* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Document
SIP extensions for the IP Multimedia Subsystem wikipedia , lookup
Point-to-Point Protocol over Ethernet wikipedia , lookup
Asynchronous Transfer Mode wikipedia , lookup
Distributed firewall wikipedia , lookup
IEEE 802.1aq wikipedia , lookup
Network tap wikipedia , lookup
Internet protocol suite wikipedia , lookup
Airborne Networking wikipedia , lookup
Piggybacking (Internet access) wikipedia , lookup
Deep packet inspection wikipedia , lookup
Computer network wikipedia , lookup
Dynamic Host Configuration Protocol wikipedia , lookup
List of wireless community networks by region wikipedia , lookup
Multiprotocol Label Switching wikipedia , lookup
Recursive InterNetwork Architecture (RINA) wikipedia , lookup
Wake-on-LAN wikipedia , lookup
Internet Protocols • IPv4 (Internet Protocol) —IP Address —IP header —Subnetting —Routing • ICMP (Internet Control Message Protocol) • IPv6 IP (Internet Protocol) • IP位於網際網路層,(OSI第三層) • 主要提供多個互連網路間之路由/繞送(Routing) 功能。 • 協定特性:Connectionless、Unreliable • 為能提供有效路由功能,制定了IP定址機制。 • 每一TCP/IP網路上之主機均有一32-bit IP位址。 — 140.131.76.1 • RFC 791 —www.rfc-editor.org IPv4 Address Space: http://www.iana.org/assignments/ipv4-address-space Connectionless Internetworking • Unreliable —Not guaranteed delivery —Not guaranteed order of delivery • Packets can take different routes —Reliability is responsibility of next layer up (e.g. TCP) Stateless 健忘的 IP Address • 長度:4 Octets (32-Bit) • 每一IP 位址包括兩個部份 163.22.20.17 —網路位址 (Network Address) —主機位址 (Host Address) Host Network • 有時一網路會再分割為多個子網路,此時主機位 址又再細分為子網路(Subnet)及主機(Host)兩個 部份。 Network Subnet Host Figure 8.5 IPv4 Address Formats 0 ~ 127 128 ~ 191 192 ~ 223 224 ~ 239 240 ~ E D C A B IP Addresses - Class A • 32 bit global internet address • Network part and host part • Class A —Start with binary 0 —All 0 reserved (0.0.0.0) —01111111 (127) reserved for loopback —Range 1.x.x.x to 126.x.x.x —All allocated IP Addresses - Class B • • • • • Start 10 Range 128.x.x.x to 191.x.x.x Second Octet also included in network address 214 = 16,384 class B addresses All allocated IP Addresses - Class C • Start 110 • Range 192.x.x.x to 223.x.x.x • Second and third octet also part of network address • 221 = 2,097,152 addresses • Nearly all allocated —See IPv6 Addressing Modes • Unicast — 163.22.20.16 • Multicast (Class D) — 224.0.0.9 — http://www.iana.org/assignments/multicast-addresses • Broadcast — 255.255.255.255 — 163.22.20.255 RIP Routing Information Protocol IP 位址分類 Special IP Addresses • All-0 host suffix Network Address — 163.22.20.16/24 163.22.20.0/24 — 163.22.20.137/25 163.22.20.?/25 — 163.22.20.137: 163.22.20.10001001 — 163.22.20.128/25 163.22.20.10000000 • All-0s This computer — 0.0.0.0 • All-0s network This network. — 163.22.20.7/24 0.0.0.7 (Host 7 on this network) • All-1 host suffix All hosts on the destination net (directed broadcast) 163.22.20.16/24 163.22.20.255 • All-1s All hosts on this net (limited broadcast) — 255.255.255.255 Subnet number cannot be all 1 • 127.*.*.