
1
Define g ds 
and G  g ds  g mb  GL
rds
ECE 342 – Jose Schutt-Aine
18
Source Follower
vout 
g mvgs
G
g m  vin  vout 

G
vout g ds  vout GL  g mbvout  g mvgs
vout G  g mvgs  vout 
g mvgs
G
g m  vin  vout 

G
vout G  gmvin  gmvout
ECE 342 – Jose Schutt-Aine
19
Source Follower
vout G  g mvgs  vout  G  g m   g mvin
gm
gm
AGS 

g m  G g m  g mb  g ds  GL
gm
gm
AGS 

g m  G g m  g mb  g ds  GL
ECE 342 – Jose Schutt-Aine
20
Source Follower
Neglecting GL and gds (since they are small)
gm
AGS 
1
g m  g mb
This value is close to 1
Output impedance of source follower
Rout
1

gm
1
rds RL
g mb
Internal output impedance
1
rout 
gm
1
rds  This value is low
g mb
ECE 342 – Jose Schutt-Aine
21
Common Gate Amplifier
Circuit
Small-Signal
Model
ECE 342 – Jose Schutt-Aine
22
Common Gate Amplifier
AMB
g m  g mb  g ds

GL  g ds   g m  g mb  g ds  GL / Gg
g ds
 gm  gmb  to get
g m  g mb  RL

AMB 
1   g m  g mb  Rg
•
Common Gate (CG)
– CG amplifier is non-inverting
– CG amplifier has low input impedance
– CG is unity current-gain amplifier
ECE 342 – Jose Schutt-Aine
23
MOS Topologies - Ideal
CS
Avo  gm RD
Rin
Rout

RD
CG
SF
gm RD
1
1
gm

RD
1
gm
ECE 342 – Jose Schutt-Aine
24