Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Impact of climate change on France watersheds in 2050 : A comparison of dynamical and multivariate statistical methodologies By : Christian Pagé, CERFACS Julien Boé, CERFACS Laurent Terray, CERFACS Florence Habets, UMR Sisyphe Éric Martin, CNRM, Météo-France CMOS Kelowna, 26-29 May 2008 Outline Problematic of Downscaling Why use a statistical approach? Methodology Statistical Downscaling & Weather Types Principles & Hypothesis Validation Application Impact of climate change on France watersheds Validation Comparison against quantile-quantile and perturbation methods Summary & Future CMOS Kelowna, 26-29 May 2008 2 Problematic: Generalities Downscaling Two main methodologies Statistical relationship: Local fields & Large-scale forcings Statistical downscaling Resolve dynamics and physics: Numerical model Dynamical downscaling Can be used separately or in combination CMOS Kelowna, 26-29 May 2008 3 Statistical downscaling: General methodology Global Scale Climate Variable L (predictors) MSLP, geopotential, upper-level wind Local Geographical Characteristics topography, land-use, turbulence Local Scale Climate Variable R 10m wind, precipitation, temperature R = F (L, β) β such that║R – F(L, β)║ ~ Min F based on Weather Typing CMOS Kelowna, 26-29 May 2008 4 Statistical downscaling: Current methodology Based on: • NCEP re-analyses (weather typing) SAFRAN 8-km resolution orography • Météo-France Mesoscale Meteorological Analysis (SAFRAN) • France Coverage • 1970-2005 • 8 km spatial resolution from coherent climatic zones • 7 parameters • Precipitation (liquid and solid) • Temperature • Wind Module • Infra-Red and Visible Radiation • Specific Humidity CMOS Kelowna, 26-29 May 2008 5 Statistical downscaling: Current methodology For a given day j in which we know the Large-Scale Circulation 1. Closest weather type Ri 2. Reconstruct precipitation: regression (distance to weather types) 3. Look for analogs (days) among all Ri days • Closest in terms of precipitation and temperature (index) • Randomly choose one day • Applicable as soon as we have long enough observed data series Boe J., L. Terray, F. Habets and E. Martin, 2006: A simple statistical-dynamical downscaling scheme based on weather types and conditional resampling J. Geophys. Res., 111, D23106. CMOS Kelowna, 26-29 May 2008 6 Statistical downscaling: Validation Downscaling Precipitation mm/day Safran Period: 1981-2005 DJF Downscaling: MSLP ARPEGE A1B Scenario Regional Simulation 0.6 7 0.6 7 TSO from CNRM-CM3 model JJA 0.5 5 0.5 5 7 Statistical downscaling: Validation: Hydrology Flow Validation 150 Annual Cycle OBS NCEP ARPEGE-VR 0 0 Jan 250 CDF OBS NCEP ARPEGE-VR 800 LOIRE(Blois) ARIEGE (Foix) to Dec ARIEGE (Foix) 500 0 1960 to Dec 2500 LOIRE (Blois) Jan to Dec 2500 SEINE (Poses) 0 0 0 t o 1 VIENNE (Ingrandes SEINE (Poses) 0 Jan 0 1200 0 t o 2010 1 0 t o Winter Mean OBS NCEP (0.85) SAFRAN (0.97) 1 Statistical downscaling: Validation: Summary Predictors Strong link with regional climate Simulated correctly by model Statistical relationship F still valid for perturbed climate. Cannot be validated or invalidated formally. Also true for physical parameterisations and bias correction. Predictors encompass completely the climate change signal Need to use Temperature as a predictor Watersheds flows are correctly reproduced Annual Cycle CDF CMOS Kelowna, 26-29 May 2008 9 Application: Impact of climate change on France watersheds Precipitation change: ARPEGE-VR, in 2050, A1B GHG Scenario (in % of 1970-2000 mean) Downscaled -0.5 +0.5 DJF JJA Simulated 10 Application: Impact of climate change on France watersheds Relative change watershed flows 2046/2065 vs 1970/1999 in Winter +0.5 -0.5 Statistical downscaling Dynamical Quantile-Quantile downscaling CMOS Kelowna, 26-29 May 2008 11 Application: Impact of climate change on France watersheds Relative change watershed flows 2046/2065 vs 1970/1999 in Summer +0.5 -0.5 Statistical downscaling Dynamical Quantile-Quantile downscaling CMOS Kelowna, 26-29 May 2008 12 Application: Impact of climate change on France watersheds Relative change watershed flows 2046/2065 vs 1970/1999 Perturbation method Winter Corr 0.92 -0.5 Summer Corr 0.86 Spring Corr 0.38 +0.5 Autumn Corr 0.72 13 Application: France watersheds: Uncertainties Atlantic Ridge + Blocking ~0 Winter Weather Type occurrence changes IPCC (2081/2100 1961/2000) 20 days Number of days in winter 20 15 10 5 NAO+ 0 + -5 NAO- - -10 -15 -20 Models Models -20 days Atl. Ridge Blocking NAO+ NAO- Correlation Weather Type Occurrence Precipitation -0.5 +0.5 14 Application: France watersheds: Snow Cover 5 30 Future Present Aug Jul Jul 500 250 Aug Aug Jul Aug • Water Equivalent (mm) of Snow Cover • Pyrenees • 2055 • Grayed zones: min/max Jul 15 Summary - 1 • Statistical downscaling methodology • Validation is very good • Hypothesis of stationarity (regression) • Weather Typing Approach • Low CPU demand • Evaluate uncertainties with many scenarios • Uncertainties of downscaling method are limited • Those of numerical models are, in general, greater CMOS Kelowna, 26-29 May 2008 16 Summary - 2 • Ensemble Mean of Watershed flows • Decreases moderately in Winter (except Alps and SE Coast) • 2050 : important decrease in Summer & Autumn • Robust results, low uncertainty • Strong increase of Low Water days • Heavy flows decrease much less than overall mean CMOS Kelowna, 26-29 May 2008 17 Down the Road… • Whole Code Re-Engineering • Modular approach • Implement several statistical methodologies • Configurable • End-user parameters • Core parameters • Web Portal • Climate-Change Spaghetti to Climate-Change Distribution • Probability Density Function • Re-sampled Ensemble Realisations • M. Dettinger, U.S. Geological Survey (2004) CMOS Kelowna, 26-29 May 2008 18 Merci de votre attention! Christian Pagé, CERFACS [email protected] Julien Boé, CERFACS Laurent Terray, CERFACS Florence Habets, UMR Sisyphe Éric Martin, CNRM, Météo-France CMOS Kelowna, 26-29 May 2008 19 Régimes de temps et hydrologie (H1) • • • Définition de régimes/types de temps discriminants pour les précipitations en France Variable de circulation de grande échelle: Pression (MSLP), provenant du projet EMULATE (1850-2000, journalier, 5°x5°), précipitations SQR (MétéoFrance) Classification multi-variée Précipitations & MSLP, pas de temps journalier, espace EOF. On conserve ensuite uniquement la partie MSLP pour définir les types de temps. Domaine classification MSLP (D1) * 310 stations pour les précipitations 8 à 10 régimes de temps !