* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download PPT - Institute of Physics, Bhubaneswar
Photomultiplier wikipedia , lookup
Photoacoustic effect wikipedia , lookup
Two-dimensional nuclear magnetic resonance spectroscopy wikipedia , lookup
Astronomical spectroscopy wikipedia , lookup
Silicon photonics wikipedia , lookup
Upconverting nanoparticles wikipedia , lookup
Magnetic circular dichroism wikipedia , lookup
Neutrino theory of light wikipedia , lookup
Photonic laser thruster wikipedia , lookup
Ultrafast laser spectroscopy wikipedia , lookup
X-ray fluorescence wikipedia , lookup
Photon scanning microscopy wikipedia , lookup
Prospect of using single photons propagating through Rydberg EIT medium for quantum computation Ashok Mohapatra National Institute of Science Education and Research, Bhubaneswar IOP, Bhubaneswar 22nd Feb 2014 Outline Introduction to quantum computation using photons Introduction to Rydberg EIT and its nonlinearity Our experimental progress at NISER Conclusion Classical computer Bit Quantum computer Qubit 0 V or 5 V of a transistor output 2-level quantum system (e.g. Single photon) 0 or 1 Polarization states: |H> or |V> |> = 1 |H> + 2 |V> |α1|2+|α2|2=1 Classical gates AND, OR, NOT etc (Universal) Single qubit rotation operators and 2-qubit Controlled-NOT gate (Universal quantum gates) Qunatum computation using photons • • • • Single photon source Single photon detctors Optical elements for gate operation A Kerr non-linear medium for interactions of photons to devise a CNOT gate Single qubit quantum gates • Each photon as a qubit with two orthogonal polarized state Quarter wave plate Hadamard gate Half wave plate two Hadamard operation CNOT gate: Interaction of photons Kerr non-linearity of a medium n n0 n2 I where n2 (3) n2 ≈ 10-20 m2/W for typical glass Increasing the length doesn‘t help due to strong absorption in the medium Electromagnetically Induced Transparency (EIT) provides a larger 3rd order non-linearity without absorption. Electromagnetically induced transparency (EIT) nS1/2 6 MHz 5P3/2 F‘=3 Probe (Ωp) 5S1/2 F=2 F=1 87Rubidium Electromagnetically induced transparency (EIT) nS1/2 Coupling (Ωc) σ6 MHz 5P3/2 F‘=3 500 kHz Probe (Ωp) 5S1/2 σ+ F=2 F=1 87Rubidium EIT still doesn‘t provide enough non-linearity at single photon level Rydberg EIT Rydberg state nS1/2 Coupling (Ωc) σ6 MHz 5P3/2 F‘=3 500 kHz Probe (Ωp) 5S1/2 σ+ F=2 F=1 87Rubidium Rydberg EIT: Mohapatra et al., PRL, 98, 113003 (2007) (Thermal atoms) Weatherill et al., J. Phys. B, 41, 201002 (2008) (Cold atoms) Rydberg atoms Rydberg states: large n Scaling with principal quantum number n (low) 5P3/2 5P1/2 Size n2 Few 100 nm Dipole moment n2 Strong dipolar interaction Lifetime n3 Long lived 100 μsec for n > 40 Polarizability n7 Giant Kerr effect Sensitivity to electric fields van der Waals 5S1/2 Atom - atom interactions n11 Strongly interacting (QIP) Rydberg Rydberg interaction Simplest case: van der Waals n11 r,r Ω E C6 V (r ) 6 r g,r g,g Atomic distance Rydberg blockade Simplest case: van der Waals n11 r,r Ω E C6 V (r ) 6 r blockade condition g,r g,g ablock Atomic distance C6 » 6 ablock ablock few µm Rydberg blockade r r Ω ≡ g g Urban et al., Nature Phys. 5, 110 (2009) Gaetan et al., Nature Phys. 5, 115 (2009) Wilk et al., Phys. Rev. Lett. 104, 010502 (2010) 1 g , r ei r , g 2 eff 2 1 W g1 g 2 ...ri ...g N N i 1 N eff N Superatom Vogt et al., PRL 97, 083003 (2006) Heidemann et al., PRL 99, 163601 (2007) Raitzsch et al., PRL 100, 013002 (2008) Non-linearity of Rydberg EIT Rydberg state r Coupling (Ωc) 6 MHz e 500 kHz Probe (Ωp) g F=1 D c 2 p 2 c g p 2 p 2 c r Dark state that doesn‘t couple to the probe beam and hence probe beam become transparent Non-linearity of Rydberg EIT In the blockade sphere, more than one atom can not be excited which makes the dark state very fragile and get mixed with intermediate state. D c 2 p 2 c g p 2 p 2 c r k e For large probe power, the EIT peak reduces with larger probe absorption. (a) One, (b) two, (c) three atoms per blockade sphere Durham university, UK group Pritchard et al. PRL, 105, 193603 (2010) Non-linearity of Rydberg EIT (Pushing to single photon level) MIT group Peyronel et al. Nature, 488, 57 (2012) Non-linearity of Rydberg EIT (Pushing to single photon level) MIT group, 2013, Firstenberg et al. www.nature.com/doifinder/10.1038/nature12512 Optical non-linearity of Rydberg EIT in thermal vapor • Rydberg blockade radius is only scaled C6 6 ablock approximately by a factor of 3 in D thermal vapor – Kuebler et al. Nature Photo. 