Download File

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Solar micro-inverter wikipedia , lookup

Capacitor wikipedia , lookup

Transistor wikipedia , lookup

Public address system wikipedia , lookup

Immunity-aware programming wikipedia , lookup

Flip-flop (electronics) wikipedia , lookup

Electrical ballast wikipedia , lookup

Ohm's law wikipedia , lookup

Islanding wikipedia , lookup

Electrical substation wikipedia , lookup

Negative feedback wikipedia , lookup

Audio power wikipedia , lookup

Pulse-width modulation wikipedia , lookup

Variable-frequency drive wikipedia , lookup

Power inverter wikipedia , lookup

Oscilloscope history wikipedia , lookup

Stray voltage wikipedia , lookup

Alternating current wikipedia , lookup

Current source wikipedia , lookup

Power MOSFET wikipedia , lookup

Voltage optimisation wikipedia , lookup

Tube sound wikipedia , lookup

Rectifier wikipedia , lookup

Mains electricity wikipedia , lookup

Two-port network wikipedia , lookup

Power electronics wikipedia , lookup

Integrating ADC wikipedia , lookup

Voltage regulator wikipedia , lookup

Wien bridge oscillator wikipedia , lookup

Amplifier wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Current mirror wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Buck converter wikipedia , lookup

Schmitt trigger wikipedia , lookup

Opto-isolator wikipedia , lookup

Transcript
Vcc cannot exceed 5 V
Vin cannot be negative
𝑉𝐡𝐸 = 0.7𝑉
π‘‰π‘œπ‘’π‘‘ = 𝑉𝑐𝑐 βˆ’
𝛽𝑅𝐢
(𝑉 βˆ’ 0.7)
𝑅𝐡 𝑖𝑛
Amplifiers
input terminal, output terminal, both referenced to a
common reference (ground) – Vref, GND
Vpos, Vsupply, or VCC, or VDD.