* Loopback through IP layer — 127.0.0.1 Private IP Addresses • Any organization can use these inside their network • Can’t go on the internet. [RFC 1918] —10.0.0.0 - 10.255.255.255 (10/8 prefix) —172.16.0.0 - 172.31.255.255 (172.16/12 prefix) —192.168.0.0 - 192.168.255.255 (192.168/16 prefix) • Network Address Translation (NAT) — Basic NAT (one-to-one NAT) — NAT(NAPT, Network Address Port Translation) 1 16 256 Subnets and Subnet Masks • Allow arbitrary complexity of internetworked LANs within organization • Insulate overall internet from growth of network numbers and routing complexity • Site looks to rest of internet like single network • Each LAN assigned subnet number • Host portion of address partitioned into subnet number and host number • Local routers route within subnetted network • Subnet mask indicates which bits are subnet number and which are host number 網路遮罩(Net Mask, Subnet Mask) • 網路遮罩,將一IP位址中之代表網路及子網路位 址之位元設為1,其餘設為0即為網路遮罩。 —Class A 255.0.0.0 —Class B 255.255.0.0 —Class C 255.255.255.0 • 網路遮罩與IP位址利用邏輯AND便可得到網路位 址。 Examples of Subnetworking 00100000 00111001 01000000 192.168.17.x 01100000 Question • • 一個原為Class C之IP網路,均分成多個子網路 遮罩為255.255.255.224的子網路後,將減少 ____ 個可配置的主機位址。(96研) Hints: — — — — Class C: 255.255.255.0 224: 11100000 host all 0’s: Network ID host all 1’s: Broadcast address • Host: 10.10.4.26 • Subnet mask: 255.255.255.0 • Default Gateway: 10.10.4.254 • Send a packet destined to 10.10.4.35 — 10.10.4.35 AND 255.255.255.0 ?= 10.10.4.26 AND 255.255.255.0 Yes, the same subnet — Send to 10.10.4.35 directly • Send a packet destined to 10.10.6.3 — 10.10.6.3 AND 255.255.255.0 ?= 10.10.4.26 AND 255.255.255.0 No, the different subnets — Send to default gateway (10.10.4.254) IPv4 Header Header Fields (1) • Version —Currently 4 • IHL (Internet header length) —In 32 bit words —Including options • DS/ECN (or Type of service) • Total length —Of datagram, in octets DS: Differentiated Service ECN: Explicit Congestion Notification Header Fields (2) • Identification —Sequence number —Used with addresses and user protocol to identify datagram uniquely • Flags —More bit 0 DF MF • Indicates that this is not the last fragment —Don’t fragment • Fragmentation offset • Position of fragment of user data in original datagram • In multiples of 64 bits (8 octets) Fragmentation and Re-assembly • Different packet sizes • When to re-assemble —At destination • Results in packets getting smaller as data traverses internet —Intermediate re-assembly • Need large buffers at routers • Buffers may fill with fragments • All fragments must go through same router – Inhibits dynamic routing Figure 8.2 Fragmentation Example Header Fields (3) • Time to live • Protocol —Next higher layer to receive data field at destination • Header checksum —Reverified and recomputed at each router —16 bit ones complement sum of all 16 bit words in header —Set to zero during calculation Datagram Lifetime • Datagrams could loop indefinitely • Datagram marked with lifetime —Time To Live field in IP —Hop count • Decrement time to live on passing through a each router —Time count • Need to know how long since last router • Once lifetime expires (TTL = 0) —Router discards the datagram —Router sends ICMP Time Exceeded to the source. Traceroute RFC 1393 • To provide a trace of the path the packet took to reach the destination. • Operates by first sending out a packet with a Time To Live (TTL) of 1. The first hop then sends back an ICMP error message indicating that the packet could not be forwarded because the TTL expired. • The packet is then resent with a TTL of 2, and the second hop returns the TTL expired. This process continues until the destination is reached. • Record the source of each ICMP TTL exceeded message http://www.visualroute.com/ tracert C:\>tracert www.google.com Tracing route to www.l.google.com [72.14.235.104] over a maximum of 30 hops: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 <1 <1 <1 <1 23 2 * 6 28 31 * 62 63 62 63 65 77 64 ms ms ms ms ms ms ms ms ms ms ms ms ms ms ms ms Trace complete. <1 <1 <1 <1 1 3 * 6 28 30 * 63 63 64 64 63 73 73 ms ms ms ms ms ms ms ms ms ms ms ms ms ms ms ms <1 <1 <1 <1 1 3 5 6 28 29 * 62 63 62 63 69 70 64 ms ms ms ms ms ms ms ms ms ms ms ms ms ms ms ms ms gateway.puli34-10-10.ncnu.edu.tw [10.10.34.254] ip253.puli01.ncnu.edu.tw [163.22.1.253] ip090.puli18-10-10.ncnu.edu.tw [10.10.18.90] ip094.puli18.ncnu.edu.tw [163.22.18.94] ip098.puli255-64-203.ncnu.edu.tw [203.64.255.98] 140.128.251.38 bb-MOE-CHT.TANet.edu.tw [192.83.196.111] 202.169.174.58 202.169.174.45 202.40.161.1 Request timed out. 218.100.16.24 216.239.43.68 66.249.95.198 72.14.232.162 72.14.232.221 72.14.232.217 tw-in-f104.google.com [72.14.235.104] VisualRoute http://www.visualroute.com/ Protocol • Protocol: 8 bits —Identifies contents of data field —1 = ICMP —6 = TCP —17 =UDP IP Header Data Field ICMP, TCP, or UDP Message http://www.iana.org/assignments/protocol-numbers Header Fields (4, 5, 6) • Source address • Destination address • Options —Security —Source routing (Strict, Loose) —Route recording —Stream identification —Timestamp • Padding —To fill to multiple of 32 bits long Data Field • Carries user data from next layer up • Integer multiple of 8 bits long (octet) • Max length of datagram (header plus data) 65,535 octets Routing • End systems and routers maintain routing tables — Indicate next router to which datagram should be sent — Static • May contain alternative routes — Dynamic • Flexible response to congestion and errors • Source routing — Source specifies route as sequential list of routers to be followed — Security — Priority • Route recording Internet Protocol Operation *A B Router X makes a decision: 1. B is in one of the networks to which X is attached. send 2. B is in a remote network. Additional routers must be traversed. routing 3. X does not know the destination address. Error message Routers and the IP Addressing Principle • Routers have two or more addresses. One for each interface. Routing Table IF ((Mask[i] & Destination Addr) = = Destination[i]) Forward to NextHop[i] C:\> route print Routing Table Row Destination Network or Subnet Mask (/Prefix)* Metric (Cost) NextInterface Hop Router 1 128.171.0.0 255.255.0.0 (/16) 47 2 G 2 172.30.33.0 255.255.255.0 (/24) 0 1 Local 3 192.168.6.0 255.255.255.0 (/24) 12 2 G Routers Base Routing Decisions on Their Routing Tables. Each Row Represents a Route to a Network or Subnet For Each Arriving Packet, The Packet’s Destination IP Address Is Matched Against the Destination Network or Subnet Field in Every Row Routing Table Row Destination Network or Subnet Mask (/Prefix)* Metric (Cost) NextInterface Hop Router 1 128.171.0.0 255.255.0.0 (/16) 47 2 G 2 172.30.33.0 255.255.255.0 (/24) 0 1 Local 3 192.168.6.0 255.255.255.0 (/24) 12 2 G Each Row Represents a Route to a Network or Subnet. All packets to that network or subnet are governed by that one row. So there is one rule for a range of IP addresses. This reduces the number of rows that must be considered. Routing Table Row Destination Network or Subnet Mask (/Prefix)* Metric (Cost) NextInterface Hop Router 1 128.171.0.0 255.255.0.0 (/16) 47 2 G 2 172.30.33.0 255.255.255.0 (/24) 0 1 Local 3 192.168.6.0 255.255.255.0 (/24) 12 2 G Row 1 If Destination IP Address = 172. 