4, 112 (2010) • Optical pumping rate to the dark state is much faster than the transit time of the atoms Measurement of the non-linear refractive index Rydberg EIT medium ω ω+δ Measurement of the non-linear refractive index Rydberg EIT medium ω ω+δ Measurement of the non-linear refractive index Rydberg EIT medium 5s1/2(F=3)→5p3/2(F’)→45d 5s1/2(F=3)→5p3/2(F’)→44s 5s1/2(F=3)→5p3/2(F’)→49d Acknoledgement Arup Bhowmik (PhD) Sabyasachi Barik (Int. MSc) Surya Narayan Sahoo (Int. MSc) Charles Adams group at Durham University Rydberg EIT with large probe power EIT with large probe power Rydberg EIT in thermal vapor Rydberg EIT in thermal vapor 44d EIT spectra Reference: Mohapatra et al. PRL (2007) High precession spectroscopy (d - state fine structure splitting) K. C. Harvey et al, Phys. Rev. Lett. 38, 537 (1977). Mohapatra et al. PRL 98, 113003 (2007). W. Li, I. Mourachko, M. W. Noel, and T. F. Gallagher, Phys. Rev. A 67, 052502 (2003). Giant Kerr effect of Rydberg EIT medium Electric field sensitivity of Rydberg state combined with the non-linear properties of EIT ns 5p 5s Giant Kerr effect of Rydberg EIT medium Electric field sensitivity of Rydberg state combined with the non-linear properties of EIT ΔW ns 5p 5s ∆W: 1. Stark shift by applying an external Electric field (DC Kerr effect) 2. Interaction induced shift (Similar to AC Kerr effect) nr 0 B0 E 2 (DC Kerr effect) 0 Experimental demonstration by phase modulation of light Spectrum analyzer Fast photodetector (1.2 GHz bandwidth) AOM + - Phase modulation of light (Sideband spectra) Phase modulation of light (Sideband spectra) N-dependence of the Kerr constant nr 0 B0 E 2 0 α scales as n*7 Ωc scales as n*-3/2 c1 determines the absolute maximum c2 determines the n* dependent scaling Kerr effect in Rydberg EIT medium (Order of magnitude calculation) • • • • • Gas (CO2, 1 atm) B0 ≈ 10-18 m/V2 Water B0 ≈ 10-16 m/V2 Glass B0 ≈ 10-14 m/V2 Nitrobenzene B0 ≈ 10-12 m/V2 Rydber dark state (thermal atoms) B0 ≈ 10-6 m/V2 6 orders of magnitude bigger • 10 orders of magnitude is expected for cold atoms Noise spectra Spectrum analyzer AOM More on Electro-optic and electrometry • Electro-optic control of Rydberg dark state polariton Bason et al. PRA 77, 032305 (2008) • Enhanced electric field sensitivity of rfdressed Rydberg dark states (Bason et al. Bason et al. New J. Phys. 12, 065015 (2010) Outlook • QIP using thermal atoms in microcell – Quantum computation using photon – Single photon source – Quantum computation using mesoscopic ensemble of atoms • Versatile electric field sensor • THz imaging THz imaging Replace the EO crystal by Rydberg EIT in a microcell filled with thermal atoms (Preliminary idea) Durham University Group Prof. C. S. Adams Dr. K. J. Weatherill Mr. M. G. Bason Mr. J. Pritchard Mr. R. Abel Frequency stabilization of blue laser to a EIT peak using frequency modulation scheme (schematic) EOM λ/4 λ/4 Di-chroic mirror λ/2 λ/2 30 dBm power amplifier Photodetector 1 MV/W, 10 MHz 20 dB amplifier Phase shifter ECDL @ 780 nm Toptica DL pro Mixer Toptica SHG @ 480 nm Slow feedback to master piezo Stabilized to Polarization spectroscopy LP filter PID Toptica FALC module Fast feedback to master current (BW ~ 1 MHz) Home made EOM D. J. McCarron et al., Meas. Sci. Tech. 2008 Frequency stabilization of blue laser to a EIT peak using frequency modulation scheme Ultra-stable, no long term drift and 100 kHz of relative linewidth observed with 1 μW of probe power Stabilization demonstrated for 26D5/2 state by using less than 2 mW of blue light For 58D3/2 state, less than 15 mW of blue light was used Abel et al, under preparation Kerr effect in Rydberg EIT medium Kerr effect in Rydberg EIT medium Kerr effect in Rydberg EIT medium Kerr effect in Rydberg EIT medium Kerr effect (1875) Measurement of the Kerr effect of Rydberg EIT medium 5p - 32s Jamin Interferometer Measurement of the Kerr effect of Rydberg EIT medium +V -V 5p - 32s Jamin Interferometer Both the lasers are locked to the EIT signal Abel et al., submitted to Appl. Phys. Lett. Measurement of the Kerr effect of Rydberg EIT medium N-dependence of the Kerr constant Sidebands on Rydberg dark states For small modulation frequency and Stark shift compared to any dipole allowed transition Ω=-1/2αE2 Phase modulation of Rydberg dark states Ω/2 2nd order sidebands 1st harmonic sidebands For an ac electric field (E0) and dc field (E’) 1st harmonic sidebands For an ac electric field (E0) and dc field (E’) 2nd harmonic sidebands 1st harmonic sidebands Application to precesion electrometry Interaction of photons using EIT 3 nS1/2 Coupling Signal photon 1 2 1 F=1 Interaction of photons using EIT 4 3 nS1/2 Coupling Signal photon 1 Photon 2 2 1 Large 3rd order non-linearity with less absorption F=1 But, still not enough to have π-phase shift to devise a useful phase gate at single photon level (Shapiro et al., PRA, 73, 062305 (2006))