Download PHYS - University of New Brunswick

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Scalar field theory wikipedia , lookup

Matter wave wikipedia , lookup

Jack Sarfatti wikipedia , lookup

Quantum field theory wikipedia , lookup

Bell's theorem wikipedia , lookup

Many-worlds interpretation wikipedia , lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Quantum state wikipedia , lookup

EPR paradox wikipedia , lookup

Copenhagen interpretation wikipedia , lookup

Symmetry in quantum mechanics wikipedia , lookup

Relativistic quantum mechanics wikipedia , lookup

Renormalization wikipedia , lookup

Wave–particle duality wikipedia , lookup

Interpretations of quantum mechanics wikipedia , lookup

History of quantum field theory wikipedia , lookup

Canonical quantization wikipedia , lookup

Renormalization group wikipedia , lookup

Hidden variable theory wikipedia , lookup

T-symmetry wikipedia , lookup

Max Born wikipedia , lookup

Transcript
2017 - 2018 Calendar Proof
PHYS
PHYSICS
Students should note that in the Science Faculty the minimum acceptable grade in a course which is
required by a particular program or is used to meet a prerequisite, is a "C". Any student who fails to
attain a "C" or better in such a course must repeat the course (at the next regular session) until a
grade of "C" or better is attained. Students will not be eligible for graduation until such deficiencies
are removed. The only exception will be granted for a single course with a “D” grade that is a
normal part of the final year of that program, and is being taken for the first time in the final year.
Note: See Courses -> Saint John or Fredericton -> Standard Course Abbreviations in the online
undergraduate calendar for an explanation of abbreviations, course numbers and coding.
Not all courses are offered every year. Consult with the Department concerning availability of
courses from year to year.
PHYS 1061, PHYS 1062, PHYS 1091, PHYS 1092 are prerequisites for second year physics
courses. PHYS 1071 may count in place of PHYS 1061 and PHYS 1072 in place of PHYS 1062.
Note that credit can only be obtained for one of PHYS 1061 and PHYS 1091, PHYS 1071 and
PHYS 1091 or PHYS 1081. However, for students wishing to transfer from engineering PHYS 1081
and EE 1813 may replace First Year Physics i.e. PHYS 1061, 1062 , 1091 , 1092 (or equivalently
PHYS 1071, 1072, 1091, 1092).
Courses with a 5 for the first digit are advanced courses, which may be taken only with the
permission of the instructor.
PHYS 1061 Introductory Physics - I (Physical Science Interest)
3 ch (3C 1T)
This course is an introduction to the branch of physics called mechanics. Mechanics is the study
both of how objects move and why they move the way they do. Describing the motion of objects
requires understanding the basic kinematics quantities position, displacement, velocity and
acceleration, as well as the connection between them. Understanding the causes of motion can
be achieved by considering the forces acting on the object and/or by focussing on the conserved
properties of the system (momentum, energy, angular momentum). Mechanics applies to a wide
range of phenomena, essentially to anything that moves, but this course will highlight ties to and
applications in the physical sciences. Co-requisites: MATH 1003 or 1053. NOTES: Credit can
be obtained in only one of PHYS 1061, 1071 or 1081.
PHYS 1062 Introductory Physics - II (Physical Science Interest)
3 ch (3C 1T)
This course introduces the students to wave phenomena and to electricity and magnetism.
Throughout, the concepts related to motion learned in the previous course are used to describe
1|Page
2017 - 2018 Calendar Proof
and explain new phenomena. The study of waves introduces the student to propagating, periodic
disturbances. In addition to their importance in mechanical phenomena (e.g. seismic waves),
waves form the basis of both optics and acoustics. The study of electricity and magnetism
introduces the student to the concept of charge and to the effects of charges on their
surroundings (fields and forces). This course will highlight ties to and applications in the
physical sciences. Prerequisites: PHYS 1061, 1071 or 1081, MATH 1003 or 1053. It is
recommended that students intending to take Physics courses beyond Introductory Physics
should take MATH 1013 or 1063 as a co-requisite to this course. NOTES: Credit can be
obtained in only one of PHYS 1062 or 1072.
Introductory Physics - I (Health & Life Science
3 ch (3C 1T)
Interest)
This course is an introduction to the branch of physics called mechanics. Mechanics is the study
both of how objects move and why they move the way they do. Describing the motion of objects
requires understanding the basic kinematics quantities position, displacement, velocity and
acceleration, as well as the connection between them. Understanding the causes of motion can
be achieved by considering the forces acting on the object and/or by focussing on the conserved
properties of the system (momentum, energy, angular momentum). Mechanics applies to a wide
range of phenomena, essentially to anything that moves, but this course will highlight ties to and
applications in the health and life sciences. Co-requisite: MATH 1003 or 1053. NOTES: Credit
can be obtained in only one of PHYS 1061, 1071 or 1081.
PHYS 1071
PHYS 1072
Introductory Physics - II (Health & Life Science Interest)
3 ch (3C 1T)
This course introduces the students to wave phenomena and to electricity and magnetism.
Throughout, the concepts related to motion learned in the previous course are used to describe
and explain new phenomena. The study of waves introduces the student to propagating, periodic
