Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
APPENDIX 6 Electronegativity: A Quick Reference for the Biology Student Electronegativity and the Periodic Table of the Elements Electronegativity and Chemical Bonds Chemist Linus Pauling, winner of the Nobel prize, first defined the concept of electronegativity in the 1930s. The electronegativity of an element is a measure of its ability to attract electrons in a bond. This chemical property is relevant only to bonding between atoms, not to individual atoms. Pauling created a quantitative scale of the electronegativity values of the elements listed in the periodic table. In general, electronegativity increases from left to right along each row (period) of the periodic table. Electronegativity also tends to increase from the bottom to the top of each column (group). Fluorine has the highest electronegativity value (4.0), so fluorine is said to be the most electronegative element. Francium and cesium each have the lowest electronegativity value (0.7), so they are the least electronegative elements. The following table lists the electronegativity values of some biologically important elements. Two atoms of the same element have the same electronegativity, or the same ability to attract electrons in a bond. Therefore, if two atoms of the same element form a bond, as in a molecule of hydrogen (H2 ), oxygen (O2 ), or nitrogen (N2 ), the bonding electrons are equally shared between the atoms. A bond in which electrons are shared between atoms is called a covalent bond. If the electrons are equally shared, the bond is said to be non-polar covalent. If a covalent bond is formed between atoms of two different elements, such as hydrogen and chlorine in hydrogen chloride (HCl), the electronegativities of the elements determine how the bonding electrons are distributed. Because the electronegativities are different, the bonding electrons are shared unequally. A covalent bond in which electrons are shared unequally is called a polar covalent bond. As shown in Table A6.1, chlorine is more electronegative than hydrogen, so chlorine has the stronger attraction for the bonding electrons in a hydrogen chloride molecule. For this reason, the chlorine atom becomes slightly negative, and the hydrogen atom becomes slightly positive. The slightly charged ends of the bond are known as poles. Because two poles are present, the bond is said to have a dipole. The slightly positive and negative ends of the polar covalent bond can be represented using the symbols δ+ and δ−, as shown in Figure A6.1. Table A6.1 Electronegativity values of some biologically important elements Symbol Electronegativity potassium K 0.8 sodium Na 0.9 calcium Ca 1.0 iron Fe 1.8 hydrogen H 2.1 phosphorus P 2.2 carbon C 2.5 sulfur S 2.6 chlorine CI 3.0 nitrogen N 3.0 oxygen O 3.5 Element δ+ δ− H Cl Figure A6.1 The bond between hydrogen and chlorine in a hydrogen chloride molecule is polar covalent. If two elements form a covalent bond, the difference between their electronegativities determines how polar the bond is. Table A6.1 shows that the electronegativity difference between carbon and oxygen is 1.0, whereas the Appendix 6 • MHR 563 electronegativity difference between carbon and hydrogen is 0.4. Therefore, the sharing of electrons is more unequal between carbon and oxygen than between carbon and hydrogen. In other words, a carbon–oxygen bond is more polar than a carbon–hydrogen bond. When two elements have very different electronegativities, the bonds the elements form can be described in terms of electron transfers, rather than electron sharing. For example, sodium and chlorine have an electronegativity difference of 2.1. When these elements react, electrons are transferred from sodium atoms to chlorine atoms to form positively charged sodium ions (Na+ ) and negatively charged chloride ions (Cl−). These ions attract each other. Bonds created by the transfer of electrons from one type of atom to another are called ionic bonds. There is no sharp distinction between polar covalent bonds and ionic bonds. The greater the difference in the electronegativities of two bonded atoms, the more polar is the bond between them. When sharing is very unequal, chemists describe the electrons as being transferred from one atom to the other. For convenience, chemists have chosen an approximate value of the electronegativity difference that distinguishes polar covalent bonds from ionic bonds. In general, if the electronegativity difference equals or exceeds 1.7, the elements will tend to form ionic bonds. If the electronegativity difference is less than 1.7, the elements will tend to form covalent bonds. If the electronegativity difference is greater than 0 but less than 1.7, the bonds will be polar covalent. Strictly speaking, bonds are non-polar covalent only if the electronegativity difference is exactly 0, that is, if two atoms of the same element form a bond. However, when the electronegativity difference is less than 0.5 (for example, 0.4 for C and H), the electrons are shared almost equally, and the bond dipole is weak. The electronegativity of carbon is 2.5, which is very close to the middle of the range of electronegativity values, from 0.7 to 4.0. Carbon can, therefore, form covalent bonds with elements that are more electronegative, such as oxygen, and with elements that are less electronegative, such as hydrogen. Carbon atoms are also able to form covalent bonds with 564 MHR • Appendix 6 other carbon atoms to produce a wide range of compounds that contain chains or rings of carbon atoms. Molecular Polarity You learned earlier that the bond in a hydrogen chloride molecule (HCl) is polar covalent. Because the bond is polar, and there is only one bond in the molecule, the whole molecule is also polar. However, most covalent molecules contain more than two atoms and more than one bond. In such cases, the polarity of a molecule depends on the polarity of the individual bonds and on the overall shape of the molecule. Two examples that show the importance of molecular shapes are carbon dioxide (CO2 ) and water (H2O). In a carbon dioxide molecule, the two highly electronegative oxygen atoms form double bonds to a less electronegative carbon atom, as shown in Figure A6.2. The carbon–oxygen bonds are polar covalent. The shape of the molecule is straight or linear. As a result, the two dipoles counterbalance each other, and the molecule has no net dipole. Thus, even though a carbon dioxide molecule contains polar bonds, the molecule is non-polar. δ−δ+δ+ δ− O C O Figure A6.2 A linear