* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download File
Solar micro-inverter wikipedia , lookup
Public address system wikipedia , lookup
Immunity-aware programming wikipedia , lookup
Flip-flop (electronics) wikipedia , lookup
Electrical ballast wikipedia , lookup
Electrical substation wikipedia , lookup
Negative feedback wikipedia , lookup
Audio power wikipedia , lookup
Pulse-width modulation wikipedia , lookup
Variable-frequency drive wikipedia , lookup
Power inverter wikipedia , lookup
Oscilloscope history wikipedia , lookup
Stray voltage wikipedia , lookup
Alternating current wikipedia , lookup
Current source wikipedia , lookup
Power MOSFET wikipedia , lookup
Voltage optimisation wikipedia , lookup
Mains electricity wikipedia , lookup
Two-port network wikipedia , lookup
Power electronics wikipedia , lookup
Integrating ADC wikipedia , lookup
Voltage regulator wikipedia , lookup
Wien bridge oscillator wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Current mirror wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Buck converter wikipedia , lookup
Vcc cannot exceed 5 V Vin cannot be negative ππ΅πΈ = 0.7π πππ’π‘ = πππ β π½π πΆ (π β 0.7) π π΅ ππ Amplifiers input terminal, output terminal, both referenced to a common reference (ground) β Vref, GND Vpos, Vsupply, or VCC, or VDD. Vneg, Vss, or VEE They are also known as the rails of an amplifier. Made with resistors, capacitors, and transistors. Real voltage amplifiers 1. Input current is nonzero, which mean it has a finite power gain. This input current leads to a loading effect, because the input voltage of the amplifier is now smaller than the source voltage if the source has any resistance. 2. Output voltage will vary if the loading at the output varies. The putout can amplify a range of load resistances. 3. The output voltage is also limited range, cannot exceed positive/negative supply rails. Rin = vin / Iin Rout = vout / Iout π΄πππ = π ππ π πΏ π΄π£ π ππ + π π π ππ’π‘ + π πΏ When several ideal amplifiers are placed in cascade, the gain increases, Av= Av1*Av2β¦ Op Amps Op Amp Characteristics Linear input-output response High input resistance Low output resistance Very high gain Nonideal op-amp Inverting amplifier Non-inverting amplifier Voltage follower Parameter Open-loop gain A Input resistance Ri Output resistance Ro Supply voltage Vcc Typical Range 104 to 108 106 to 1013 1 to 100 5 to 24 V Ideal Op Amp Infinity Infinity 0 As specified π£ β β π£0 π£ β π£ β β π£π + + =0 π 2 π ππ π 1 (π£ β β π£0 )πΊ2 + π£ β πΊππ + (π£ β β π£π )πΊ1 = 0 βπ£ 0 π£0 = βπ΄π£ β π£β = π΄ (π£ β β π£0 )πΊ2 + π£ β πΊππ + (π£ β β π£π )πΊ1 = 0 βπ£ 0 βπ£ 0 βπ£ 0 ( β π£0 ) πΊ2 + πΊ +( β π£π ) πΊ1 = 0 π΄ π΄ ππ π΄ π£0 π΄πΊ1 =β π π£ πΊ2 (π΄ + 1) + πΊππ + πΊ1 π0 β πππ π0 β πππ’π‘ πππππ ππ‘ π0 : + =0 π ππ π π π0 = ππΊππ· = 0 βπππ βπππ’π‘ + =0 π ππ π π π π πππ’π‘ = β βπ π ππ ππ π π πΊπππ = β π ππ π0 π0 β πππ’π‘ + =0 π 1 π 2 π0 = πππ πππ πππ β πππ’π‘ + =0 π 1 π 2 πππ πππ πππ’π‘ + = π 1 π 2 π 2 πππ’π‘ π 2 πΊπππ = =1+ πππ π 1 πππ’π‘ = πππ πππππ ππ‘ π0 : π0 π0 β π2 + =0 π π π 2 π π + π 2 π2 1 1 = π0 ( + ) = π0 ( ) π 2 π π π 2 π π π 2 π π π0 = π2 π π + π 2 π0 β π1 π0 β πππ’π‘ + =0 π 1 π π π π 1 1 π1 πππ’π‘ π2 ( + )β = π π + π 2 π 1 π π π 1 π π π π π π + π 1 π π πππ’π‘ = π2 β π1 π π + π 2 π 1 π 1 π1 π2 ππ πππ’π‘ = βπ π ( + + β―+ ) π 1 π 2 π π If π 1 = π 2 = β― = π π π π πππ’π‘ = β (π1 + π2 + β― + ππ ) π 1 If π 1 = π 2 = β― = π π = π π πππ’π‘ = β(π1 + π2 + β― + ππ ) Difference amplifier Summing amplifier Output is inverted Instrumentation amplifier πππ’π‘ = Low pass passive filter π 4 π 1 + π 2 + π 3 (π2 β π1 ) π 5 π 2 High pass passive filter π ππ = ππ πΉπͺ Low pass active filter ππ = π ππ πΉπͺ Low pass active filter π ππ = ππ πΉ ππͺ ππ = π ππ πΉπ πͺ πππ’π‘ 2 πβ β πππ’π‘ ππβ +πΆ =0 π ππ‘ ππβ πβ πππ’π‘ + = ππ‘ π πΆ π πΆ At time t, V- = 0 and Vout = Vdd Relaxation oscillator π+ = π‘ πβ = πππ’π‘ β πππ π βπ πΆ 1 π= 2 ln 3 π πΆ Comparator πππ’π‘ Non-inverting Schmitt trigger Inverting Schmitt trigger Inverting integrator πππ’π‘ (π‘) = πππ’π‘ (π‘0 ) β ππ+ ππ π1 > π2 = {ππβ |ππ π1 < π2} 0 ππ π1 = π2 π 2 π 1 πππ + π π 1 + π 2 π 1 + π 2 π The comparator will switch when π+ = 0. R1 Vin must drop below β V to get output to switch R2 s Once the comparator output has switched to R1 β VS, the threshold becomes V R2 s So this circuit creates a switching band centered around zero, π with trigger levels ± π 1 ππ 2 π 1 π+ = π π 1 + π 2 π The comparator will switch when Vin = V+ . Vin must exceed above this voltage get output to switch Once the comparator output has switched to π 1 β VS, the threshold becomes π π 1 + π 2 π So this circuit creates a switching band centered around zero, π 1 with trigger levels ± π π 1 + π 2 π π+ = Inverting differentiator 1 π‘ β« π (π‘) ππ‘ π πΆ π‘0 ππ πππ’π‘ (π‘) = βπ πΆ ππππ ππ‘ πππ’π‘ = β π π π π π π π π π π (8π1 + 4π2 + 2π3 + π4 ) π1 β π2 β π3 β π4 = β π 2π 4π 8π 8π πππ’π‘ = πΊ(2πβ1 π1 + 2πβ2 π2 + β― + 2ππβ1 + ππ ) πΊ=β π π 8π MOSFET characteristic ideal Inverter NAND ! (A&B) = !A || !B NOR ! (A||B) = !A & !B XOR using NAND (A || !B) & (!A || B) = (A & B) || (!A & !B) Using NOR XNOR using NAND (A||B) & (!A || !B) using NOR Capacitor π=πΆ ππ£ ππ‘ π = πΆπ£ πΆ= ππ΄ π 1 π‘ β« π(π‘)ππ‘ + π£(π‘0 ) πΆ π‘0 π£0 πΆπ£0 2 πΈ = β« πΆπ£ ππ£ = 2 0 π(π‘) = ππ£ + ππ£ = π ππ‘ π π£(π‘) = π£(0)π βππ‘ + (1 β π βππ‘ ) π 1 π π = π πΆ = = π£(β) π π π‘ π£(π‘) = π£(β)+[π£(0) β π£(β)]π βπ At DC, capacitor looks like an open circuit Voltage across a capacitor must be continuous (no abrupt change) Inductor ππ π 2 ππ΄ π = πΆπ£ πΏ= ππ‘ π At DC, inductor looks like a short circuit Current through an inductor must be continuous (no abrupt change) 1 π‘ π(π‘) = β« π£(π‘)ππ‘ + π(π‘0 ) πΏ π‘0 π£0 πΏπ 2 πΈ = β« πΏπ ππ = 2 0 Inductors add together in the same way the resistors do. π£=πΏ Phasor π£(π‘) = π£(β)+[π£(π‘0 ) β π£(β)]π β π‘βπ‘0 π Natural response π(π‘) = π0 π βπ‘/π πΆ ππ + ππ = π ππ‘ π‘ π(π‘) = π(β)+[π(0) β π(β)]π βπ π(π‘) = π(β)+[π(π‘0 ) β π(β)]π β πΏ 1 π= = π π Natural response π(π‘) = π0 π βπ π‘/πΏ π‘βπ‘0 π