Download Proton tomography with Wigner distributions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Quantum machine learning wikipedia , lookup

Quantum teleportation wikipedia , lookup

Orchestrated objective reduction wikipedia , lookup

Many-worlds interpretation wikipedia , lookup

Measurement in quantum mechanics wikipedia , lookup

Max Born wikipedia , lookup

Relativistic quantum mechanics wikipedia , lookup

History of quantum field theory wikipedia , lookup

Probability amplitude wikipedia , lookup

Particle in a box wikipedia , lookup

Renormalization group wikipedia , lookup

Ensemble interpretation wikipedia , lookup

Density matrix wikipedia , lookup

Double-slit experiment wikipedia , lookup

EPR paradox wikipedia , lookup

Hidden variable theory wikipedia , lookup

Quantum key distribution wikipedia , lookup

Hydrogen atom wikipedia , lookup

Canonical quantization wikipedia , lookup

Light-front quantization applications wikipedia , lookup

Bohr–Einstein debates wikipedia , lookup

Interpretations of quantum mechanics wikipedia , lookup

Quantum state wikipedia , lookup

Wave function wikipedia , lookup

T-symmetry wikipedia , lookup

Coherent states wikipedia , lookup

Copenhagen interpretation wikipedia , lookup

Wave–particle duality wikipedia , lookup

Matter wave wikipedia , lookup

Symmetry in quantum mechanics wikipedia , lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Transcript
April 29th, 2005
DIS2005, Madison, WI
Quantum imaging of the
proton via Wigner distributions
Andrei Belitsky
Arizona State University
Based on A.B., Xiangdong Ji, Feng Yuan, hep-ph/0307383
For a review see A.B., Anatoly Radyushkin, hep-ph/0504030
Traditional probes of nucleon structure
• Elastic electron-proton scattering ep T e’p’:
e
  (q)
p1
p2  (0)  (0) p1
local operator
p2
• Inelastic electron-proton scattering ep T
e’X :
e
  (q)
k
p
p  (0)  ( z  ) p   dx eixp
light-cone operator
 
z
f ( x)
Physics of form factors (Breit frame)
 | r |~ 1 | p |
y
 ( p)
Localized proton as a wave packet:

R



 
d3p
ip  R
e

(2 ) 3
 p 
RN

p
Charge distribution in the wave packet:

 (r ) 

 
R  0 j0 ( r ) R  0
r
z
x
1||

•
Size of the wave-packet << system size:
 r  R N
•
Resolution scale >> size of the wave packet (one does not want to
see the wave packet):
 r  1 
•
Size of the wave packet >> Compton wave length (to be
insensitive to wave nature of the proton):


1 RN    p  M N



 r  1 M
N
 iq  r 


2


d
x
e

r

q
2
j
(
0
)

q
2

2
M
G
(
Q
)
0
N
E

3
Electric form factor in the Breit frame is (with reservations) a Fourier transform of the charge distribution.
Physics in the infinite momentum frame
momentum frame of
a fast moving proton
proton at rest
pz  
r
x1 pz

Lorentz boost
xi pz
x

z
no spatial extent
y
y
y
Parton distributions:
Form factors:
xp
r
Distribution of
quarks in transverse plane irrespective of their
longitudinal motion.
 z ~ 1 Q
x
z
p
 (r )
Density of partons
of a given longitudinal momentum
x = k||/p measured
with transverse resolution ~1/Q
x
z
p
f ( x)
No corrections!
0
x
0
r
x 1
r
Impact parameter parton distributions
Soper ’77
Burkardt ’00
Localized wave packet in transverse plane:

p , R
d 2 p ip   R 

e
  p  p  , p
2
(2 )
The probability of a parton to possess the
momentum fractions x at transverse position r
f ( x, r )   dz  eixp
 
z
y
 z ~ 1 Q
p  ,0  ( z  , r )  (0 , r ) p  ,0
xp
r
Generalized parton distributions
simultaneously carry information
on both longitudinal and transverse distribution of partons in a
fast moving nucleon
f ( x, r )   d 2   e
 
