* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Ayush khichar bio project
Survey
Document related concepts
Transcript
ALL INDIA SENIOR SECONDRY CERTIFICATE EXAMINATION 2011-12 INVESTIGATRY PROJECT REPORT ON THE TOPIC “EVOLUTION” Submitted To:- Submitted By:- Mr. N.K. AggarwalAyushKhichar PGT Biology 12TH Science K.V. Sikar Roll No:- CONTENT 1) Introduction 2) Genetic basis of evolution A) Genetic variation in population A1)Gene Flow A2) Mutation 3) Natural selection in populations A) Directional Selection B) Stabilizing Selection C)Disruptive Selection D) Sexual Selection 4) Genetic drift 5) Origin of new species A) Allopatric Speciation B) Sympatric Speciation C) Gradual Change 6)Patterns of descent A) Divergent Evolution B) Adaptive Radiation C) Convergent Evolution D) Co-evolution 7)How scientists study evolution A) Fossils B) Distribution of Species C) Anatomical Similarities D) Molecular Similarities E) Direct Observation 8) Development of evolutionary theory A) Linnaeus and Scientific Classification B) 19th-Century Foundations C) Darwin and Natural Selection D) Mendel and Early Genetics E) Population Genetics and the Modern Synthesis F)New Techniques in Molecular Biology G) Punctuated Equilibria 9)Role of Extinction 10) Human Evolution 11) Common misconceptions 12) References INTRODUCTION Evolution, in biology is a complex process by which the characteristics of living organisms change over many generations as traits are passed from one generation to the next. Evolution provides an essential framework for studying the ongoing history of life on Earth. A central and historically controversial component of evolutionary theory is that all living organisms, from microscopic bacteria to plants, insects, birds, and mammals share a common ancestor. Species that are closely related share a recent common ancestor, while distantly related species have a common ancestor further in the past. The animal most closely related to humans, for example, is the chimpanzee. The common ancestor of humans and chimpanzees is believed to have lived approximately 6 million to 7 million years ago. Purple and Yellow Tube Sponge Sponges, considered to be the most primitive of the multicellular animals, are represented in the fossil record back to the Cambrian Period, at least 600 million years ago. The purple and yellow tube sponge displays one of the many different body forms typical of sponges. EVOLUTIONARY HISTORY OF LIFE: Origin of life :The current scientific consensus is that the complex biochemistry that makes up life came from simpler chemical reactions.The beginning of life may have included selfreplicating molecules such as RNA, and the assembly of simple cells. All organisms on Earth are descended from a common ancestor or ancestral gene pool. Current species are a stage in the process of evolution, with their diversity the product of a long series of speciation and extinction events. Recently, evidence for common descent has come from the study of biochemical similarities between organisms. For example, all living cells use the same basic set of nucleotides and acids. The development of molecular genetics has revealed the record of evolution left in organisms' genomes: dating when species diverged through the molecular clock produced by mutations. For example, these DNA sequence comparisons have revealed that humans and chimpanzees share 96% of their genomes and analyzing the few areas where they differ helps shed light on when the common ancestor of these species existed. In the mid-19th century aBritish naturalist Charles Darwin in his book On the Origin of Species by Means of Natural Selection, described the evolution of life as a process of natural selection. Life, he suggested, is a competitive struggle to survive, often in the face of limited resources. Living things must compete for food and space.Darwin offered that, within a given population in a given environment, certain individuals possess characteristics that make them more likely to survive and reproduce. These individuals will pass these critical characteristics on to their offspring. The number of organisms with these traits increases as each generation passes on the advantageous combination of traits. Outmatched, individuals lacking the beneficial traits gradually decrease in number. Animal Kingdom Kingdom Animalia includes more than one million living species, grouped into more than 30 phyla. Vertebrates, members of the phylum Chordata, comprise only one percent of these organisms. Phylum Arthropoda is more successful in sheer numbers, total mass, and distribution than all other groups of animals combined. The remaining animal phyla are composed of mostly marine-dwelling organisms. Illustrated here is the evolutionary relationship between all of these groups. GENETIC BASIS OF EVOLUTION Natural selection is tied to traits that organisms pass from one generation to the next. In humans, these traits include hundreds of features such as eye color, blood type, and height. Nature offers countless other examples of traits in living things, such as the pattern on a butterfly’s wings, the markings on a snail’s shell, the shape of a bird’s beak, or the color of a flower’s petals. Such traits are controlled by specific bits of biochemical instructions known as genes. Genes are composed of individual segments of the long, coiled molecule called deoxyribonucleic acid (DNA). They direct the synthesis of proteins, molecular laborers that serve as building blocks of cells, control chemical reactions, and transport materials to and from cells. Proteins are themselves composed of long chains of amino acids, and the biochemical instructions found in DNA determine the arrangement of amino acids in a chain. The specific sequence of amino acids dictates the structure and resulting function of each protein. All genetic traits result from different combinations of gene pairs, one gene inherited from the mother and one from the father. Each trait is thus represented by two genes, often in different forms. Different forms of the same gene are called alleles. Traits depend on very precise rules governing how genetic units are expressed through generations. Genetic Variation in Populations Evolutionary