30.33.6 Mask = 255.255. 0.0 Result = 172. 30. 0.0 Destination Network or Subnet = 128.171. 0.0 No match! Routing Table Row Destination Network or Subnet Mask (/Prefix)* Metric (Cost) NextInterface Hop Router 1 128.171.0.0 255.255.0.0 (/16) 47 2 G 2 172.30.33.0 255.255.255.0 (/24) 0 1 Local 3 192.168.6.0 255.255.255.0 (/24) 12 2 G Row 1 If Destination IP Address = 172. 30. 33.6 Mask = 255.255.255.0 Result = 172. 30. 33.0 Destination Network or Subnet = 172. 30. 33.0 This row is a match! Routing Table Row Destination Network or Subnet Mask (/Prefix)* Metric (Cost) NextInterface Hop Router 1 128.171.0.0 255.255.0.0 (/16) 47 2 G 2 172.30.33.0 255.255.255.0 (/24) 0 1 Local 3 192.168.6.0 255.255.255.0 (/24) 12 2 G Row 3 If Destination IP Address = 172. 30. 33.6 Mask = Result = Destination Network or Subnet = Is this row is a match? Routing • For Each Incoming IP Packet —Destination IP address is matched against every row in the routing table. —If the routing table has 10,000 rows, 10,000 comparisons will be made for each packet. —There can be multiple matching rows for a destination IP address, corresponding to multiple alternative routes. —After all matches are found, the best match must be selected. only one row matches Row Destination Network or Subnet Mask (/Prefix)* Metric (Cost) 3 192.168.0.0 255.255.0.0 (/16) 12 NextInterface Hop Router 2 • If only one row matches, it will be selected as the best row match. —Destination IP address = 192.168.6.7 G Default Route Row Destination Network or Subnet Mask (/Prefix)* Metric (Cost) 15 0.0.0.0 0.0.0.0 (/0) 5 NextInterface Hop Router 3 • The default row always matches —Mask 0.0.0.0 applied to anything results in 0.0.0.0. —This always matches the Network/Subnet value 0.0.0.0. —The router specified for this row (H) is the default router. H Multiple Matches - 1 Row Destination Network or Subnet Mask (/Prefix)* Metric (Cost) NextInterface Hop Router 1 128.171.0.0 255.255.0.0 (/16) 47 2 G 7 127.171.17.0 255.255.255.0 (/24) 55 3 H • If there are multiple matches, the row with the longest length of match is selected —This is Row 7 for 128.171.17.56 (24 bit match) —Row 1’s length of match is only 16 bits —Longer matches often are routes to a particular subnet within a network Multiple Matches - 2 Row Destination Network or Subnet Mask (/Prefix)* Metric (Cost) NextInterface Hop Router 5 172.29.8.0 255.255.255.0 (/24) 34 1 F 8 172.29.8.0 255.255.255.0 (/24) 20 3 H • If there are multiple rows with the same lengths of match, the metric column compares alternative routes. —If the metric is cost, the smallest metric wins (20) —If the metric is speed, the largest metric wins (34) The Situation • The router first evaluated the IP destination address of the arriving packet against all rows and noted the matching rows. • The router then selected the best-match row. • Now, the router examines the interface and next-hop router fields in the best-match row to determine what to do with the packet. Interface and Next-Hop Router Router Forwarding Packet Router A Possible Next-Hop Router Packet to Router B on Interface 5 Router B IP Subnet on Interface (Port 5) Packet must be sent to a particular host or router on the subnet out a particular interface (port). Router C Possible Destination Host Possible Next-Hop