Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Angular Momentum • The vector angular momentum of the point mass m about the point P is given by: y-axis Lrp r The position vector of the mass m relative to the point P is: r xxˆ yyˆ The momentum vector of the mass m is: p p x xˆ p y yˆ mvx xˆ mvy yˆ P p pperp m x-axis Distance from the Point P to the mass m times the perpendicular component of the momentum. The magnitude of the angular momentum is: L rp sin rp perp (units = kg∙m2/s) The components of the angular momentum are: Lx 0 Ly 0 Lz xpy yp x R. Field 10/22/2013 University of Florida PHY 2053 Page 1 Torque • The torque vector about the point P due to the force F acting at r is given by: y-axis r F F Fperp r The position vector of the mass m relative to the point P is: r xxˆ yyˆ F Fx xˆ Fy yˆ The force acting on the mass m is: P x-axis Distance from the Point P to the mass m times the perpendicular component of the force. The magnitude of the torque is: rF sin rFperp (units = N∙m) The components of the torque are: x 0 y 0 z xFy yFx R. Field 10/22/2013 University of Florida PHY 2053 Page 2 Rotation: Angular Variables • Arc Length: The arc length s is related to the angle (in radians = rad) as follows: s (360o = 2p rad) s r r • Angular Displacement and Angular Velocity: f i d lim t 0 t dt (radians/second) • Tangential Velocity and Angular Velocity: ds vt vt r dt vt r Tangential Velocity • Angular Acceleration: d lim t 0 t dt R. Field 10/22/2013 University of Florida (radians/s2) PHY 2053 Page 3 Rolling Without Slipping: Rotation & Translation • If a cylinder of radius R rolls without slipping along the x-axis then: v x s r R s x-axis x dx d v R R dt dt Translational Speed R. Field 10/22/2013 University of Florida Rotational Speed PHY 2053 Page 4 Translation vs Rotation • Translation: • Rotation: Mass: m Position: x Velocity: vx Acceleration: ax Force: Moment of Inertia: I Angular Position: Angular Velocity: Angular Acceleration: F Torque: L I KErot 12 I 2 p mv If KEtrans mv F 0 then p 2 constant If Momentum Conservation! R. Field 10/22/2013 University of Florida dL I dt dp F ma dt 1 2 PHY 2053 0 then L constant Angular Momentum Conservation! Page 5 Exam 2 Fall 2010: Problem 11 • A non-uniform cylinder with mass M and radius R rolls without sliding along the floor. If its translational kinetic energy is three times greater than its rotational kinetic energy about the rotation axis through its center of mass (i.e. the central axis of the cylinder), what is its moment of inertia about the central axis? Answer: MR2/3 % Right: 44% s R v R a R R. Field 10/22/2013 University of Florida KErotation 12 I 2 KEtranslation 12 Mv 2 KEtranslation 2 3 Iv 12 Mv 3KErotational 3( 12 I ) 2R 2 2 2 I 13 MR 2 PHY 2053 Page 6 Example: Rolling without Slipping • If a cylinder with moment of inertia I and radius R starts from rest at a height h above the ground and rolls without slipping down an incline. What is its translational speed when it reaches the ground? Ei Mg (h R) R h v R Ei E f E f Mv I MgR Mv (1 I /( MR )) MgR Mg (h R) 12 Mv 2 (1 I /( MR )) MgR 1 2 2 1 2 2 v 2 gh /(1 I /( MR 2 )) R. Field 10/22/2013 University of Florida 2 1 2 2 2 • Example: I = MR2/2 (solid cylinder), h = 9.8 m then v PHY 2053 4 3 gh (9.8m / s) 4 3 11.3m / s Page 7 Example: Rolling without Slipping R • If a cylinder with moment of inertia I and radius R starts from rest at a height h above the ground and rolls h without slipping down an incline. If h the cylinder starts from rest at t = 0, sin when does it reach the ground? d 2 v 2 2 a v 2ad v 2 gh /( 1 I /( MR )) 2d gh g sin 2 1 d at a 2 2 2 d (1 I /( MR )) (1 I /( MR )) 2h(1 I /( MR 2 )) t g sin 2 R. Field 10/22/2013 University of Florida d h d sin 2d t a • Example: I = MR2/2 (solid cylinder), h = 9.8 m, = 45o then t PHY 2053 3h 6h 2.45s 2 g sin g Page 8 Exam 2 Fall 2010: Problem 14 • A 100-N uniform plank leans against a frictionless wall as shown. What is the magnitude of the torque (about the point P) applied to the plank by the wall? Answer: 150 N∙m % Right: 42% wall gravity 0 P 3m L L x wall gravity Mg sin W 2 2 L 12 Wx 12 (100 N )(3m) 150 N m 1 r 2 xxˆ 12 yyˆ F Mgyˆ z xFy yFx 12 xMg 12 xW R. Field 10/22/2013 University of Florida 4m PHY 2053 Fwall L r Mg P x Page 9 Exam 2 Fall 2011: Problem 13 • A thin stick with mass M, length L, and moment of inertia ML2/3 is hinged at its lower end and allowed to fall freely as shown in the figure. If its length L = 2 m and it starts from rest at an angle = 20o, what is the speed (in m/s) of the free end of the stick when it hits the table? Answer: 7.43 m/s % Right: 14% L Ei Mgh Mg cos 2 E f 12 I 2f 12 I hinge L h cos 2 v 2f 2 L Ei E f mgL3 cos mgL3 cos vf 3gL cos 2 1 I 3 mL 3(9.8m / s 2 )( 2m) cos( 20 ) 7.43m / s R. Field 10/22/2013 University of Florida PHY 2053 Page 10