Vneg, Vss, or VEE
They are also known as the rails of an amplifier.
Made with resistors, capacitors, and transistors.
Real voltage amplifiers
1. Input current is nonzero, which mean it has a
finite power gain. This input current leads to a
loading effect, because the input voltage of the
amplifier is now smaller than the source voltage if
the source has any resistance.
2. Output voltage will vary if the loading at the
output varies. The putout can amplify a range of
load resistances.
3. The output voltage is also limited range, cannot
exceed positive/negative supply rails.
Rin = vin / Iin
Rout = vout / Iout
𝐴𝑒𝑓𝑓 =
𝑅𝑖𝑛
𝑅𝐿
𝐴𝑣
𝑅𝑖𝑛 + 𝑅𝑠 π‘…π‘œπ‘’π‘‘ + 𝑅𝐿
When several ideal amplifiers are placed in cascade, the gain increases, Av= Av1*Av2…
Op Amps
Op Amp Characteristics
Linear input-output response
High input resistance
Low output resistance
Very high gain
Nonideal op-amp
Inverting amplifier
Non-inverting amplifier
Voltage follower
Parameter
Open-loop gain A
Input resistance Ri
Output resistance Ro
Supply voltage Vcc
Typical Range
104 to 108
106 to 1013
1 to 100
5 to 24 V
Ideal Op Amp
Infinity
Infinity
0
As specified
𝑣 βˆ’ βˆ’ 𝑣0 𝑣 βˆ’ 𝑣 βˆ’ βˆ’ 𝑣𝑠
+
+
=0
𝑅2
𝑅𝑖𝑛
𝑅1
(𝑣 βˆ’ βˆ’ 𝑣0 )𝐺2 + 𝑣 βˆ’ 𝐺𝑖𝑛 + (𝑣 βˆ’ βˆ’ 𝑣𝑠 )𝐺1 = 0
βˆ’π‘£ 0
𝑣0 = βˆ’π΄π‘£ βˆ’
π‘£βˆ’ =
𝐴
(𝑣 βˆ’ βˆ’ 𝑣0 )𝐺2 + 𝑣 βˆ’ 𝐺𝑖𝑛 + (𝑣 βˆ’ βˆ’ 𝑣𝑠 )𝐺1 = 0
βˆ’π‘£ 0
βˆ’π‘£ 0
βˆ’π‘£ 0
(
βˆ’ 𝑣0 ) 𝐺2 +
𝐺 +(
βˆ’ 𝑣𝑠 ) 𝐺1 = 0
𝐴
𝐴 𝑖𝑛
𝐴
𝑣0
𝐴𝐺1
=βˆ’
𝑠
𝑣
𝐺2 (𝐴 + 1) + 𝐺𝑖𝑛 + 𝐺1
𝑉0 βˆ’ 𝑉𝑖𝑛 𝑉0 βˆ’ π‘‰π‘œπ‘’π‘‘
π‘›π‘œπ‘‘π‘Žπ‘™ π‘Žπ‘‘ 𝑉0 :
+
=0
𝑅𝑖𝑛
𝑅𝑓
𝑉0 = 𝑉𝐺𝑁𝐷 = 0
βˆ’π‘‰π‘–π‘› βˆ’π‘‰π‘œπ‘’π‘‘
+
=0
𝑅𝑖𝑛
𝑅𝑓
𝑅𝑓
π‘‰π‘œπ‘’π‘‘ = βˆ’
βˆ—π‘‰
𝑅𝑖𝑛 𝑖𝑛
𝑅𝑓
πΊπ‘Žπ‘–π‘› = βˆ’
𝑅𝑖𝑛
𝑉0 𝑉0 βˆ’ π‘‰π‘œπ‘’π‘‘
+
=0