disturbances. In addition to their importance in mechanical phenomena (e.g. seismic waves),
waves form the basis of both optics and acoustics. The study of electricity and magnetism
introduces the student to the concept of charge and to the effects of charges on their
surroundings (fields and forces). This course will highlight ties to and applications in the health
and life sciences. Prerequisites: PHYS 1061 or PHYS 1071, MATH 1003 or 1503. It is
recommended that students intending to take Physics courses beyond Introductory Physics
should take MATH 1013 or 1063 as a co-requisite to this course. NOTES: Credit can be
obtained in only one of PHYS 1062 or 1072.
PHYS 1081
Foundations of Physics for Engineers
5 ch (3C 3L)
An introduction to the fundamentals of mechanics. Vector analysis and its application to the
analysis of the motion of particles and rigid bodies. Newton's three laws of motion. The
kinematics and dynamics of particle motion along straight and curved paths. Work, energy,
impulse and momentum of particles and rigid bodies. An introduction to the rotation of a rigid
body about a fixed axis, moments of inertia, angular momentum. Simple Harmonic Motion. Co2|Page
2017 - 2018 Calendar Proof
requisites: (MATH 1003 or MATH 1053), (MATH 1503, or MATH 2213, or equivalent).
NOTES: Credit can be obtained in only one of PHYS 1061 and PHYS 1091, 1071 and PHYS
1091 or 1081.
PHYS 1091
Experiments in Introductory Physics – I
2 ch (3L) [W]
This course provides the student hands-on experience with concepts covered in PHYS 1061 or
1071. Co-requisite: PHYS 1061 or 1071.
PHYS 1092
Experiments in Introductory Physics - II
2 ch (3L) [W]
This course provides the student hands-on experience with concepts covered in PHYS 1062 or
1072. Prerequisite: PHYS 1091. Co-requisite: PHYS 1062 or 1072.
PHYS 2311
Mechanics I
4 ch (3C 1T)
Role within programme and connections to other courses. This course is an important — and
big! — first step away from the tremendously simplified problems that we have dealt with both
in introductory university physics and in high school. We introduce the integration of greater
mathematical sophistication in the treatment of physical situations, showing that comfort with a
variety of mathematical techniques will allow us to study a greater range of — and more
interesting — problems. Furthermore, this course serves to show that familiarity with the
powerful Newtonian toolchest, which we have been using since high school, allows us to
approach complicated, realistic situations with confidence. The inclusion of special relativity
challenges us to think beyond the familiar.
Content. Special relativity (including elements related to the development of the theory),
advanced Newtonian kinematics and dynamics (translational and rotational), conservation
principles, oscillatory motion, mechanics in non-inertial reference frames. Prerequisites: MATH
1003 or 1053 and 1013 or 1063 plus PHYS 1061, 1062, 1091, 1092 or equivalent. Co-requisite:
MATH 2003 or equivalent.
PHYS 2312
Mechanics II
3 ch (3C)
Role within programme and connections to other courses. This course introduces an entirely
new approach to mechanics, one that is more elegant and more powerful but less intuitive than
the Newtonian approach to which we have been exposed thus far. This is the last compulsory
mechanics course and, therefore, includes the classical mechanics background for the quantum
mechanics stream. Some computational exercises are included (e.g. the use of numerical
differential equation solvers).
Content. Calculus of variations, Lagrangian mechanics, two-body, central force problems
(orbital motion), rotational motion of rigid bodies, coupled oscillators and normal modes, an
introduction to Hamiltonian mechanics. Prerequisites: PHYS 2311, MATH 2003 or equivalent.
Co-requisite: MATH 2013 or equivalent.
PHYS 2327
Circuits & Elementary Electronics
5 ch (2C 3L)
Role within programme and connections to other courses. Understanding circuits and basic
electronics is essential for any physicist who will develop or simply use measuring devices. This
course moves beyond the simple DC circuits involving resistors and capacitors seen in
3|Page
2017 - 2018 Calendar Proof
introductory physics. It introduces the basic elements of the many electronic devices which we
use every day, then shows how to combine these elements when designing simple circuits. This
topic is particularly well-suited to hands-on learning. The course is experiential in design with
more time devoted to manipulations than to lecture. Through the experimental work involved in
learning about basic electronics, we are introduced to and become comfortable with essential
measurement apparati (multimeters, oscilloscopes, etc). The understanding of basic electronics
and measuring devices gained from this course will serve to enhance all future laboratory work:
the equipment will not distract us from the physical phenomena which we are studying and we
will understand how to best use the equipment and appreciate its limitations. This course also
introduces some computational techniques for circuit analysis e.g. in the solution of
simultaneous linear equations.
Content. AC circuits, operational amplifiers, diodes and other pertinent topics. Prerequisites:
PHYS 1061, 1062, 1091, 1092 or equivalent, PHYS 2331. Co-requisite: MATH 2013 or
equivalent.
PHYS 2331
Research Skills
3 ch (3C) [W]
Role within programme and connections to other courses. This course helps us to acquire skills
needed to do research. These include two different aspects: (1) how to deal with experimental
limitations (2) how to read and write scientific documents. The skills acquired in this course are
subsequently applied in other courses. In all future experimental work, we will treat
