Download The impact of diabatic heating structures and model

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Impact of climate change on France
watersheds in 2050 :
A comparison of dynamical and
multivariate statistical
methodologies
By :
Christian Pagé, CERFACS
Julien Boé, CERFACS
Laurent Terray, CERFACS
Florence Habets, UMR Sisyphe
Éric Martin, CNRM, Météo-France
CMOS Kelowna, 26-29 May 2008
Outline
 Problematic of Downscaling
 Why use a statistical approach?
 Methodology
 Statistical Downscaling & Weather Types
Principles & Hypothesis
Validation
 Application
 Impact of climate change on France watersheds
Validation
Comparison against quantile-quantile and
perturbation methods
 Summary & Future
CMOS Kelowna, 26-29 May 2008
2
Problematic: Generalities
Downscaling
Two main methodologies
Statistical relationship:
Local fields & Large-scale
forcings
Statistical
downscaling
Resolve dynamics and
physics:
Numerical model
Dynamical
downscaling
Can be used separately or in combination
CMOS Kelowna, 26-29 May 2008
3
Statistical downscaling: General methodology
Global Scale
Climate Variable L
(predictors)
MSLP, geopotential,
upper-level wind
Local Geographical Characteristics
topography, land-use, turbulence
Local Scale
Climate Variable R
10m wind, precipitation,
temperature
R = F (L, β)
β such that║R – F(L, β)║ ~ Min
F based on Weather Typing
CMOS Kelowna, 26-29 May 2008
4
Statistical downscaling: Current methodology
Based on:
• NCEP re-analyses (weather typing)
SAFRAN 8-km resolution orography
• Météo-France
Mesoscale Meteorological Analysis
(SAFRAN)
• France Coverage
• 1970-2005
• 8 km spatial resolution from
coherent climatic zones
• 7 parameters
• Precipitation (liquid and solid)
• Temperature
• Wind Module
• Infra-Red and Visible Radiation
• Specific Humidity
CMOS Kelowna, 26-29 May 2008
5
Statistical downscaling: Current methodology
For a given day j in which we know the Large-Scale Circulation
1. Closest weather type Ri
2. Reconstruct precipitation: regression (distance to weather
types)
3. Look for analogs (days) among all Ri days
• Closest in terms of precipitation and temperature
(index)
• Randomly choose one day
•
Applicable as soon as we have long enough observed data
series
Boe J., L. Terray, F. Habets and E. Martin, 2006: A simple statistical-dynamical downscaling
scheme based on weather types and conditional resampling J. Geophys. Res., 111, D23106.
CMOS Kelowna, 26-29 May 2008
6
Statistical downscaling: Validation
Downscaling
Precipitation mm/day Safran
Period: 1981-2005
DJF
Downscaling:
MSLP ARPEGE
A1B Scenario
Regional Simulation
0.6
7
0.6
7
TSO from
CNRM-CM3 model
JJA
0.5
5
0.5
5
7
Statistical downscaling: Validation: Hydrology
Flow Validation
150
Annual Cycle
OBS
NCEP
ARPEGE-VR
0
0
Jan
250
CDF
OBS
NCEP
ARPEGE-VR
800 LOIRE(Blois)
ARIEGE (Foix)
to
Dec
ARIEGE (Foix)
500
0
1960
to
Dec
2500 LOIRE (Blois)
Jan
to
Dec
2500 SEINE (Poses)
0
0
0
t o
1
VIENNE (Ingrandes
SEINE (Poses)
0
Jan
0
1200
0
t o
2010
1
0
t o
Winter Mean
OBS
NCEP
(0.85)
SAFRAN (0.97)
1
Statistical downscaling: Validation: Summary
 Predictors
 Strong link with regional climate
 Simulated correctly by model
Statistical relationship F still valid for perturbed climate.
Cannot be validated or invalidated formally. Also true for
physical parameterisations and bias correction.
