Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
1. 2. 3. 4. 5. 6. www.LionTutors.com STT315–Exam1–PracticeExamSolutions A–Thesciencethatdealswithcollecting,classifying,summarizing,organizing,analyzing, andinterpretinginformationordata A–Quantitative Quantitativevariable–Valuesthatcomeinmeaningful,non-arbitrarynumbers. Quantitativevariablesareeitherdiscreteorcontinuous.Discretevariablesaretypically counts,whilecontinuousvariablesaretypicallymeasurements.Sinceheightisa measurement,itisacontinuousrandomvariable. B–Qualitative Qualitativevariable–Rawdatamadeupoflabels,group,orcategorynamesthatdon’t necessarilyhavealogicalorder.Itdoesnotmakesensetoperformarithmeticoperations (suchasfindingtheaverage)onqualitativevariables. A–True Notallnumericalvariablesarequantitative!Althoughaphonenumberisnumerical,itis notameaningful,non-arbitrarynumber.Itwouldnotmakesensetoperformarithmetic operationsonavariablelikephonenumber.Aphonenumberisanexampleofan identifiervariable,whichisaspecialtypeofqualitativevariable.Otherexamplesof identifiervariablesare:studentIDnumber,socialsecuritynumber,trackingnumber, invoicenumber,etc. B–False AlthoughstudentIDnumberisanumericalvariable,itisnotquantitative.StudentID numberisaspecialtypeofcategoricalvariablecalledanidentifiervariable. A–Sample Asampleisasubsetofapopulation.Asampleisthegroupofunitsthatareactually measuredorsurveyed.Sincethe“streetpharmacist”onlysurveyed10ofhis50 “patients,”thedatathathecollectedisfromasample.Ifheweretosampleallofhis50 patients,hewouldhavedataaboutthepopulation. 7. D–Datafrompeopleinthesampleareusedtoobtaininformationaboutthepopulation Alloftheotheranswerchoices,A,B,andCareincorrectbecausethewords“sample” and“population”wereswapped. 8. C-Qualitativedataarerawdatamadeupofgrouporcategorynamesthatdon’t necessarilyhavealogicalorder,whilequantitativedataarevaluesthatcomeintheform ofmeaningful,non-arbitrarynumbers 9. A–Qualitative Althoughthesixcategorieswereinputintothecomputerasnumbers,theystillrepresent categoricaldata. 10. A–1,950 590+720+640=1,950 11. D–Unimodal Thereisonlyoneprominentpeakinthisdistribution.Pleasemakesurethatyoutake yourtimeontheexamandreadyouranswerchoicescarefully.Alotofpeoplewhodo notreadcarefullywillaccidentallychoose“uniform”insteadof“unimodal.” 12. B–False Theshapeofadistributioncanbedescribedaseithersymmetricorskewed.Ifa distributionisnotsymmetric,itmustbeskewed.Ifadistributionisskewed,itwilleither beskewedtotheleft,orskewedtotheright.Thisdistributionisnotskewed;therefore,it mustbesymmetric.Ifweretofoldthisdistributioninhalf,bothsideswouldlooklike mirrorimagesofeachother. 13. B–Therearenooutliers Outlier–Adatapointthatisnotconsistentwiththemajorityofthedata Youcanidentifyoutliersinahistogrambylookingforgapsinthedata.Gapsina histogramrepresentareasofadistributionwheretherearenorecordedvalues.Ifthere isagapinahistogram,andthentherearemoredatavaluesafterthegap,thosevalues aretypicallyoutliers. 14. D–16to19credits Ourthreemeasuresofcenterare:mean,median,andmode. 15. C–22to25credits 16. A–5.88 YoucouldusetheSTATfunctionoftheT!-84Pluscalculatortofindthemeanhere; however;itisprobablyeasiertojustusetheformula: Mean= !.! ! !.! ! !.! ! !.! ! !.! ! = !".! ! =5.88 17. C–Qualitative 18. B–False AgeandGPAarequantitativevariables;however,studentIDisnotaquantitative variable.Itisaspecialtypeofcategoricalvariablecalledanidentifiervariable. 