 ir  
Muller et al. ’94
Ji ’96
Radyushkin ’96
x
z
p
f ( x, r )
H ( x,  0, 2 )
GPDs carry information on the
angular momentum of partons.
0
1
Q: What is the physical significance of skewness
h?
r
Wigner function in quantum mechanics
W ( p, r )   dD e ipD    r  12 D  r  12 D 
Wigner ’32
Contains full information about the single particle wave function.
Properties:
•
•
•
Real
It can and most often does go negative: a hallmark of interference!
Projections lead to probabilities:
 dp W ( p, r )   dq e
•
iqr 
F (q),
 dr W ( p, r )  n( p)
Operator expectation values:
Weyl-ordered
A( p, r )   dpdr W ( p, r ) A( p, r )
The quantum-mechanical uncertainty principle restrict the amount of localization that a Wigner
distribution might have. This yields a “fuzzy” phase-space description of the system compared
to the “sharp” determination of its momentum and coordinates separately. Wigner distribution
provides an appealing opportunity to characterize a quantum state using the classical concept of
the phase space.
Wigner function of 1D harmonic oscillator
p 2
 2x
H ( p, x) 
 m
2m
2
n0
2
n2
n  10
lim   0 , n   W n ( p , x ) ~   H ( p , x )  E 
WKB Wigner distribution resides on classical trajectories in phase space:
  C ( x ) e iS

W ( p, x)  C
2


  p 
S 

x 
Measurement of QM Wigner distributions
Mach-Zender interferometry of quantum
state of light:
•
Quantum state tomography of dissociated
molecules:
quantum
state filter
laser
weak coherent state
SPCM
•
phase-diffused coherent state
Banaszek et al.’99
Skovsen et al.’03
Wigner distributions of the nucleon
Introduce the Wigner operator
 



i   , k    k  
2
W r , k  , k     d  d   e
 r   2   r   2 
Define quark quasi-probability distribution in the proton (in the Breit frame)

W [r , k  , k  ] 
•



d 3q 


q
2
W
r
,
k
,
k

q
2


 ( 2 ) 3
•
Generalized parton distributions

d 2k


f (r , k  )  
W
[
r
,k,k ]
( 2 ) 2

d 3q
 
F x ,  ,  2 
3
( 2 )
(skewness:
Unintegrated parton distributions

q ( x, k  ) 

  q z 2 E  q z 2 M N2  q 2 4 )



d 3r
W
[
r
,k ,k ]
2
( 2 )
Viewing nucleon through momentum filters
z
g*
Feynman momentum:
x
y
Moderate
Low
rz
rx
ry
rz
rx
distance in fm
High
Limitations on the interpretation
•
 | r |~ 1 | p |
y
Transverse dynamics:


1 RN    p  M N
 ( p )
r
Longitudinal dynamics:
•
•
RN
The longitudinal position of partons is set by
skewness:
r z ~ 1 z ~ 1 (E )
p
x
z
Typical longitudinal momentum in the wave
packet:
r z ~ 1 p z
•
z-
The nonlocality of the probe:
z  ~ 1 ( xE)
d
rz
Constraints:
1/MN
•
z  p z  M N
z   r z
z
rz~1/h
RN
-zx  
The classical interpretation of GPDs as Wigner quasiprobabilities is valid in deep DGLAP domain!
Measurement of nucleon Wigner distribution
Exclusive processes sensitive to GPDs:
•
Compton-induced processes:
eN  e' N '  , N  N ' l l  , eN  e' N ' l l  , N  lN ' 
•
Hard re-scattering processes:
eN  e' N ' M l , eN  e' N ' M h , N  N ' M l , N  N ' l  l 
•
Diffractive processes:
N  (2 jets ) N ' , N  (2 jets ) N ' ,   N  Ds N ' , lN  l N '
Leptoproduction of a real photon (cf. Mach-Zender interferometry):
scanned area of the surface as
a functions of lepton energy
reference beam
beam
QM
superposition
principle
detector

object beam
x
ep  e' p' l l 
Parton’s Wigner distributions determine 3D structure of hadrons and are measurable via GPDs.