change takes place in populations over the course of many generations. Since individual organisms cannot evolve in a single lifetime, evolutionary science focuses on a population of interbreeding individuals. All populations contain some variations in traits. In humans, for example, some people are tall, some are short, and some are of medium height. In interbreeding populations, genes are randomly shuffled among members of the population through sexual reproduction, the process that produces genetically unique offspring. Individuals of different sexes develop specialized sex cells called gametes. In humans and other vertebrates (animals with backbones), these gametes are sperm in males and eggs in females. When males and females mate, these sex cells join in fertilization. A series of cell divisions creates individuals with a unique assembly of genes. No individual members of any population (except identical twins, which develop from a single egg) are exactly alike in their genetic makeup. This diversity, referred to as genetic diversity or variation, is essential to evolution A) Gene Flow When individuals move between one population and another, new genes may be introduced to populations. This phenomenon, known as gene flow, results from chance dispersal as well as intentional migration. For example, two populations of related wildflowers, one red and one white, separated by a large tract of land. Under normal circumstances, the two groups do not interbreed because the wind does not blow hard enough to carry pollen between the populations so that pollination can occur. If one day an unusually strong wind carries pollen from the red wildflower population to the white wildflower population, the gene for red flowers may be introduced to the white population’s gene pool. In many animals, gene flow results when individuals from one population migrate to another population. B) Mutation Genes themselves are constantly being modified through a process called mutation—a change in the structure of the DNA in an individual's cells. Mutations can occur during replication, the process in which a cell splits itself into two identical copies known as daughter cells. Normally each daughter cell receives an exact copy of the DNA from the parent cell. Errors results in a change in the gene. Such a change may affect the protein that the gene produces and, ultimately change an individual’s traits. Some mutations occur spontaneously, others are caused by factors in the environment, known as mutagens. Mutagens that affect human DNA include ultraviolet light, X rays, and various chemicals. NATURAL SELECTION IN POPULATIONS Natural selection sorts out the useful changes in the gene pool. When this happens, populations evolve. Beneficial new genes quickly spread through a population because members who carry them have a greater reproductive success, or evolutionary fitness, and consequently pass the beneficial genes to more offspring. Over the course of several generations, the gene and most of its carriers are eliminated from the population. Severely detrimental genes may persist at very low levels in a population, however, because they can be reintroduced each generation by mutation. Natural selection only allows organisms to adapt to their current environment. Should environmental conditions change, new traits may prevail. Moreover, natural selection does not always favor a single version of a trait. Nor does natural selection always favor change. If environmental conditions so dictate, natural selection maintains the status quo by eliminating extreme versions of a particular trait from the population. Stonefish have evolved an ornate coloration that blends well against the coral and mud of their ocean bottom habitat. Natural selection may have favored this coloration in stonefish because well camouflaged members of the population were better able to surprise small fish and other prey. A) Directional Selection Often, shifts in environmental conditions, such as climate change or the presence of a new disease or predator, can push a population toward one extreme for a trait. In periods of prolonged cold temperatures, for example, natural selection may favor larger animals because they are better able to withstand extreme temperatures. This mode of natural selection, known as directional selection, is evident in cheetahs. About 4 million years ago, cheetahs were more than twice as heavy as modern cheetahs. But quicker and lighter members of the population had greater reproductive success than did larger members of the population. Over time, natural selection favored smaller and smaller cheetahs. B) Stabilizing Selection Sometimes natural selection acts to preserve the status quo by favoring the intermediate version of a characteristic instead of one of two extremes. An example of this selective force, known as stabilizing selection, was evident in a study of the birth weight of human babies, in the middle of the 20th century babies of intermediate weight, about 3.5 kg (8 lb), were more likely to survive. Babies with a heftier birth weight had lower chances for survival because they were more likely to cause complications during the delivery process, and lightweight babies were often born premature or with other health problems. Babies of intermediate birth weight, then, were more likely to survive to reproductive age. c) Disruptive Selection Occasionally natural selection favors two extremes, causing alleles for intermediate forms of a trait to become less common in the gene pool. The African Mocker swallowtail butterfly has undergone this form of selection, known as disruptive selection. The Mocker swallowtail evades its predators by resembling poisonous butterflies in its ecosystem. Predators have learned to avoid these poisonous butterflies and also to steer away from the look-alike Mocker swallowtails. The Mocker swallowtail has a large range, and in different regions, the Mocker swallowtail looks very different, depending on which species of poisonous butterfly it mimics. In some areas the butterfly displays black markings on a white background; in others the markings float on an orange background. As long as a Mocker swallowtail appears poisonous