experimental limitations properly and fully. In all future courses involving reports, written work
will meet or exceed the standards established in the Research Skills course. The title of this
course emphasises the fact that the programme does more than fill us with physics facts. This is
also an opportunity to review other skills, which are developed by the programme (problem
solving strategies, approximation, presentation skills, index/abstract searching, etc.). All of these
skills are generally applicable in physics & beyond.
Content. Uncertainty analysis, Data processing and analysis, Reading and understanding
technical literature, Technical writing. Prerequisites: PHYS 1061, 1062, 1091, 1092 or
equivalent, MATH 1003, 1013 or equivalent. Co-requisite: MATH 2003 or equivalent.
PHYS 2341
Thermal Physics
3 ch (3C)
This course includes some experimental work that supports the lecture material.
Role within programme and connections to other courses. This course furnishes us with
classical thermodynamics and a little about properties of materials. We have heard that “energy
is conserved” and even have an appreciation of how important this principle is, but in first year
mechanics energy is often apparently “lost” when friction does work. Here, at last , we introduce
a complete formulation for energy conservation, comparing the work defined in first year with
heat as a means of energy transfer. We discuss transformations of energy in a variety of
processes, then go on to explain that not all of the energy is available for doing mechanical
work. The theoretical framework of classical thermodynamics is beautifully self-contained, but
this course also emphasises the link between the microscopic world of the kinetic theory
(drawing on Newtonian mechanics as it does so) and the macroscopic world of the everyday, in
preparation for the statistical thermodynamics to follow.
Content. Gases (ideal and real) and pressure, phases and phase diagrams, the state of a system,
what is energy?, heat and work, first, second and third laws of thermodynamics, entropy,
enthalpy and free energies, heat engines, refrigerators, heat pumps and efficiency, phase
transitions, introductory kinetic theory. Prerequisites: PHYS 1061, 1062, 1091, 1092 or
4|Page
2017 - 2018 Calendar Proof
equivalent, MATH 1003, 1013 or equivalent. Co-requisite: MATH 2003 or equivalent.
PHYS 2351
Quantum Physics
3 ch (3C)
This course includes some experimental work that supports the lecture material.
Role within programme and connections to other courses. This course lays the necessary
foundations for thinking about phenomena on very small spatial scales. This course calls on
many concepts learned in introductory physics: position, momentum, energy, angular
momentum, vibrations, waves. It casts many of them in a new light, at times requiring
modification of the classical definition of these quantities. Quantum Physics serves as the
foundation for the more in–depth learning of the tools of quantum mechanics presented in the
Quantum Mechanics trio of courses and the courses which follow from these. In addition,
Quantum Physics is essential background for the study of astrophysics and atmospheric physics.
Content. Particle properties of waves: blackbody radiation, photoelectric effect, Compton effect;
wave properties of particles: de Broglie waves, Davisson-Germer experiment, the uncertainty
principle; old atomic theory: atomic spectra, Rutherford’s model, Bohr’s model, spontaneous
and stimulated transitions, lasers; quantum mechanics: the Schrodinger equation, mathematical
tools; quantum mechanical examples: square wells and barriers, quantum tunnelling and its
applications; quantum theory of atoms. Prerequisites: PHYS 1061, 1062, 1091, 1092 or
equivalent, MATH 1003, 1013 or equivalent. Co-requisite: MATH 2003 or equivalent.
PHYS 2372
Waves
3 ch (3C)
This course includes some experimental work that supports the lecture material.
Role within programme and connections to other courses. Oscillations and waves are key
elements to understanding many subfields and applications of physics. Acoustics, optics and
electromagnetism (telecommunications) are obvious examples, but waves are also essential to
understanding quantum mechanics (the Schrödinger formalism), some atmospheric phenomena,
seismic phenomena and fluid mechanics.
Content. Waves, applications to optics and acoustics. Prerequisites: PHYS 2311, MATH 2003 or
equivalent. Co-requisite: MATH 2013 or equivalent.
PHYS 2603
Work Term Report I
CR
A written report on the scientific activities of the work term. A component of the grade will be
the employer’s evaluation of the student. (Students must have a GPA of 2.7 or better for PHYS
COOP placement.)
PHYS 2703
Physics Outreach & Education (O)
3 ch (3C) [W]
Role within programme and connections to other courses. This course is meant to help us
develop the skills needed to communicate with non-specialists concerning physics. Given that
most physics research is ultimately paid for by the public, it behooves physicists to
communicate effectively with those who are funding their work, for the benefit of both parties.
The goal of such communication is two-fold: (1) to insure that the general public is physics
literate and therefore able to enter into a discourse about the science, and (2) to insure that the
next generation of university students is exposed to physics in such a way that they can make an
informed choice about whether or not their academic and career paths should include physics.
Content. Topics may include: science journalism, science museums and exhibits, outreach to
5|Page
2017 - 2018 Calendar Proof
schools and other groups, physics education and physics education research. Prerequisites:
PHYS 1061, 1062, 1091, 1092 or equivalent.
PHYS 1803
Physics and Society (O)
3 ch (3C) [W]
This course aims to investigate the two way interaction between society and physics. The ideas
of physics have percolated into the collective consciousness both as scientific knowledge and as
cultural reference points and various new technologies can be identified as originating in physics
research. However, physics also has to deal with how it is perceived as a discipline and how
physicists are perceived as trustworthy authorities. Open to students in all faculties. No
mathematics beyond basic high school algebra and geometry is needed.
Content. Introduction to the philosophy of science and the scientific method, introduction to the
major scientific ideas that have shaped our society and the world.
PHYS 2902
Environmental Physics (O)
3 ch (3C)
Role within programme and connections to other courses. With the population of the planet
increasing and the natural resources decreasing, it is more important than ever to understand the
manner in which those resources can and are being used as well as the environmental impacts of
those uses. In addition, part of understanding those impacts is understanding how measurements
of impacts are made. By focussing on applications of physics to environmental matters, this
course contributes to the synthesis of concepts and models learned in other courses.
Content. The main focus of the course is on matters related to energy, its production, extraction,
distribution and use. Topics include hydroelectricity, solar power, nuclear power, fossil fuels,
etc. Prerequisite: PHYS 1061, 1071 or 1081.
PHYS 3322
Electromagnetism I
3 ch (3C)
Role within programme and connections to other courses. This course will be our first major
foray into the formalism of electromagnetic theory. A thorough examination of the nature of
vector fields and the forces they cause, and scalar fields along with their relationship to energy,
will form a connection to earlier discussions started in Mechanics I. The tools studied previously
in Intermediate Calculus (vector operations and calculus) and Methods of Theoretical Physics
(particularly special functions like Legendre polynomials and spherical harmonics, delta
functions, and tensor analysis) will play a significant role here.
Content. Interactions between point charges, the nature and calculation of the electric and
magnetic fields, the distribution of electric and magnetic fields in space (flux, Gauss’ law,
Ampère’s law), reactions of charges and dipoles to applied fields, electrostatic scalar potential
and magnetic vector potential, elementary gauge theory, energy storage in static electric and
magnetic fields, elementary treatment of fields in materials, fields across boundaries, time
dependence of electromagnetic fields, displacement current, the final form of Maxwell’s
equations, electromagnetic waves. Prerequisites: PHYS 2311, 3331, MATH 2013 or equivalent.
PHYS 3331
Methods of Theoretical Physics.
4 ch (3C 1T*)
Role within programme and connections to other courses. In the course of an undergraduate
physics programme we employ a variety of theoretical techniques. This course exposes us to
theoretical ideas that are widely applicable in electromagnetism, quantum mechanics, classical
mechanics and relativity. Special emphasis will be placed on demonstrating the general nature of
6|Page
2017 - 2018 Calendar Proof
the topics considered.
Content. Non-orthogonal, non-normalised bases, tensors, special functions (general solutions to
second order differential equations) and expansions in special functions, integral transforms
(Fourier, z-transform, Laplace transform). Prerequisite: MATH 2213 or equivalent, approved
second year physics.
PHYS 3912
Special Relativity (A)
3 ch (3L)
Role within programme and connections to other courses. The Special Theory of Relativity is
one of the foundations of modern physics. It underlies our understanding of particle physics and
gravitation. This course builds beyond the introduction begun in the Physics course Mechanics I.
It is recommended for all physics and mathematics students who wish to pursue the study of
particles, fields and gravitation. Content. The course provides an introduction to the physical
principles (Lorentz invariance, constancy of the speed of light, equivalence of mass and energy)
and the mathematical underpinnings (Minkowski spacetime, tensors) of the theory of special
relativity. This course is cross listed MATH 3463. Credit cannot be obtained for both MATH
3463 and PHYS 3912.
Pre requisite: MATH 2003, PHYS 1062 or equivalent, or permission of the instructor.
Co requisite: MATH 2013, PHYS 2311.
PHYS 4332
Computational Physics
3 ch (3C)
Role within programme and connections to other courses.
This is a capstone course to demonstrate the use of numerical and simulation techniques in a
range of situations taken from across the programme. For instance, numerical solutions to
differential equations might be used to look at some examples of chaotic behaviour or MonteCarlo simulations might be used to look at percolative mass transport problems. Computational
techniques have great importance in the modern physical sciences to the extent that some have
described it as of equal importance to experimental and theoretical physics (although
computational physics may also be considered to have elements of both theoretical and
experimental physics, of course). The skills acquired in this course can subsequently be applied
in other advanced courses, in particular the Advanced Research Project.
Content. Numerical techniques, modelling techniques. Prerequisites: CS 1003 or equivalent,
approved second year physics and mathematics, CS 3113 or equivalent.
PHYS 3336
