* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Document
Standby power wikipedia , lookup
Negative resistance wikipedia , lookup
Power electronics wikipedia , lookup
Power MOSFET wikipedia , lookup
Rectiverter wikipedia , lookup
Audio power wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Captain Power and the Soldiers of the Future wikipedia , lookup
TALLINN UNIVERSITY OF TECHNOLOGY, INSTITUTE OF PHYSICS 3. POWER SUPPLY EFFICIENCY 1. Objective Determination of the power supply efficiency and effective power depending on current and the ratio of internal and external resistance. 2. Equipment needed Stand with voltmeter, ammeter, two elements, two (or three) rheostats and a switch. 3. Theory Whatever electrical circuits can be observed as consisting of internal and external part: Internal part consists of power supply and its resistance, external part consists of connecting wires and consumer (ballast resistor). According to the Ohm`s law the current is determined by electromotive force of the power supply and the total resistance of the circuit. While usually the connecting wires are chosen so that their resistance is inconsiderably small compared to the other resistances of the circuits elements, then in eventual calculations their resistance can be negligible. Thus the current in circuit can be found by the formula: I= ε R+r , where R is external resistance of the circuit (here consumer resistance) and r is the resistance of the power supply (internal resistance). The resistance of the power supply r and its emf ε are characteristic quantities of the given power supply, which are determined by its construction. ε and r don’t depend on the current of the power supply but could depend on other operational conditions of the power supply (temperature, aging of the power supply etc.). The voltage on the external resistance (consumer) can be expressed: U = I ⋅R =ε R . R+r This is always smaller than electromotive force, because R<R+r. If the ballast resistance is greater than the resistance of the power supply (R>>r) then the voltage on the consumer and R on the terminals of power supply will be equal to the electromotive force ≈ 1 . For that R + r reason the electromotive force of the power supply with small resistance can be measured quite accurately by the voltmeter with great internal resistance. According to the definition of the electromotive force, it is known that leading the charge q through the total circuit work will be done. A =ε ⋅q 1 TALLINN UNIVERSITY OF TECHNOLOGY, INSTITUTE OF PHYSICS Consequently the total power of the power supply is N= A q ε2 =ε ⋅ =ε ⋅I = . t t R+r Meanwhile the power dissociated on consumer or effective power can be expressed N1 = IU = I 2 R = ε 2 R . (R + r )2 (1) From the penultimate formula follows that the total power of the power supply N is maximum in case of short circuit ( R → 0 ). But then total power dissociates on the resistance r of the power supply and the effective power N1 is equal to zero (formula 1). If the external resistance R is increasing then the total power N is decreasing and N → 0 , when R → ∞ . Effective power on the contrary is equal to zero in two cases: in short circuit ( R → 0 ) and in the case of the open circuit ( R → ∞ ). Consequently in case of the external resistance, which has increased to a given value, the effective power must obtain the maximum. To find this resistance Rm at which the effective power N1 is highest, we first find the derivation by the resistance using the formula (1). Let R be marked as Rm and when the result is equal to zero, then we get: r − Rm ∂N1 =ε2 = 0. ∂R (r + Rm ) From here Rm = r . Consequently the effective power is highest when the external resistance R and the resistance of the power supply are equal. The highest effective power can be expressed: N1m = ε2 4r Using power supplies it is not only the power which is significant but also efficiency. The efficiency is defined as a ratio of total and effective power and can be found by formula N1 UI U = = N ε I ε (2) IR R = . I (R + r) R + r (3) η= or η= From the formulas (1) and (3) follows that the conditions about obtaining the highest effective power and efficiency do not coincide. If the effective power is maximal ( Rm = r ), then the efficiency is 0,5. If the efficiency η is approaching the value “one”, the effective power N1 is forming a part of its highest value N1m . According to the formulas (1) and (3) the effective power and efficiency are greater in case of the same external resistance and electromotive force in this power supply which resistance is smaller. The scheme of the experimental machine used in this work is given on the figure 3.1. 2 TALLINN UNIVERSITY OF TECHNOLOGY, INSTITUTE OF PHYSICS In this figure the power supply is constituted by the elements ε 1 and ε 2 of battery, where the rheostat r is connected in series to increase artificially the resistance of power supply. Two rheostats R1 and R2 in external circuit are given for smooth changing of the current in extensive district. Figure 3.1 4. Experimental procedure 1. 2. 3. 4. Record the data of measuring devices. Set up a circuit as shown in figure 3.1. Ask the instructor to control the scheme and to give the task. Put the sliding contacts of the rheostats so that r should be the highest, R1 and R2 should be minimal. 5. Close the switch K and regulate the short circuit current by the rheostat r to the value given by instructor. During the further experiment leave the sliding contact of the rheostat r unchangeable. 6. Decrease the current with the rheostats R1 and R2 by the step given by your instructor (2-5 mA) to almost zero, registering every time readings of the voltmeter and ammeter. Record the results into data table 3.1. Table 3.1 The determination of power supply efficiency and effective power Nr I, mA U, V N1, mW η% ε −U , V r, Ω R, Ω R r 1. ... 25. ε = ...... V 7. Open the switch K and register the reading of voltmeter, which in this case, with enough accuracy for given experiment, is equal to total electromotive force ε of battery consisting of two elements. 8. Present measuring results to your instructor for control and thereafter disconnect the circuit. 3 TALLINN UNIVERSITY OF TECHNOLOGY, INSTITUTE OF PHYSICS 9. Find the effective power N1 (formula 1) and efficiency η (formula 2) for each measured value (I and U). According to the computed values plot the graphs N1 = f ( I ) and η = f ( I ) in the same axis (in both cases take the x-axis as current I-axis and use two different scales of y-axis). Smooth the obtained graphs. 10. By the Ohm`s Law calculate for each measured value the external resistance of circuit R, R internal resistance r and the ratio of . r R R R 11. Plot the graphs N 1 = f , η = f with common axis (x-axis) and with two r r r different y-axis. Smooth the obtained graphs. 12. Find the combined uncertainty U C ( N1 ) = ( I ⋅ ∆U ) 2 + (U ⋅ ∆I ) 2 + 2 ⋅ I ⋅ ∆U ⋅ U ⋅ ∆I and according to the same principle find the uncertainty U C (η ) for pre-determined cases by your instructor. (As among the internal quantities I and U there are also dominating a functional dependence among the internal quantities U and ε , in case of which the correlation coefficient is equal to “one”. Look at “Methodical instruction of practical training in Physics I”, Tallinn, TPI, 1987, p. 22, formula (15) and R. Laaneots, O. Mathiesen “Measuring principles”, Tallinn, TTÜ, 2002, p. 85-90) 13. Find r and it’s A-type modifier uncertainty U A (r ) . 5. Questions and tasks 1. 2. 3. 4. 5. Define the concept of power and efficiency. Define the concept of electromotive force. In what lies the disparity between the voltage and the potential difference? Formulate the Ohm’s law about a part of circuit and about enclosed circuit. Formulate the maximum conditions of efficiency and effective power and give an argument. 6. How do the effective power and the efficiency of power supply depend on the external resistance? 7. An element, which electromotive force is 1,1 V and internal resistance 10 Ω, is loaded with external resistance 9 Ω. Find the current in circuit, the voltage on external resistance and the voltage on internal resistance and the efficiency. 6. Literature 1. Halliday, D., Resnick, R., Walker, J. Fundamentals of Physics – 6th ed., USA, John Wiley&Sons, Inc., 2001. § 28-2, §28-7 4