* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Ch. 4 lecture power point
Biogeography wikipedia , lookup
Unified neutral theory of biodiversity wikipedia , lookup
Introduced species wikipedia , lookup
Island restoration wikipedia , lookup
Molecular ecology wikipedia , lookup
Habitat conservation wikipedia , lookup
Biodiversity action plan wikipedia , lookup
Latitudinal gradients in species diversity wikipedia , lookup
Storage effect wikipedia , lookup
Occupancy–abundance relationship wikipedia , lookup
Ecological fitting wikipedia , lookup
Chapter 4 Ecosystems and Living Organisms Overview of Chapter 4 o Evolution • • o Biological Communities • o o o o Primary & Secondary Succession Symbiosis • o Natural Selection Domains and Kingdoms Mutualism, Commensalism, Parasitism Predation & Competition Resource Partitioning Keystone Species Species Richness & Community Stability Evolution o The cumulative genetic changes that occur in a population of organisms over time • • o Current theories were proposed by Charles Darwin, a 19th century naturalist Evolution occurs through natural selection Natural Selection • • Individuals with more favorable genetic traits are more likely to survive and reproduce Frequency of favorable traits increase in subsequent generations Natural Selection o Based on four observations about the natural world 1. Overproduction • 2. Variation • 3. Individuals in a population exhibit variation Limits on Population Growth • 4. Each species produces more offspring than will survive to maturity Resource limitations will keep population in check Differential Reproductive Success • Individuals with most favorable traits are more likely to reproduce Natural Selection o Darwin’s finches exemplified the variation associated with natural selection Domains and Kingdoms of Life Biological Communities o Communities vary greatly in size and lack precise boundaries • They are often nestled within each other Succession o o The process where a community develops slowly through a series of species Earlier species alter the environment in some way to make it more habitable by other species • o As more species arrive, the earlier species are outcompeted and replaced Two types of succession • • Primary succession Secondary succession Primary Succession o Succession that begins in a previously uninhabited environment • • o No soil is present! Ex: bare rocks, cooled lava fields, etc. General Succession Pattern • Lichen secrete acids that crumble the rock (soil begins to form) Lichen mosses grasses shrubs forests 1 3 2 o Primary Succession 1. 2. 3. Bare rock with lichen Grasses and shrubs Forest community Secondary Succession o Succession that begins in an environment following destruction of all or part of the earlier community • o Does NOT follow primary succession! • o Ex: abandoned farmland, open area after fire Even though name may imply this Generally occurs more rapidly than primary succession Secondary Succession of an abandoned farm field in North Carolina Interactions Among Organisms o Symbiosis • • • o An intimate relationship between members of 2 or more species Participants may be benefited, harmed or unaffected by the relationship Results of coevolution Three types of symbiosis • • • Mutualism Commensalism Parasitism Mutualism o o Symbiotic relationship in which both members benefit Ex: Mycorrihzal fungi and plant roots • • Fungus grows around and into roots providing roots with otherwise unavailable nitrogen from soil Roots provide fungi with food produced by photosynthesis in the plant Left: root growth without fungi Right: root growth with fungi Commensalism o o Symbiotic relationship where one species benefits and the other is neither harmed nor helped Ex: epiphytes and tropical trees • • Epiphytes anchors itself to the tree, but does not take nutrients from the tree Epiphyte benefits from getting closer to sunlight, tropical tree is not affected Parasitism o Symbiotic relationship in which one species is benefited and the other is harmed • o Parasites rarely kill their hosts Ex: Varroa mites and honeybees • Mites live in the breathing tubes of the bees, sucking their blood and weakening them Predation o o The consumption of one species by another Many predator-prey interactions • o Most common is pursuit and ambush Plants and animals have established specific defenses against predation through evolution Pursuit and Ambush o Pursuing prey simply means chasing it down and catching it • o Ex: Day gecko and spider (see picture) Ambush is when predators catch prey unaware • • Camouflage Attract prey with colors or light Plant Defenses Against Predation o o Plants cannot flee predators Adaptations • • Spikes, thorns, leathery leaves, thick wax Protective chemicals that are poisonous or unpalatable Animal Defenses Against Predation o o Fleeing or running Mechanical defenses • o o o Ex: quills of porcupines, shell of turtles Living in groups Camouflage Chemical defensespoisons • Ex: brightly colored poison arrow frog Competition o o Interaction among organisms that vie for the same resource in an ecosystem Intraspecific • o Competition between individuals in a population Interspecific • Competition between individuals in 2 different species Ecological Niche o o The totality of an organisms adaptations, its use of resources, and the lifestyle to which it is fitted Takes into account all aspect of an organisms existence • • • Physical, chemical, biological factors needed to survive Habitat Abiotic components of the environment • Ex: Light, temperature, moisture Ecological Niche o Fundamental niche • o Realized niche • o Potential idealized ecological niche The actual niche the organism occupies Ex: Green Anole and Brown Anole Ecological Niche o Green Anole and Brown Anole • • Fundamental niches of 2 lizards initially overlapped Brown anole eventually out-competed the green anole- reduced the green anole’s realized niche Limiting Resources o Any environmental resource that, because it is scarce or at unfavorable levels, restricts the ecological niche of an organism Interspecific Competition Competitive Exclusion & Resource Petitioning o Competitive Exclusion • o One species excludes another from a portion of the same niche as a result of competition for resources Resource Partitioning • Coexisting species’ niche differ from each other in some way Keystone Species o A species that exerts profound influence on a community • o More important to the community than what would be expected based on abundance The dependence of other species on the keystone species is apparent when the keystone species is removed • Protecting keystone species is a goal to conservation biologists Species Richness o The number of species in a community • • o Tropical rainforests = high species richness Isolated island = low species richness Related to the abundance of potential ecological niches Ecosystem Services o Important environmental benefits that ecosystems provide, such as: • • • Clean air to breathe Clean water to drink Fertile soil in which to grow crops