𝑅1
𝑅2
𝑉0 = 𝑉𝑖𝑛
𝑉𝑖𝑛 𝑉𝑖𝑛 βˆ’ π‘‰π‘œπ‘’π‘‘
+
=0
𝑅1
𝑅2
𝑉𝑖𝑛 𝑉𝑖𝑛 π‘‰π‘œπ‘’π‘‘
+
=
𝑅1 𝑅2
𝑅2
π‘‰π‘œπ‘’π‘‘
𝑅2
πΊπ‘Žπ‘–π‘› =
=1+
𝑉𝑖𝑛
𝑅1
π‘‰π‘œπ‘’π‘‘ = 𝑉𝑖𝑛
π‘›π‘œπ‘‘π‘Žπ‘™ π‘Žπ‘‘ 𝑉0 :
𝑉0 𝑉0 βˆ’ 𝑉2
+
=0
𝑅𝑔
𝑅2
𝑅𝑔 + 𝑅2
𝑉2
1
1
= 𝑉0 ( + ) = 𝑉0 (
)
𝑅2
𝑅𝑔 𝑅2
𝑅𝑔 𝑅2
𝑅𝑔
𝑉0 = 𝑉2
𝑅𝑔 + 𝑅2
𝑉0 βˆ’ 𝑉1 𝑉0 βˆ’ π‘‰π‘œπ‘’π‘‘
+
=0
𝑅1
𝑅𝑓
𝑅𝑔
1
1
𝑉1 π‘‰π‘œπ‘’π‘‘
𝑉2
( + )βˆ’
=
𝑅𝑔 + 𝑅2 𝑅1 𝑅𝑓
𝑅1
𝑅𝑓
𝑅𝑔 𝑅𝑓 + 𝑅1
𝑅𝑓
π‘‰π‘œπ‘’π‘‘ = 𝑉2
βˆ’ 𝑉1
𝑅𝑔 + 𝑅2 𝑅1
𝑅1
𝑉1 𝑉2
𝑉𝑛
π‘‰π‘œπ‘’π‘‘ = βˆ’π‘…π‘“ ( +
+ β‹―+ )
𝑅1 𝑅2
𝑅𝑛
If 𝑅1 = 𝑅2 = β‹― = 𝑅𝑛
𝑅𝑓
π‘‰π‘œπ‘’π‘‘ = βˆ’ (𝑉1 + 𝑉2 + β‹― + 𝑉𝑛 )
𝑅1
If 𝑅1 = 𝑅2 = β‹― = 𝑅𝑛 = 𝑅𝑓
π‘‰π‘œπ‘’π‘‘ = βˆ’(𝑉1 + 𝑉2 + β‹― + 𝑉𝑛 )
Difference amplifier
Summing amplifier
Output is inverted
Instrumentation amplifier
π‘‰π‘œπ‘’π‘‘ =
Low pass passive filter
𝑅4 𝑅1 + 𝑅2 + 𝑅3
(𝑉2 βˆ’ 𝑉1 )
𝑅5
𝑅2
High pass passive filter
𝟏
𝒇𝒄 = πŸπ…π‘Ήπ‘ͺ
Low pass active filter
𝒇𝒄 =
𝟏
πŸπ…π‘Ήπ‘ͺ
Low pass active filter
𝟏
𝒇𝒄 = πŸπ…π‘Ή
𝟐π‘ͺ
𝒇𝒄 =
𝟏
πŸπ…π‘ΉπŸ π‘ͺ
π‘‰π‘œπ‘’π‘‘
2
π‘‰βˆ’ βˆ’ π‘‰π‘œπ‘’π‘‘
π‘‘π‘‰βˆ’
+𝐢
=0
𝑅
𝑑𝑑
π‘‘π‘‰βˆ’ π‘‰βˆ’
π‘‰π‘œπ‘’π‘‘
+
=
𝑑𝑑 𝑅𝐢
𝑅𝐢
At time t, V- = 0 and Vout = Vdd
Relaxation oscillator
𝑉+ =
𝑑
π‘‰βˆ’ = π‘‰π‘œπ‘’π‘‘ βˆ’ 𝑉𝑑𝑑 𝑒 βˆ’π‘…πΆ
1
𝑓=
2 ln 3 𝑅𝐢
Comparator
π‘‰π‘œπ‘’π‘‘
Non-inverting Schmitt trigger
Inverting Schmitt trigger
Inverting integrator
π‘‰π‘œπ‘’π‘‘ (𝑑) = π‘‰π‘œπ‘’π‘‘ (𝑑0 ) βˆ’
𝑉𝑆+ 𝑖𝑓 𝑉1 > 𝑉2
= {π‘‰π‘†βˆ’ |𝑖𝑓 𝑉1 < 𝑉2}
0 𝑖𝑓 𝑉1 = 𝑉2
𝑅2
𝑅1
𝑉𝑖𝑛 +
𝑉
𝑅1 + 𝑅2
𝑅1 + 𝑅2 𝑠
The comparator will switch when 𝑉+ = 0.
R1
Vin must drop below βˆ’
V to get output to switch
R2 s
Once the comparator output has switched to
R1
βˆ’ VS, the threshold becomes
V
R2 s
So this circuit creates a switching band centered around zero,
𝑅
with trigger levels ± 𝑅1 𝑉𝑠
2
𝑅1
