Download File

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Friction wikipedia , lookup

Newton's theorem of revolving orbits wikipedia , lookup

Jerk (physics) wikipedia , lookup

Coriolis force wikipedia , lookup

Seismometer wikipedia , lookup

Modified Newtonian dynamics wikipedia , lookup

Fictitious force wikipedia , lookup

Weight wikipedia , lookup

Rigid body dynamics wikipedia , lookup

Centrifugal force wikipedia , lookup

Classical central-force problem wikipedia , lookup

Gravity wikipedia , lookup

Force wikipedia , lookup

Buoyancy wikipedia , lookup

G-force wikipedia , lookup

Inertia wikipedia , lookup

Newton's laws of motion wikipedia , lookup

Centripetal force wikipedia , lookup

Transcript
Practice 1.2B
Reviewing Newton’s Laws, elevator problems, and more Atwood’s
1. An object near the surface of the earth with a weight of 100 newtons is accelerated horizontally
at 4 m/s2. What is the net force on the object?
(A) 25 N (B) 40 N (C) 250 N (D) 400 N (E) 2500 N
2. A 50-kg student stands on a scale in an elevator. At the instant the elevator has a downward
acceleration of 1.0 m/s2 and an upward velocity of 3.0 m/s, the scale reads approximately
(A) 350 N (B) 450 N (C) 500 N (D) 550 N (E) 650 N
3. The “reaction” force does not cancel the “action” force because:
(A) The action force is greater than the reaction force. (B) The action force is less than the
reaction force.
(C) They act on different bodies. (D) They are in the same direction.
(E) The reaction exists only after the action force is removed.
4.
A block of mass 3 kg, initially at rest, is pulled along a frictionless, horizontal surface with a force
shown as a function of time t by the graph above. The acceleration of the block at t = 2 s is
(A) 3/4 m/s2 (B) 4/3 m/s2 (C) 2 m/s2 (D) 8 m/s2 (E) 12 m/s2
5. What happens to the inertia of an object when its velocity is doubled?
(A) the object’s inertia becomes 2 times greater
(B) the object’s inertia becomes 2 times greater
(C) the object’s inertia becomes 4 times greater
(D) the object’s inertia becomes 8 times greater
(E) the object’s inertia is unchanged
6. If a net force F applied to an object of mass m will produce an acceleration of a, what is the mass
of a second object which accelerates at 5a when acted upon by a net force of 2F?
(A) (2/5)m (B) 2m (C) (5/2)m (D) 5m (E) 10m
7. A book leans against a crate on a table. Neither is moving. Which of the following statements
concerning this situation is CORRECT?
(A) The force of the book on the crate is less than that of crate on the book.
(B) Although there is no friction acting on the crate, there must be friction acting on the
book or else it will fall.
(C) The net force acting on the book is zero.
(D) The direction of the frictional force acting on the book is in the same direction as the
frictional force acting
on the crate.
(E) The Newton’s Third Law reaction force to the weight of the book is the normal force
from the table
Free Response
Problem 1
The figure above shows an 80-kilogram person standing on a 20-kilogram platform suspended by a rope passing
over a stationary pulley that is free to rotate. The other end of the rope is held by the person. The masses of the rope
and pulley are negligible. You may use g = 10 m/ s2. Assume that friction is negligible, and
the parts of the rope shown remain vertical.
a.
If the platform and the person are at rest, what is the tension in the rope?
The person now pulls on the rope so that the acceleration of the person and the platform is 2 m/s 2 upward.
b. What is the tension in the rope under these new conditions?
c. Under these conditions, what is the force exerted by the platform on the person?
Problem 2
A 10-kilogram block rests initially on a table as shown in cases I and II above. The coefficient of sliding
friction between the block and the table is 0.2. The block is connected to a cord of negligible mass, which
hangs over a massless frictionless pulley. In case I a force of 50 newtons is applied to the cord. In case II an
object of mass 5 kilograms is hung on the bottom of the cord. Use g = 10 meters per second squared.
a. Calculate the acceleration of the 10-kilogram block in case I.
b. On the diagrams below, draw and label all the forces acting on each block in case II
c. Calculate the acceleration of the 10-kilogram block in case II.