carbon dioxide molecule contains polar covalent bonds, but the molecule is non-polar. In a water molecule, one highly electronegative oxygen atom forms single bonds to two less electronegative hydrogen atoms, as shown in Figure A6.3. The hydrogen– oxygen bonds are polar covalent. In contrast to the linear carbon dioxide molecule, a water molecule is V-shaped or bent. As a result, the two dipoles do not counterbalance each other, and the molecule has a net dipole. Thus, a water molecule contains polar bonds, and the molecule is polar. δ−δ− O δ+ δ+ H H Figure A6.3 Because a water molecule is bent and contains polar covalent bonds, the molecule is polar. Hydrocarbons, which are composed of carbon and hydrogen, are an important class of compounds in organic chemistry and biology. Hydrocarbon molecules, some of which contain large numbers of atoms, include carbon–hydrogen bonds that are slightly polar. However, because of the shapes of hydrocarbon molecules, these molecules are either non-polar or very low in polarity. Some Biological Applications The presence or absence of dipoles can have a great effect on the physical and chemical properties of covalent molecules. Therefore, an understanding of dipoles is very important in explaining many biological processes. Some examples of how electronegativity is important in biological processes are given below. Functional Groups Some important functional groups are listed in Figure 1.24 in section 1.4. All of the functional groups listed contain covalent bonds between elements with different electronegativities, so the functional groups contain polar covalent bonds. The presence of these polar bonds in biological molecules influences the physical interactions of the molecules and their chemical properties. A hydroxyl group (−OH) contains a single covalent bond between a highly electronegative oxygen atom and a less electronegative hydrogen atom. As in a water molecule, the oxygen atom is at the slightly negative end of the dipole, and hydrogen is at the slightly positive end. Hydroxyl groups can attract some ions and polar molecules in a type of interaction called a hydrogen bond, which will be described below. In a carbonyl group, highly electronegative oxygen forms a double bond with less electronegative carbon. Because the carbon atom is at the more positive end of the dipole, the carbon atom tends to react with substances that are electron donors. The oxygen atom at the more negative end of the dipole tends to react with substances that are electron acceptors. A carboxyl group contains both a carbonyl group and a hydroxyl group connected together. Because a carboxyl group contains two highly electronegative oxygen atoms, the positive charge on the hydrogen atom is larger than in a hydroxyl group alone. In fact, carboxyl groups partially dissociate to form hydrogen ions (H+ ). Therefore, carboxyl groups are present in organic acids, such as amino acids. An amino acid molecule also contains an amino group (−NH2). In this functional group, the nitrogen atom is at the slightly negative end of each nitrogen–hydrogen dipole. The nitrogen atom can act as an electron donor, for example to a hydrogen ion. Thus, an amino acid contains a functional group (a carboxyl group) that can release hydrogen ions and another functional group (an amino group) that can react with them. Hydrogen Bonds When hydrogen atoms are bonded to small, highly electronegative atoms, such as oxygen, a weak force of attraction can exist between molecules. This force is known as a hydrogen bond. A hydrogen bond can be formed when a negative ion (such as Cl−), or a slightly negative atom in a dipole (such as the oxygen in an −OH group) attracts a slightly positive hydrogen atom in another dipole. Therefore, water molecules form hydrogen bonds with each other, as shown in Figure A6.4. Hydrogen bonds are only about one-twentieth as strong as covalent bonds, but hydrogen bonds have important effects on the physical and chemical behaviour of many molecules in biological systems. δ− hydrogen bond δ+ H O H Figure A6.4 Hydrogen bonds exist between water molecules and account for many of the physical and chemical properties of water. The hydrogen bonds between water molecules make water an ideal medium for life processes on Earth. Scientists believe that if there were no hydrogen bonds present, then water would be a gas, not a liquid, under the conditions in which we live. The polarity of water molecules, and their ability to form hydrogen bonds, explains Appendix 6 • MHR 565 the fact that water can act as a solvent for so many substances in living and non-living systems. When ionic and polar substances dissolve in water, they may form hydrogen bonds to water molecules. Hydrogen bonds can also bind the components of complex biological substances, such as the chains of nucleic acids that make up a DNA molecule. These two long intertwined chains are held to each other by thousands of hydrogen bonds. Proteins, such as enzymes, also require hydrogen bonding to maintain their shapes and their functions. + Energy for synthesis of 2e− ATP ort nsp tra in cha MHR • Appendix 6 2H+ on ctr 566 2H (from food) Ele Aerobic Cellular Respiration Aerobic cellular respiration involves the breakdown of glucose molecules (food) to form energy-rich molecules called ATP, adenosine triphosphate. Molecules of ATP are used to fuel many other chemical reactions in cells. ATP molecules are formed in several systems in aerobic cellular respiration. The system that produces the most ATP is called the electron transport chain (see Figure A6.5). In the electron transport chain, electrons (e−) flow along the chain from one protein molecule to another. As electrons move along the chain, they release energy. This energy is used to make ATP molecules. Once electrons reach the end of the chain, however, they need to be removed from the system. Removal of the electrons is necessary in order to allow new electrons to enter at the start of the chain. The element that accepts the electrons at the end of the electron transport chain is oxygen. As you have learned, oxygen is one of the most electronegative elements in the periodic table. Oxygen accepts the electrons and combines with hydrogen ions (H+ ), obtained from the breakdown of glucose, to form water molecules. Without oxygen to accept the electrons, the electron transport chain could not function and, as a result, could not produce ATP molecules. This is why oxygen is so important in cellular processes. 2e− 1 O 2 2 + 2H H2O Figure A6.5 The electron transport chain