 Predictors encompass completely the climate change signal
 Need to use Temperature as a predictor
 Watersheds flows are correctly reproduced
 Annual Cycle
 CDF
CMOS Kelowna, 26-29 May 2008
9
Application: Impact of climate change on France watersheds
Precipitation change: ARPEGE-VR, in 2050, A1B GHG Scenario
(in % of 1970-2000 mean)
Downscaled
-0.5
+0.5
DJF
JJA
Simulated
10
Application: Impact of climate change on France watersheds
Relative change watershed flows
2046/2065 vs 1970/1999 in Winter
+0.5
-0.5
Statistical
downscaling
Dynamical
Quantile-Quantile
downscaling
CMOS Kelowna, 26-29 May 2008
11
Application: Impact of climate change on France watersheds
Relative change watershed flows
2046/2065 vs 1970/1999 in Summer
+0.5
-0.5
Statistical
downscaling
Dynamical
Quantile-Quantile
downscaling
CMOS Kelowna, 26-29 May 2008
12
Application: Impact of climate change on France watersheds
Relative change watershed flows
2046/2065 vs 1970/1999 Perturbation method
Winter
Corr 0.92
-0.5
Summer
Corr 0.86
Spring
Corr 0.38
+0.5
Autumn
Corr 0.72
13
Application: France watersheds: Uncertainties
Atlantic Ridge
+
Blocking
~0
Winter Weather Type occurrence changes IPCC (2081/2100 1961/2000)
20 days
Number of days in winter
20
15
10
5
NAO+
0
+
-5
NAO-
-
-10
-15
-20
Models
Models
-20 days
Atl. Ridge
Blocking
NAO+
NAO-
Correlation
Weather Type Occurrence
Precipitation
-0.5
+0.5
14
Application: France watersheds: Snow Cover
5
30
Future
Present
Aug
Jul
Jul
500
250
Aug
Aug
Jul
Aug
• Water Equivalent (mm) of Snow Cover
• Pyrenees
• 2055
• Grayed zones: min/max
Jul
15
Summary - 1
• Statistical downscaling methodology
• Validation is very good
• Hypothesis of stationarity (regression)
• Weather Typing Approach
• Low CPU demand
• Evaluate uncertainties with many scenarios
• Uncertainties of downscaling method are limited
• Those of numerical models are, in general, greater
CMOS Kelowna, 26-29 May 2008
16
Summary - 2
• Ensemble Mean of Watershed flows
• Decreases moderately in Winter (except Alps and SE Coast)
• 2050 : important decrease in Summer & Autumn
• Robust results, low uncertainty
• Strong increase of Low Water days
• Heavy flows decrease much less than overall mean
CMOS Kelowna, 26-29 May 2008
17
Down the Road…
• Whole Code Re-Engineering
• Modular approach
• Implement several statistical methodologies
• Configurable
• End-user parameters
• Core parameters
• Web Portal
• Climate-Change Spaghetti to Climate-Change Distribution
• Probability Density Function
• Re-sampled Ensemble Realisations
• M. Dettinger, U.S. Geological Survey (2004)
CMOS Kelowna, 26-29 May 2008
18
Merci de votre attention! 
Christian Pagé, CERFACS
[email protected]
Julien Boé, CERFACS
Laurent Terray, CERFACS
Florence Habets, UMR Sisyphe
Éric Martin, CNRM, Météo-France
CMOS Kelowna, 26-29 May 2008
19
Régimes de temps et hydrologie (H1)
•
•
•
Définition de régimes/types de temps discriminants pour les précipitations en
France
Variable de circulation de grande échelle: Pression (MSLP), provenant du projet
EMULATE (1850-2000, journalier, 5°x5°), précipitations SQR (MétéoFrance)
Classification multi-variée Précipitations & MSLP, pas de temps journalier,
espace EOF. On conserve ensuite uniquement la partie MSLP pour définir les
types de temps.
Domaine classification
MSLP (D1)
* 310 stations pour les
précipitations
8 à 10 régimes de temps !