19. A–True Frequencyisthenumberofobservationsinadatasetthatfallintoaparticularclass.The frequencyfor“Freshman”is2because2observationsfallintotheclass“Freshman.” Relativefrequencyisthefrequencydividedbythetotalnumberofobservationsinthe dataset.Therelativefrequencyfor“Freshman”is50%because2/4is0.50. 20. A–True Therangeissensitivetooutliers.Thismeansthatthepresenceofoutlierswillhavea largeeffectontherange. 21. B–False TheIQR(InterQuartileRange)istheupperquartileminusthelowerquartile.Itisa resistant(robust)summarymeasure.Thismeansthatthepresenceofoutlierswillnot havealargeeffectontheIQR. 22. D–Themeanisalsoreferredtoasthe“average” Aisincorrect–Themedianisthemiddlevalueinadataset,notthemean Bisincorrect–Therangeisthedifferencebetweenthelargestandthesmallestnumber inadataset,notthemean Cisincorrect.–Themodeisthemostfrequentlyoccurringvalueinadataset,notthe mean Eisincorrect–Halfofthevaluesinadatasetaregreaterthanthemedian,andhalfof thevaluesarelessthanthemedian,notthemean 23. C–Themeanissignificantlysmallerthanthemedian Symmetricdistributions:Mean=Median Skewedtotheright:Mean>Median Skewedtotheleft:Mean<Median 24. A–Barchart Wecanuseabarchartandapiecharttodisplayinformationaboutqualitativevariables. Histogramsandstem-and-leafplotsareusedtodisplayinformationaboutquantitative data.Themean,median,andmodeareallsummarymeasuresthatareusedfor quantitativedata. 25. B–False StudentIDnumberisanexampleofanidentifiervariable. 26. B–False Whenwecreateahistogramwecanusefrequencies(thecountofoccurrences)or relativefrequencies(frequency/n)ontheY-axis.Usingrelativefrequenciesinsteadof frequencieswillneverchangetheshapeofthehistogram. 27. B–Accuracy Weusemeasuresof(1)center,(2)spread,and(3)shapetodescribeadistribution. Center=Location Spread=Variability Shape=Skewness Allofthesetermsareusedsynonymously.Itisfairgameforanyofthesetermstobe usedonyourexam. 28. B–False Notallnumericalvariablesarequantitative.Quantitiesvariablearemeaningful,nonarbitrarynumbers.Identifiervariables(ex.Zipcodes,socialsecuritynumbers,studentID numbers,trackingnumbers)arequalitative. 29. A–6 10to19+20to29 =4+2=6 30. B–False Weneverleavespacesbetweenbinsinahistogram;therefore,aspaceinahistogram impliesthatnodatavaluesfallintothatrange,andwecallthisagapinthehistogram. Therearetwogapsinthishistogramat50–59percent,and60–69percent.Therewere novaluesthatfellintothisrange. 31. D–70to79percentaccepted Anoutlierisadatavaluethatisnotconsistentwiththemajorityofdata.Whenlookingat ahistogram,datavaluesthatappearafteragaparetypicallyoutliers. 32. E–BothAandD Positivelyskewedandskewedtotherightmeanthesamething.Whenadistributionis skewedtotheright,thenumbersontherightsideofthenumberline(highervalues)are spreadoutmorethanthenumbersontheleftsideofthenumberline(lowervalues). 33. A–True Theshapeofadistributioncanbedescribedaseithersymmetricorskewed.Ifa distributionissymmetric,therewillbezeroskewedness. 34. D–BothAandC Aisincorrect–Modeisthemostfrequentlyoccurringvalueinadataset,notthe average.Themeanisoftentimescalledtheaverage. 