to predators, it has a greater chance of survival and therefore a higher evolutionary fitness. Mocker swallowtails that do not look poisonous have a much lower evolutionary fitness because predators quickly eat them. Disruptive selection, then, favors the extreme color patterns of white or orange, and nothing in between. D) Sexual Selection Sexual selection operates on factors that contribute to an organism's mating success. In many animals, sexual attractiveness is an important component of selection because it increases the likelihood of mating. Sexual selection rarely affects females, because the duration of pregnancy and infant care limits the number of babies they can have. Males, on the other hand, have few limitations on the number of offspring they can father, and a male who produces many offspring has a high level of evolutionary fitness. Males of many species, then, must compete with other males to mate with females. Some males win females’ attention more often than others and, as a result, pass their genes to more offspring. GENETIC DRIFT Natural selection is not the only force that changes the ratio of alleles present in a population. Sometimes the frequency of particular alleles may be altered drastically by chance alone. This phenomenon, known as genetic drift, can cause the loss of an allele in a population, even if the allele leads to greater evolutionary fitness. Conversely, genetic drift can cause an allele to become fixed in a population—that is, the allele can be found in every member of the population, even if the allele decreases fitness. Although any population can fall victim to genetic drift, small populations are more vulnerable than larger populations. Imagine a particular allele is present in 25 percent of a population of worms. If a flood occurs and randomly eliminates half of the population, the laws of probability predict that approximately 25 percent of the surviving population will carry the allele. In a population of 120,000 worms, this means that about 15,000 of the surviving 60,000 worms will carry the allele. Even if, by chance, the flood claimed the lives of an additional 10 percent of the carriers, thousands of copies of the allele would still remain in the population. But in a population of only 12 worms, the laws of probability predict that only 1.5 of the surviving 6 worms would carry the allele. If, by chance, the flood claimed more of the carriers of the allele than the non-carriers, the allele could be eliminated. Northern Elephant Seal Heavy hunting reduced the number of northern elephant seals to as few as 20 individuals in the 19th century. Their numbers have rebounded significantly since a ban on seal hunting became effective in the early 20th century. However, all living northern elephant seals descended from the small group that survived the severe hunting of the 19th century. This so-called population bottleneck drastically reduced the genetic diversity of northern elephant seal populations, leaving the animals vulnerable to disease and other environmental pressures. The male northern elephant seal, right, typically weighs more than three times the female seal, left. ORIGIN OF NEW SPECIES The forces of natural selection and genetic drift continuously influence and change the characteristics of a population. However, most often these forces are not sufficient to create an entirely new species. Different species arise when, for one reason or another, members of a population cease to interbreed. A) Allopatric Speciation When a barrier, such as a stretch of sea or a mountain range, separates different populations of a particular species, the populations may no longer be capable of crossing the barrier to interbreed. Speciation caused by geographic isolating mechanisms, or allopatric speciation, is evident in the many different populations of pupfish that live in the Death Valley region of California &Nevada. About 50,000 years ago this region had a rainy climate, but rainfall decreased and by about 4,000 years ago, this region was a desert. The interconnected lakes and streams dried up, and in their place remained a series of small, isolated stream-fed ponds. Each pond is home to a different species of pupfish, specially adapted to its pond’s unique temperature and mineral composition. As the lakes & streams dried up, the dry ground that separated them became a geographical isolating mechanism that prevented the individual populations from interbreeding. Consequently, the many pupfish populations evolved independently. B) Sympatric Speciation In sympatric speciation, isolating mechanisms may be triggered by differences in habitat, sexual reproduction, or heredity. Similar plants may fail to breed together because their flowering seasons are different. Many different types of rain forest orchids, for example, cannot interbreed because they flower on different days. Some animals mate only if they recognize characteristic color patterns or scents of their own group. Birds, are stimulated to breed only after witnessing a song, display, or other courtship ritual that is characteristic in their group. Sometimes two subpopulations of the same species do not produce offspring with one another, even though they come into breeding contact. This may be due, for example, to reproductive incongruities between two subpopulations that cause embryos to die before development and birth. C) Gradual Change Speciation may occur even when no isolating mechanism is present. In this case, a new species may form through the slow modification of a single group of organisms into an entirely new group. Foraminifera, a tiny species of marine animals that live in the Indian Ocean, demonstrate this process, known as vertical or phyletic evolution. From about 10 million to 6 million years ago, the species remained relatively unchanged. These organisms then began a slow and gradualchange, lasting about 600,000 years, that left them so unlike their ancestors that biologists consider them an entirely new species. PATTERNS OF DESCENT Whatever the cause of their reproductive isolation, independently evolving populations tend to adhere to general patterns of evolutionary descent. Most often, environmental factors