Experimental Physics I
3 ch (3L)
Role within programme and connections to other courses. Various courses contain experiments
that are directly related to the material addressed in the lectures, however, in the interest of
promoting an understanding of connectivities (avoiding compartmentalisation) and refining
research skills, this synthesis course will contain a variety of experiments, many of which
integrate concepts learned in diverse courses.
Content. The experiments include topics in mechanics, electromagnetism, quantum physics,
thermal physics and optics. Prerequisite: PHYS 2331.
PHYS 3338
7|Page
Independent Study
3 ch (3R)
2017 - 2018 Calendar Proof
Role within programme and connections to other courses. Every physics honours student is
required to complete one independent study course, to allow the development of critical reading
and thinking skills. This course shall be taken no sooner than the beginning of his/her third year
and no later than the penultimate term of his/her degree (i.e. the student must know a sufficient
amount of physics to allow for a challenging independent study course, and the student should
complete this course before working on his/her Advanced Research Project so that the skills
developed during the independent study course are of use during the thesis project).
Content. The student will choose among the list of topics for which supervision has been offered
or can choose some other topic of interest if (s)he can convince a faculty member to supervise
the course. Prerequisites: approved 2000-level or 3000-level courses.
PHYS 3342
Statistical Physics
3 ch (3C)
Role within programme and connections to other courses. This course builds from the bottom
up (molecules → continuous phases) what Thermal Physics describes from the top down
(macroscopic properties → kinetic theory). We reinforce the idea (from Quantum Physics and
Quantum Mechanics I) that our macroscopic observations can be based on underlying
probabilities, rather than strict determinism.
Content. The ensemble basis for basic statistics, equilibrium between interacting systems, the
Laws of Thermodynamics (from a microscopic standpoint), classical and quantum statistical
distributions, applications of Maxwell-Boltzmann statistics, kinetic theory of gases revisited,
applications of quantum statistics. Prerequisite: PHYS 2341.
PHYS 3351
Quantum Mechanics I
4 ch (3C 1T*)
Role within programme and connections to other courses. The need for and qualities of quantum
mechanics have been clearly established in Quantum Physics. This course begins to put quantum
mechanics on a formal footing. The approach in QM I is expected to include both wave and
matrix techniques.
Content. Mathematical structure of quantum mechanics, Hilbert space, operator algebra;
postulates of quantum mechanics, symmetries and conservations; quantum dynamics; general
theory of angular momentum, coupling of angular momenta, irreducible tensor operators,
Wigner-Eckart theorem; analytical solution of the hydrogen atom; identical particles: spin and
statistics, the Pauli exclusion principle and many electron atoms. Prerequisites: PHYS 2351,
approved second year mathematics. Co-requisite: PHYS 3331.
PHYS 3603
Work Term Report II
CR
A written report on the scientific activities of the work term. A component of the grade will be
the employer’s evaluation of the student. (Students must have a GPA of 2.7 or better for PHYS
COOP placement.) Prerequisite: Work Term Report I in a field of science.
PHYS 3752
Atomic and Molecular Physics (O)
3 ch (3C)
Role within programme and connections to other courses. For an undergraduate student, atomic
and molecular physics is one of the most fundamental applications of quantum mechanics in the
8|Page
2017 - 2018 Calendar Proof
curriculum. The course provides a firm grounding in quantum angular momentum theory,
including spin and angular momentum coupling, and makes extensive use of the matrix
approach to quantum physics calculations. The course is linked to all courses in the quantum
mechanics stream, and to optics.
Content. Quantum angular momentum concepts, including orbital angular momentum, spin, and
angular momentum coupling, the hydrogen atom, including spin-orbit and hyperfine
interactions, methods and approaches to multi-electron atoms, topics in molecular physics,
including development of the Hamiltonian, the Born-Oppenheimer approximation, and the
structure of molecular spectra. Usually offered on rotation with Subatomic Physics and Solid
State Physics. Prerequisite: PHYS 3351.
PHYS 3852
Subatomic Physics (O)
3 ch (3C)
Role within programme and connections to other courses. The study of nuclear and particle
physics draws mainly on quantum physics but, due to the semi-empirical nature of many of the
nuclear models used, it also draws heavily on basic electromagnetism and other branches of
physics. An understanding of nuclear physics is essential for work related to radiation therapy,
in the nuclear energy sector, and in some branches of astrophysics. As for particle physics, as
well as being a field in its own right, it has become inextricably linked to research in cosmology.
Content. Some overlap of topics with environmental physics and medical physics is to be
expected, but the approach and depth will differ greatly. Exact content will be at the instructor’s
discretion allowing the course to focus sometimes more on applications of nuclear physics,
sometimes more on particle physics, etc. Usually offered on rotation with Atomic & Molecular
Physics and Solid State Physics. Prerequisite: PHYS 3351.
PHYS 3883
Atmospheric Physics (A)
3 ch (3C)
Role within programme and connections to other courses. Atmospheric events and processes