35. A–True 36. B–Themeanisgreaterthanthemedianbecausethedatasetisskewedtotheright Skewedtotheleft–Thenumbersontheleftsideofthenumberlinearemorespread outthanthenumbersontheright. Skewedtotheright–Thenumbersontherightsideofthenumberlinearemorespread outthanthenumbersontheleft. Skewedtotheright:Mean>Median Skewedtotheleft:Mean<Median UsetheTI-84PlusfortheNextFiveProblems 37. D–69.9 Calculatoroutputforsamplemean=𝑥 38. A–26.44 Calculatoroutputforsamplestandarddeviation=𝑆! 39. A–75 Calculatoroutputformedian=Med 40. D–80 Range=Max–Min Calculatoroutputformax=MaxX Calculatoroutputformin=MinX Range=98–18 Range=80 41. C–38.5 IQR=Q3–Q1 IQR=90–51.5 IQR=38.5 42. A–57.5 Σ! =Sumofallxvalues n=Numberofvaluesinthedataset !"# Mean= !" =57.5 43. B–13 Countalloftheobservationsintherightmostcolumn(calledtheleaf) 44. C–90 Range=Max–Min Range=99–9 Range=90 45. D–78 Medianposition= (!!!) ! = (!"!!) ! =7thposition Median=78 46. B–70.08 Mean=(9+17+66+69+74+77+78+81+81+81+89+90+99)/13 Mean=911/13 Mean=70.076=70.08 47. A–26.83 48. C-$32,750 Newmean=a(𝑥)+b Newmean=$500(55.5)+$5,000 Newmean=$27,750+$5,000 Newmean=$32,750 49. C-$2,400 Newstandarddeviation=|a|*𝑠! Newstandarddeviation=|$500|*4.8 Newstandarddeviation=$2,400 Remember,wedonotincludetheconstantbinlineartransformationproblemsthat relatetomeasuresofspread(range,IQR,standarddeviation). 50. B-23,000 Newmedian=a(𝑥)+b Newmedian=$500(36)+$5,000 Newmedian=$18,000+$5,000 Newmedian=$23,000 51. A-$31,500 IQR=Q3–Q1 TheIQRforouroriginaldata,onthenumberofpassescaught,is76–13=63 NewIQR=|a|*IQR NewIQR=|$500|*63 NewIQR=$31,500 Remember,wedonotincludetheconstantbinlineartransformationproblemsthat relatetomeasuresofspread(range,IQR,standarddeviation). 52. B–No Observationswithaz-scoreofgreaterthan|3|areconsideredoutliers Z= Z= !! ! ! !!!!" !" Z=-1.625 66isnotanoutlierbecausethez-scoreisnotgreaterthan3 53. B–Friend Wecangainsomeinsightabouttheshapeofadistributionfromthemedianposition withintheboxofaboxplot.Ifthemedianispositionedinthecenterofthebox,wehave asymmetricdistribution. 54. C–Pet Ifthemedianispositionedclosertothe1stquartile(bottomofthebox)adistributionis skewedtotheright(positiveskew) 55. B–Friend IQR=Q3–Q1 Whencomparingboxplotssidebyside,theboxplotwiththelargestboxwillhavethe largestIQR.TheboxplotforfriendhasthelargestIQR.ThedistancefromQ3(topofthe box)toQ1(bottomofthebox)isthelargest. 56. C–Pet Inaboxplot,anasteriskisusedtorepresentanoutlier.Theonlyboxplotwithanoutlier ispet. 57. C–Pet Thelineinthemiddleoftheboxrepresentsthemedian.Pethasamedianof approximately70,whichissmallerthanthemedianforfriend(approximately90)andthe medianforcontrol(approximately85). 58. C–Mean<Median Thisdistributionisgoingtobeskewedtotheleft.The1receptionistwillbepaid significantlylessthanthe15highlypaidlawyers,sothenumbersontheleftsideofthe numberlinewillbemorespreadoutthanthenumbersontheright.Whenevera distributionisskewedtotheleft,themeanwillbedrawntowardssmalloutliers,sothe meanwillbelessthanthemedian. 59. C–Themeanliestotherightofthemedian Wheneverwehaveadistributionthatisskewedtotheright,themeanwillbedrawnto largeoutliers,sothemeanwillbegreaterthanthemedian. 60. F–Alloftheabove Forexample,iftheoriginaldatawasmeasuredininches,wewouldmakesuretoreport themean,median,mode,range,andstandarddeviationintermsofinchesaswell. 61. D–1;sample z= z= !! ! ! !"!!" ! =1 Weknowthatthisisthez-scoreforthesamplebecauseofthenotationthatisused.