𝑉+ =
𝑉
𝑅1 + 𝑅2 𝑠
The comparator will switch when Vin = V+ .
Vin must exceed above this voltage get output to switch
Once the comparator output has switched to
𝑅1
βˆ’ VS, the threshold becomes
𝑉
𝑅1 + 𝑅2 𝑠
So this circuit creates a switching band centered around zero,
𝑅1
with trigger levels ±
𝑉
𝑅1 + 𝑅2 𝑠
𝑉+ =
Inverting differentiator
1 𝑑
∫ 𝑉 (𝑑) 𝑑𝑑
𝑅𝐢 𝑑0 𝑖𝑛
π‘‰π‘œπ‘’π‘‘ (𝑑) = βˆ’π‘…πΆ
𝑑𝑉𝑖𝑛
𝑑𝑑
π‘‰π‘œπ‘’π‘‘ = βˆ’
𝑅𝑓
𝑅𝑓
𝑅𝑓
𝑅𝑓
𝑅𝑓
(8𝑉1 + 4𝑉2 + 2𝑉3 + 𝑉4 )
𝑉1 βˆ’
𝑉2 βˆ’
𝑉3 βˆ’
𝑉4 = βˆ’
𝑅
2𝑅
4𝑅
8𝑅
8𝑅
π‘‰π‘œπ‘’π‘‘ = 𝐺(2π‘›βˆ’1 𝑉1 + 2π‘›βˆ’2 𝑉2 + β‹― + 2π‘‰π‘›βˆ’1 + 𝑉𝑛 )
𝐺=βˆ’
𝑅𝑓
8𝑅
MOSFET
characteristic
ideal
Inverter
NAND
! (A&B) = !A || !B
NOR
! (A||B) = !A & !B
XOR
using NAND
(A || !B) & (!A || B) = (A & B) || (!A & !B)
Using NOR
XNOR
using NAND
(A||B) & (!A || !B)
using NOR
Capacitor
𝑖=𝐢
𝑑𝑣
𝑑𝑑
π‘ž = 𝐢𝑣
𝐢=
πœ€π΄
𝑑
1 𝑑
∫ 𝑖(𝑑)𝑑𝑑 + 𝑣(𝑑0 )
𝐢 𝑑0
𝑣0
𝐢𝑣0 2
𝐸 = ∫ 𝐢𝑣 𝑑𝑣 =
2
0
𝑉(𝑑) =
𝑑𝑣
+ π‘Žπ‘£ = 𝑏
𝑑𝑑
𝑏
𝑣(𝑑) = 𝑣(0)𝑒 βˆ’π‘Žπ‘‘ + (1 βˆ’ 𝑒 βˆ’π‘Žπ‘‘ )
π‘Ž
1
𝑏
𝜏 = 𝑅𝐢 =
= 𝑣(∞)
π‘Ž
π‘Ž
𝑑
𝑣(𝑑) = 𝑣(∞)+[𝑣(0) βˆ’ 𝑣(∞)]𝑒 βˆ’πœ
At DC, capacitor looks like an open circuit
Voltage across a capacitor must be continuous (no
abrupt change)
Inductor
𝑑𝑖
𝑁 2 πœ‡π΄
π‘ž = 𝐢𝑣
𝐿=
𝑑𝑑
𝑙
At DC, inductor looks like a short circuit
Current through an inductor must be continuous (no
abrupt change)
1 𝑑
𝑖(𝑑) = ∫ 𝑣(𝑑)𝑑𝑑 + 𝑖(𝑑0 )
𝐿 𝑑0
𝑣0
𝐿𝑖 2
𝐸 = ∫ 𝐿𝑖 𝑑𝑖 =
2
0
Inductors add together in the same way the resistors
do.
𝑣=𝐿
Phasor
𝑣(𝑑) = 𝑣(∞)+[𝑣(𝑑0 ) βˆ’ 𝑣(∞)]𝑒 βˆ’
π‘‘βˆ’π‘‘0
𝜏
Natural response
𝑉(𝑑) = 𝑉0 𝑒 βˆ’π‘‘/𝑅𝐢
𝑑𝑖
+ π‘Žπ‘– = 𝑏
𝑑𝑑
𝑑
𝑖(𝑑) = 𝑖(∞)+[𝑖(0) βˆ’ 𝑖(∞)]𝑒 βˆ’πœ
𝑖(𝑑) = 𝑖(∞)+[𝑖(𝑑0 ) βˆ’ 𝑖(∞)]𝑒 βˆ’
𝐿 1
𝜏= =
𝑅 π‘Ž
Natural response
𝑖(𝑑) = 𝑖0 𝑒 βˆ’π‘…π‘‘/𝐿
π‘‘βˆ’π‘‘0
𝜏