have an impact on and are impacted by human activity, making atmospheric physics a topic of
great societal relevance. The study of the atmosphere requires consideration of a wide range of
spatial scales — from radiation transfer at the atomic level to phenomena on the global level —
and a wide range of time scales — from seconds to centuries. Making headway requires an
understanding of what processes can and cannot be ignored depending on the scales under
consideration. In addition to providing an introduction to the field of atmospheric physics, this
course contributes toward the overall goal of the physics programme by calling on us to combine
knowledge from a variety of subfields of physics. Knowledge acquired in thermal
physics, in mechanics and in quantum physics (blackbody radiation, spectral lines) must be
brought together to develop an understanding of basic atmospheric physics.
Content. Structure of the atmosphere, the global energy balance, atmospheric thermodynamics,
physics of weather patterns, observational techniques and instrumentation. Usually alternates
with Astrophysics. Prerequisites: PHYS 2312, 2341, 2351.
PHYS 3892
Medical Physics (A)
3 ch (3C)
Role within programme and connections to other courses. This course introduces our students to
a field where there are many opportunities for stimulating and satisfying careers. Medical
physics is an application of physics to the particular — and particularly complex — system
which is the human body. This course requires an integration of concepts from optics, quantum
9|Page
2017 - 2018 Calendar Proof
physics, nuclear physics, electromagnetism, mathematics, etc.
Content. Radiation therapy, medical imaging. Usually alternates with Biophysics. Prerequisite:
PHYS 2351.
PHYS 3911
Mechanics III (O)
3 ch (3C)
Role within programme and connections to other courses. This third, elective mechanics course
can afford to take a more philosophical approach to Hamiltonian mechanics, while Mechanics II
will, of necessity, be more pragmatic. In addition, our tools can now be used in a variety of very
sophisticated circumstances.
Content. Topics might include Hamiltonian mechanics with greater reach, canonical
transformations, Hamilton-Jacobi theory, action-angle variables, collision theory, non-linear
mechanics and chaos, continuum mechanics (Lagrangian and Hamiltonian formulations, in
contrast to the Continuum and Fluid Mechanics course). Prerequisite: PHYS 2312.
PHYS 3952
Solid State Physics (O)
3 ch (3C)
Role within programme and connections to other courses. Solid state physics, also referred to as
condensed matter physics, is the study of matter in which a large number of atoms (1023 cm−3)
are bound together, forming a dense solid aggregate. It is a fundamental field of physics that
leads to such areas and topics as material science, nanotechnology, and superconductivity. In
this course, the student will study the structure of solids and how this structure affects such
things as their mechanical properties, their thermal properties, and their electronic properties.
This course builds on concepts introduced in thermodynamics and statistical physics, as well as
quantum mechanics, with links to electromagnetism (e.g. van der Waals forces).
Content. Lattice structure and dynamics, electron kinetics and dynamics, applications (e.g.
semiconductors, superconductors, magnetic resonance). Usually offered on rotation with Atomic
& Molecular Physics and Subatomic Physics. Prerequisites: PHYS 3351, 3342.
PHYS 3983
Astrophysics (A)
3 ch (3C)
Role within programme and connections to other courses. In addition to providing an
introduction to the field of astrophysics, this course contributes toward the overall goal of the
physics programme by calling on us to combine knowledge from a variety of subfields of
physics. Knowledge acquired in introductory physics (conservation principles, forces, optics)
and in quantum physics (blackbody radiation, spectral lines) must be brought together to
develop an understanding of basic astrophysics. In addition, elements of statistical physics will
be introduced as required.
Content. Observational tools (telescopes and detectors), stars: properties, formation, and
evolution, galaxies: structure and evolution, large-scale structure and cosmology. Usually
alternates with Atmospheric Physics. Prerequisite: PHYS 2351 or permission of the instructor
(some combinations of engineering courses may be suitable preparation for Astrophysics).
PHYS 3993
Biophysics (A)
3 ch (3C)
Role within programme and connections to other courses. The study of biophysics offers a new
perspective on physics through application to the biological sciences. It involves the integration
of diverse concepts seen in introductory physics as well as elements of thermodynamics and
fluid physics. It highlights the usefulness of physical thinking and a physicist’s perspective in
the study of biological phenomena.
10 | P a g e
2017 - 2018 Calendar Proof
Content. Biomechanics, the optics of vision, sound, hearing & echolocation, fluids in motion,
the thermodynamics of life, physics at the cellular level, electricity and magnetism in biological
systems. Usually alternates with Medical Physics. Prerequisites: PHYS 1061, 1062, 1091, 1092
or equivalent plus MATH 1003 or 1053, 1013 or 1063, BIOL 1001, 1012.
PHYS 4321
Electromagnetism II
4 ch (3C, 1T*)
Role within programme and connections to other courses. This second course on the formalism
of electricity and magnetism extends the material from Electromagnetism I, and adds
mathematical rigour and sophistication to our toolbox of techniques for electromagnetic
problems. Heavier use of the ideas from Methods of Theoretical Physics is made, including