Router Interface and Next-Hop Router Row Destination Network or Subnet Mask (/Prefix)* Metric (Cost) 5 172.29.8.0 255.255.255.0 (/24) 34 NextInterface Hop Router 1 F • The Interface specifies the “out” port on the router. —A subnet is attached to this interface. • NHR column specifies a specific NHR on that subnet. —For Row 5, send packet to NHR F on the subnet out Interface 1. Next-Hop: Local Row Destination Network or Subnet Mask (/Prefix)* Metric (Cost) 2 172.30.33.0 255.255.255.0 (/24) 0 NextInterface Hop Router 1 Local • If Next-Hop Router Field says Local, —Then the destination host in on the subnet attached to the interface (1). —Instead of sending the packet to a next-hop router on the subnet, the router will send the packet to its destination address. IP Forwarding Process Address Resolution Protocol • RFC 826 • To map network addresses to the hardware addresses used by a data link protocol • To translate IP addresses to Ethernet MAC addresses • Use data-link broadcast • ARP Request, ARP Reply ARP Announcement Gratuitous ARP ARP Spoofing (ARP Poisoning) • Send fake, or 'spoofed', ARP messages to an Ethernet LAN. • Generally, to associate the attacker's MAC address with the IP address of another node (such as the default gateway). • Passive sniffing, Man-in-the-middle attack, Denial-of-service attack • http://www.oxid.it/downloads/apr-intro.swf ARP Cache Default cache time-outs: Two-minute (unused entries) Ten-minute (used entries) arp arp arp arp -a -d 10.10.34.235 -d * –s 157.55.85.212 C:\>arp -a Interface: 10.10.34.169 Internet Address 10.10.34.231 10.10.34.234 10.10.34.235 10.10.34.254 00-aa-00-62-c6-09 --- 0x2 Physical Address 00-12-cf-28-cd-20 00-12-cf-29-c6-80 00-12-cf-28-1e-20 00-08-e3-dd-b3-1f Type dynamic dynamic dynamic dynamic C:\>arp -s 10.10.34.235 00-12-cf-28-1e-20 C:\>arp –a Interface: 10.10.34.169 Internet Address 10.10.34.235 10.10.34.254 --- 0x2 Physical Address 00-12-cf-28-1e-20 00-08-e3-dd-b3-1f Type static dynamic ICMP • Internet Control Message Protocol (RFC 792) • Transfer of (control) messages from routers and hosts to hosts • Feedback about problems —e.g. time to live expired • Encapsulated in IP datagram —Not reliable ICMP Message Formats ICMP Type 8/0 3 4 5 11 12 13 / 14 17 / 18 Echo Request / Echo Reply Destination Unreachable Source Quench Redirect Time Exceeded Parameter Problem Timestamp Request / Timestamp Reply Address Mask Request / Address Mask Reply Ping • Most basic tool for internet management • Based on ICMP ECHO_REQUEST message • Available on all TCP/IP stacks • Useful for measuring • Connectivity • Packet Loss • Round Trip Time • Can do auto-discovery of TCP/IP equipped stations on single segment ping Usage: ping [-t] [-a] [-n count] [-l size] [-f] [-i TTL] [-v TOS] [-r count] [-s count] [[-j host-list] | [-k host-list]] [-w timeout] destination-list Options: -t -a -n count -l size -f -i TTL -v TOS -r count -s count -j host-list -k host-list -w timeout Ping the specified host until stopped. To see statistics and continue - type Control-Break; To stop - type Control-C. Resolve addresses to hostnames. Number of echo requests to send. Send buffer size. Set Don't Fragment flag in packet. Time To Live. Type Of Service. Record route for count hops. Timestamp for count hops. Loose source route along host-list. Strict source route along host-list. Timeout in milliseconds to wait for each