𝑥 is thenotationforsamplemean,andsisthenotationforsamplestandarddeviation.Ifthis werepopulationdata,wewoulduse𝜇torepresentthepopulationmeanand𝜎to representthepopulationstandarddeviation.Wewouldcalculatezscorethesameway, butthenotationthatweusewouldjustbedifferent. 62. B–5.5 𝜇=3.1,𝜎=0.8,z-score=3.0 z= !! ! ! !!!.! 3.0= !.! 2.4=x–3.1 x=5.5 63. C–90.23% x%ofdatafallswithintheinterval1 − ! 1 − !.!! =0.9023=90.23% 64. A–True 1 1 − ! = 0.75 2 ! !! 65. B–False Ifadistributionisunimodalandsymmetric,accordingtotheEmpiricalRule,99.7%of datawillfallwithinthreestandarddeviationsofthemean,not95%.95%ofdatawillfall withintwostandarddeviationsofthemean. 66. F–BandD 21.60 − 24.20 −2.6 = = −1.3 2 2 52 − 45 7 𝑧 − 𝑠𝑐𝑜𝑟𝑒 𝑠ℎ𝑜𝑡 𝑝𝑢𝑡 = = = +1.4 5 5 𝑧 − 𝑠𝑐𝑜𝑟𝑒 200 𝑚𝑒𝑡𝑒𝑟 = Az-scoreof-1.3inthe200metermeansthatweperformed1.3standarddeviations worsethantheaverage,andaz-scoreof+1.4intheshotputmeansweperformed1.4 standarddeviationsbetterthantheaverage.Weperformedbetterintheshotputthan wedidinthe200m. 67. B–Median Whenadatasetissymmetric,themeanisthepreferredmeasureofcenter. Whenadatasetisskewed,themediaisthepreferredmeasureofcenter. Thisisbecausethemeanisasensitivesummarymeasure(meaningitisveryinfluenced byoutliers)andthemedianisaresistantsummarymeasure(meaningitisnotvery influencedbyoutliers). 68. B–False Afive-numbersummaryofadatasetprovidesusefulinformationaboutthevariabilityof adataset,notthecenter. Rememberthataboxplotissimplyavisualrepresentationofadataset’sfive-number summary;therefore,ifyouareasked,aboxplotisarepresentationofadataset’s variabilityaswell. 69. B–Levelofeducation,eyecolor,gender Aisincorrect–Weightisaquantitativevariable Cisincorrect–Lengthandwidtharebothquantitativevariables Disincorrect–Price,temperature,andthicknessareallquantitativevariables 70. D–Unimodalandskewedtotheright Thishistogramisunimodalbecausethereisoneprominentpeak,occurringaround0 Thishistogramisskewedtotherightbecausethenumbersontherightsideofthe numberlinearemorespreadoutthanthenumbersontheleft. 71. E–C.RRao 72. B–38 Themedianisthemiddledatavalue,whenthedataisorganizedinorderfromsmallest tolargest.Orderingthedatagivesus:9,37,39,55.Sincetherearetwonumbersinthe middle(37and39),themedianistheaverageofthosetwonumbers,whichis38. 73. A–36% n=25 Students64–66inches=5 Students66–68inches=4 Students64–68inches=5+4=9 Percentageofstudents64–68inches=9/25=0.36=36% 74. D–0.47 Normalcdf(500,600,550,80.4)=0.47 75. A–0.69 Normalcdf(–9^99,590,550,80.4) 76. C–0.31 Normalcdf(590,9^99,550,80.4) 77. B–644.47 invNorm(0.88,550,80.4)=644.47 78. C–539.90 invNorm(0.45,550,80.4)=539.90 Theinputthatweenterfor“area”whenusingtheinvNormfunctionisalwaystheareato theleftofsomespecifiedxvalue.P(X≤b).Wearegiveninformationabouttheareato therightofthexvalue,sowemustfirstfindtheareatotheleftofthexvaluebefore enteringintoourcalculator.1–0.55=0.45. 79. A–108.46 Q3=invNorm(0.75,550,80.4)=604.23 Q1=invNorm(0.25,550,80.4)=495.77 IQR=Q3–Q1 IQR=604.23–495.77=108.46 80. B–0.5915 Wearelookingfortheprobabilitythatastudentdoesnotgetadmitted.Sinceyouneeda SATscoreof1560togetintoMSU,wemustlookfortheareaunderthecurvebelow 1560. P(x<1560)=normalcdf(–9^99,1560,1492,294)=0.59145=0.5915 81. B–1976 Applicantsthatscoreinthetop5%areinthe95thpercentile.Weknowthisbecause95% ofthedataisatorbelowtheirscore.WecanusetheTI-84Plustofindthescoreforthe 95thpercentile: InvNorm(.95,1492,294)=1975.587=1967 82. A–1869 invNorm(0.90,1492,294)=1868.78=1869 83. B–JohnW.Tukey