Fourier methods and spherical harmonics. At the culmination of this course, we will have been
exposed to all of the core ideas in E/M theory except for relativity. The latter and applications
will follow in Electromagnetism III.
Content. Fields in materials (D and H), polarization and magnetization vectors, polarizability
and susceptibility tensors, types of magnetization, gauge theory, and its uses in solution of
electromagnetic problems, conservation laws in electromagnetic theory, Poynting’s theorem, the
Maxwell stress-energy tensor, the Lagrangian for a charged particle in an electromagnetic field,
radiation from accelerated charges, retardation effects, generation and propagation of E/M
waves, the breakdown of classical electromagnetic theory. Prerequisites: PHYS 2311, PHYS
3322, PHYS 3331.
PHYS 4338
Advanced Research Project
8 ch [W]
All physics honours students are required to complete a research project, under the supervision
of a member of the department. Honours students in an interdepartmental program with physics
may choose to complete their honours project in physics. Non-honours students may complete a
research project as an elective. The Advanced Resarch Project course includes a formal written
report and an oral defense, both of which are assessed by committee. Prerequisites: PHYS 3336,
PHYS 3338, permission of the department.
PHYS 4351
Quantum Mechanics II
4 ch (3C, 1T*)
Role within programme and connections to other courses. The second QM course is not
required for the majors programme, but furnishes our honours students with a range of tools
allowing them to move beyond hydrogen-like atoms and to explore the applications of quantum
mechanics.
Contents. Time independent perturbation theory, non-degenerate and degenerate cases, the Stark
effect, fine structure, the Zeeman effect; the variational method, helium atom; the WKB method;
time-dependent perturbation theory, Fermi’s golden rule, harmonic perturbation, the adiabatic
approximation, the Berry phase; a charged particle in EM field, gauge transformation, Landau
levels, the Aharonov-Bohm effect; scattering theory: the Lippmann-Schwinger equation, optical
theorem, partial wave expansion, phase shifts, effective range expansion, resonances, scattering
between identical particles, Coulomb scattering. Prerequisite: PHYS 3351.
PHYS 4371
Optics
3 ch (3C)
This course includes some experiments that support the lecture material.
Role within programme and connections to other courses.
Optics is both a field of research in its own right and a topic the tools of which are used by many
11 | P a g e
2017 - 2018 Calendar Proof
other branches of physics. This course builds on the basic concepts of wave optics introduced in
Waves. It also provides a brief introduction to some concepts of photonics, the quantum
treatment of light.
Contents. Advanced geometrical optics (e.g. the transition between geometrical and physical
optics, the thick lens, Jones’ matrices), Fourier optics. Prerequisite: PHYS 2372.
PHYS 4603
Work Term Report III
CR
A written report on the scientific activities of the work term. A component of the grade will be
the employer’s evaluation of the student. (Students must have a GPA of 2.7 or better for PHYS
COOP placement.) Prerequisite: Work Term Report II in a field of science.
PHYS 4722
Signal & Image Processing (A)
3 ch (3C)
Role within programme and connections to other courses. Many physics career paths involve
signal and image processing of some kind, e.g. seismic data processing, medical imaging,
remote sensing (defense, forestry, mining), observational astrophysics, etc. As a result,
understanding the possibilities and limitations of various data analysis techniques is a valuable
asset for any physics graduate.
Content. This course uses data from a variety of applications to illustrate the wide range of
applicability of the tools discussed. Usually alternates with Advanced Electronics. Prerequisite:
PHYS 3331
PHYS 4823
Advanced Electronics (A)
3 ch (3C)
Role within programme and connections to other courses. The world of experimental physics is
an electrifying blend of theory and hands-on measurements which relies heavily on a wide array
of complex electronic devices. This course builds on Circuits & Elementary Electronics and
introduces electronics and instrumentation we encounter through a physics career. The
requirement to design and build electronic equipment, to integrate and control multiple
components, and to efficiently operate complex instrumentation is fundamental to experimental
physics. The goal of this course is to furnish the tools we need to meet these challenges. It
includes topics in electronic design, interfacing and control, sensors and detectors, and data
acquisition.
Content. Multi-component design, amplifiers, filters, PCB design, integrated circuits, digital
logic and programmable devices, radio frequency design, interfacing and control, transducers,
detectors and receivers, solid state sensors. Usually alternates with Signal & Image Processing.
Prerequisite: PHYS 2327.
PHYS 4838
Research Project
4 ch [W]
A one-term research project, supervised by a member of the department, assessed on the basis of
the research work carried out and a report. Note that no defence is involved (in contrast to the
Advanced Research Project). Prerequisite: PHYS 3336.
PHYS 4872
Plasma Physics (A)
3 ch (3C)
Role within programme and connections to other courses. Plasmas are sometimes referred to as
the fourth state of matter. In a plasma, charge separation between electrons and ions gives rise to
12 | P a g e
2017 - 2018 Calendar Proof
electric fields, and the movements of these charged particles result in currents and magnetic
fields. Understanding the behaviour of plasmas involves mechanics, electromagnetism, and