reply. Example C:\>ping -n 10 -l 256 www.im.ncnu.edu.tw Pinging euler.im.ncnu.edu.tw [163.22.20.16] with 256 bytes of data: Reply Reply Reply Reply Reply Reply Reply Reply Reply Reply from from from from from from from from from from 163.22.20.16: 163.22.20.16: 163.22.20.16: 163.22.20.16: 163.22.20.16: 163.22.20.16: 163.22.20.16: 163.22.20.16: 163.22.20.16: 163.22.20.16: bytes=256 bytes=256 bytes=256 bytes=256 bytes=256 bytes=256 bytes=256 bytes=256 bytes=256 bytes=256 time=1ms time=1ms time=1ms time=1ms time=1ms time=1ms time=1ms time=1ms time=1ms time=1ms TTL=253 TTL=253 TTL=253 TTL=253 TTL=253 TTL=253 TTL=253 TTL=253 TTL=253 TTL=253 Ping statistics for 163.22.20.16: Packets: Sent = 10, Received = 10, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 1ms, Maximum = 1ms, Average = 1ms DHCP (Dynamic Host Configuration Protocol) DHCP allows IP addresses to be allocated on a temporary basis (a lease). When the lease for an IP address expires, the address can be reused by a different node. This is useful in environments supporting mobile users who connect to the network with a laptop from many different places. This helps alleviate the problem of limited IP addresses and simplifies TCP/IP client configurations. 動態主機組態協定(DHCP) • Dynamic Host Configuration Protocol • 自動設定電腦的 — — — — IP位址(163.22.20.223) 子網路遮罩(255.255.255.0) 預設通訊閘(163.22.20.254) 領域名稱伺服器(163.22.2.1) —… • winipcfg (Win 98/Me) • ipconfig /all (Win 2000/XP) 1 2 3 控制台 網路和網際網路連線 ipconfig ipconfig ipconfig /all ipconfig /release ipconfig /renew C:\>ipconfig Windows IP Configuration Ethernet adapter 區域連線: Connection-specific IP Address. . . . . Subnet Mask . . . . Default Gateway . . DNS . . . . . . Suffix . . . . . . . . . . . . . . . . : : : : ncnu.edu.tw 10.10.34.169 255.255.255.0 10.10.34.254 領域名稱系統(DNS) • 提供主機名稱與IP位址之轉換 www.im.ncnu.edu.tw 163.22.20.16 • 由DNS伺服器提供 • RR-DNS (Round Robin DNS) — www.yahoo.com: (8台伺服器) — 66.218.71.90, 66.218.71.80, 66.218.71.95, … • DDNS (Dynamic DNS) — 主機名稱 浮動IP位址 ipconfig /displaydns ipconfig /flushdns nslookup C:\>nslookup Default Server: academic.ncnu.edu.tw Address: 163.22.2.1 > www.cnn.com Server: academic.ncnu.edu.tw Address: 163.22.2.1 Non-authoritative answer: Name: www.cnn.com Addresses: 64.236.29.120, 64.236.91.21, 64.236.16.20, 64.236.16.52 64.236.16.84, 64.236.24.12, 64.236.24.20, 64.236.24.28 > 163.22.20.16 Server: academic.ncnu.edu.tw Address: 163.22.2.1 Name: euler.im.ncnu.edu.tw Address: 163.22.20.16 Aliases: 16.20.22.163.in-addr.arpa > 全球資訊網(WWW) TANet www.abc.com Source Switch/Router DHCP Server DNS Server Proxy Server/Filter TANet / HiNet / ISPs Destination HiNet (5) (3) (1) (4) NCNU Web Filter Campus Network (2) Proxy Servers DHCP Server DNS Server Router Switch 電子郵件 (E-Mail) • 用戶端 Outlook / Outlook Express • SMTP伺服器 – 送信 —無需密碼,用戶需在規定的網路內送信 —Open Relay / Spam Mail • POP伺服器– 收信 —需密碼,沒有限制網路 • 常見問題 —用戶沒在規定的網路內送信 —信箱爆滿(Quota) 電子郵件 (E-Mail) – 送 HiNet TANet (6) pop.ntu.edu.tw Sender Switch/Router DHCP Server DNS Server SMTP Server/Virus Scan POP Server TANet / ISPs Receiver POP Server NCNU (3) Campus (1) Network (2) (5) Virus Scan SMTP Servers Router Switch DHCP Server DNS Server (4) 電子郵件 (E-Mail) – 收 smtp.ntu.edu.tw Sender TANet / ISPs Switch/Router SMTP Server/Virus Scan POP Server Receiver* DHCP Server DNS Server HiNet TANet (1) (5) (3) (4) POP Server NCNU Campus Network (2) Virus Scan SMTP Servers Router Switch DHCP Server DNS Server IPv6 - Version Number • IP v 1-3 defined and replaced • IP v4 - current version • IP v5 - streams protocol —Connection oriented internet layer protocol • IP v6 - replacement for IP v4 —During development it was called IPng • Next Generation Why Change IP? • Address space exhaustion —Two level addressing (network and host) wastes space —Network addresses used even if not connected to Internet —Growth of networks and the Internet —Extended use of TCP/IP —Single address per host • Requirements for new types of service IPv6 RFCs • 1752 - Recommendations for the IP Next Generation Protocol • 2460 - Overall specification • 3513 - addressing structure • others (find them) • www.rfc-editor.org • http://www.ietf.org/html.charters/ipv6-charter.html IPv6 Enhancements (1) • Expanded address space —128 bit • Improved option mechanism —Separate optional headers between IPv6 header and transport layer header —Most are not examined by intermediate routes • Improved speed and simplified router processing • Easier to extend options • Address autoconfiguration —Dynamic assignment of addresses IPv6 Enhancements (2) • Increased addressing flexibility —Anycast - delivered to one of a set of nodes —Improved scalability of multicast addresses • Support for resource allocation —Replaces type of service —Labeling of packets to particular traffic flow —Allows special handling —e.g. real time video Figure 8.9 IPv6 Header IPv6 Header Fields (1) • Version —6 • Traffic Class (DS/ECN) —Classes or priorities of packet —Still under development —See RFC 2460 • Flow Label —Used by hosts requesting special handling IPv6 Header Fields (2) • Payload length —Includes all extension headers plus user data • Next Header —Identifies type of header • Extension or next layer up — IPv4’s Protocol • Hop Limit — IPv4’s TTL IPv6 Packet with Extension Headers Extension Headers • Hop-by-Hop Options —Require processing at each router • Routing —Similar to v4 source routing • • • • Fragment Authentication Encapsulating security payload Destination options —For destination node IPv6 Addresses • 128 bits long • Assigned to interface • Single interface may have multiple unicast addresses • Three types of address Types of IPv6 Addresses • Unicast —Single interface • Anycast —Set of interfaces (typically different nodes) —Delivered to any one interface —the “nearest” • Multicast —Set of interfaces —Delivered to all interfaces identified Text Representation of IPv6 RFC 3513 Addresses • x:x:x:x:x:x:x:x • hexadecimal values of the eight 16-bit pieces of the address. —FEDC:BA98:7654:3210:FEDC:BA98:7654:3210 —1080:0:0:0:8:800:200C:417A IPv6 Address Representation (2) • The use of "::" indicates multiple groups of 16-bits of zeros. • Unicast address —1080:0:0:0:8:800:200C:417A —1080::8:800:200C:417A • Multicast address —FF01:0:0:0:0:0:0:101 FF01::101 • Loopback address ::1 —0:0:0:0:0:0:0:1 • unspecified addresses (Absence of address) —0:0:0:0:0:0:0:0 :: IPv6 Address Representation (3) • IPv4 and IPv6 mixed address —x:x:x:x:x:x:d.d.d.d —x: IPv6, d: IPv4 —Eg. • 0:0:0:0:0:FFFF:129.144.52.38 • ::13.1.68.3 • ::FFFF:129.144.52.38 Address Type Identification Address type Binary prefix IPv6 notation Unspecified 00...0 (128 bits) ::/128 Loopback 00...1 (128 bits) ::1/128 Multicast 1111 1111 FF00::/8 Link-local unicast 1111 1110 10 FE80::/10 Site-local unicast 1111 1110 11 FEC0::/10 Global unicast (everything else)