thermodynamics, and thus a plasma physics course contributes toward the overall goal of the
physics programme by calling on us to combine knowledge from a variety of subfields of
physics. Plasmas are found in many branches of physics (e.g. particle physics, condensed matter,
astrophysics) and so the knowledge gained in this course will be of great value in many fields.
Content. Single particle motion, trajectories and drift, plasmas as fluids (electron fluid and ion
fluid, single fluid magnetohydrodynamics), waves in a fluid plasma. Usually alternates with
Continuum & Fluid Mechanics. Prerequisites: PHYS 2341, 2372, 4321.
PHYS 4922
Electromagnetism III
3 ch (3C)
Role within programme and connections to other courses. This course pursues high level
extension and application of electromagnetic theory. It connects to and extends relativistic
mechanics (started in Mechanics I), and illuminates ideas from atomic/molecular physics,
plasma physics and other fields.
Content. Magnetohydrodynamics, relativistic four-vectors and four-tensors, force and
Minkowski force, covariant formulation of E/M fields, an E/M perspective on quantum field
theory. Prerequisites: PHYS 4321, 3351.
PHYS 4933
Special Topics in Physics
3 ch (3C)
This “course” is included in order to allow for ad hoc courses that might be offered only once.
For instance, a visiting professor may have some expertise that s/he could share with the
Department, or the student body may request a course about a particular topic that intrigues
them. Prerequisite: permission of the department.
PHYS 4938
Experimental Physics II (O)
3 ch (3L)
Role within programme and connections to other courses. Various courses will contain
experiments that are directly related to the material addressed in the lectures, however, in the
interest of promoting an understanding of connectivities (avoiding compartmentalisation) and
refining research skills, this synthesis course will contain a variety of experiments, many of
which integrate concepts learned in diverse courses.
Content. The experiments will cover a wide variety of topics. Prerequisites: PHYS 3336
PHYS 4953
Introduction to Quantum Field Theory
3ch (3C)
Content. Relativistic quantum mechanics. The negative energy problem. Classical field theory,
symmetries and Noether's theorem. Free field theory and Fock space quantization. The
interacting field: LSZ reduction formula, Wick's theorem, Green's functions, and Feynman
diagrams. Introduction to Quantum electrodynamics and renormalization. This course is crosslisted as MATH 4443. Credit cannot be obtained for both Math 4443 and PHYS 4953.
Prerequisites: MATH 3003, PHYS 3351, MATH 3463/PHYS 3912 and one of MATH 3043,
3503, PHYS 2312, 3331, or permission of instructor.
PHYS 4972
Continuum & Fluid Mechanics (A)
3 ch (3C)
Role within programme and connections to other courses. The emphasis of this course will be
on how what we know of Newtonian mechanics is carried over into a continuum. This approach
helps to emphasise that the tools and knowledge we have already developed can be used to great
13 | P a g e
2017 - 2018 Calendar Proof
effect in new situations. In addition to the portability of physical concepts, we will also be able
to see some generally useful mathematical tools in a new context (vector calculus in velocity
fields being a key example).
Content. Volume and surface forces, stress and strain, Hooke’s Law, equation of motion for an
elastic solid, longitudinal and transverse waves in a solid, fluid properties, fluid motion. Usually
alternates with Plasma Physics. Prerequisites: PHYS 2312, 3331.
PHYS 4983
Introduction to General Relativity (A)
3 ch (3C)
Role within programme and connections to other courses. Along with quantum theory, general
relativity is one of the central pillars of modern theoretical physics with wide-ranging
implications for astrophysics and high energy physics. The essential idea is that gravitation is a
manifestation of the curvature of spacetime rather than a force in the Newtonian sense. This
course will provide students with a basic working understanding of general relativity and an
introduction to important applications such as black holes and cosmology.
Content. Review and geometric interpretation of special relativity; foundations of general
relativity; linearized gravity and classical tests; black holes; cosmology. This course is crosslisted as MATH 4483. Credit cannot be obtained for both MATH 4483 and PHYS 4983.
Prerequisites: MATH 3463/PHYS 3912, MATH 4473 or permission of instructor.
PHYS 5993
Magnetic Resonance Imaging (O)
3 ch (3C)
Role within programme and connections to other courses. This advanced course draws upon
electromagnetism, quantum mechanics and statistical thermodynamics to provide a capstone
topic tied to the department’s research interests.
Content. Principles of Magnetic Resonance Imaging, survey of imaging techniques, modern
applications of MRI in medicine, biology and materials science. Prerequisite: permission of the
instructor.
PHYS 5952
Quantum Mechanics III (O)
4 ch (3C 1T*)
Role within programme and connections to other courses. This advanced quantum mechanics
course introduces relativistic quantum mechanics and a variety of modern applications of
quantum mechanics.
Content. Relativistic quantum mechanics: the Klein-Gordon equation, Lorentz transformation,
the Dirac equation, the Dirac solution of the hydrogen atom; quantum theory of radiation:
radiation-matter interaction, decays, absorption, stimulated emission, scattering of photons by
atoms, the Casimir effect; path integral formulation; quantum entanglement, the EPR paradox,
dense coding, quantum teleportation, the Bell inequality. Prerequisite: PHYS 4351.
14 | P a g e