determine the pattern followed. A gradually cooling climate, for example, may result in a population of foxes developing progressively thicker coats over successive generations. This pattern of gradual evolutionary change occurs in a population of interbreeding organisms evolving together. When two or more populations diverge, they may evolve to be less alike or more alike, depending on the conditions of their divergence. A) Divergent Evolution In the pattern known as divergent evolution, after two segments of a population diverge, each group follows an independent and gradual process of evolutionary change, leading them to grow increasingly different from each other over time. Over the course of many generations, the two segments of the population look less and less like each other and their ancestor species. For example, when the Colorado River formed the Grand Canyon, a geographic barrier developed between two populations of antelope-squirrels. The groups diverged, resulting in two distinct species of antelope squirrel that have different physical characteristics. On the south rim of the canyon is Harris’s antelope squirrel, while just across the river on the north rim is the smaller, white-tailed antelope squirrel. B) Adaptive Radiation Sometimes divergence occurs simultaneously among a number of populations of a single species. In this process, known as adaptive radiation, members of the species quickly disperse to take advantage of the many different types of habitat niches—that is, the different ways of obtaining food and shelter in their environment. Such specialization ultimately results in a number of genetically distinct but similar-looking species. This commonly occurs when a species colonizes a new habitat in which it has little or no competition. For example, a flock of one species of bird may arrive on some sparsely populated islands. Finding little or no competition, the birds may evolve rapidly into a number of species, each adapted to one of the available niches. Charles Darwin noted an instance of adaptive radiation on his visit to the Galápagos Islands off the coast of South America. He surmised that one species of finch colonized the islands thousands of years ago and gave rise to the 14 species of finchlike birds that exist there now. Darwin observed that the greatest differences in their appearance lay in the shapes of the bills, adapted for their mode of eating. Some species possessed large beaks for cracking seeds. Others had smaller beaks for eating vegetation, and still others featured long, thin beaks for eating insects. Galápagos Finches: The fourteen species of finch that inhabit the Galápagos Islands are believed to have evolved from a single species resembling the blue-black grassquit, Volatiniajacarina, abundant in Latin America and the Pacific coast of South America. The ancestral finch, with its short, stout, conical bill specialized for crushing seeds, probably migrated from the mainland to the Galápagos Islands. The size and shape of their bills reflect these specializations, an example of adaptive radiation. .C) Co-evolution Often two or more organisms in an ecosystem fall into evolutionary step with one another, each adapting to changes in the other, a pattern known as coevolution. Coevolution is often apparent in flowers and their pollinators. Hummingbirds, for example, have long, narrow beaks and a relatively poor sense of smell, and they are attracted to the color red. Fuchsias, flowering plants that rely on hummingbirds for pollination, usually have long, slender flowers in various shades of red, and they have little or no fragrance. Many flowers and their pollinators have fallen into evolutionary step with one another in a process known as coevolution. For example, fuchsia flowers, which rely heavily on hummingbirds to disperse their pollen, usually have brilliant red or pink flowers with a long, slender shape and little or no scent. All of these attributes attract hummingbirds, tiny, slender- beaked birds with a poor sense of smell and eyes that detect colors in the red portion of the visible spectrum. The hummingbird also benefits from this relationship. In return for dispersing the fuchsia’s pollen, the hummingbird has almost exclusive access to the sweet, nutritious nectar buried deep at the base of the fuchsia flower, where shorter-beaked animals cannot reach it. D) Convergent Evolution Sometimes distantly related species evolve in ways that make them appear more closely related. This pattern, known as convergent evolution, occurs when members of distantly related species occupy similar ecological niches. Natural selection favors similar adaptations in each population. Convergent Evolution: Although marsupial mammals once populated all land masses, they remain diversified only on the isolated Australian continent, where they have evolved to fill the same ecological niches that placental mammals occupy elsewhere. The Tasmanian wolf, for example, closely resembles the doglike carnivores of other continents. More specialized parallel adaptations include those of the marsupial and placental anteaters, the marsupial sugar glider and placental flying squirrels, and the burrowing marsupial wombat and placental ground hog. In this illustration, placental ground hog. In this illustration, placental mammals are in the top row, and their marsupial equivalents are in the bottom row. HOW SCIENTISTS STUDY EVOLUTION Species do not change overnight, or even in the course of one lifetime. Rather, evolutionary change usually occurs in tiny, almost imperceptible increments over the course of thousands of generations—periods that range from decades to millions of years. To study the evolutionary relationships among organisms, scientists must perform complex detective work, deriving indirect clues from the fossil record, patterns of animal distribution, comparative anatomy, molecular biology, and finally, direct observation in laboratories and the natural environment. A) Fossils One way biologists learn about the evolutionary relationships between species is by examining fossils. These ancient remains of living things are created when a dead plant or animal is buried under layers of mud or sand that gradually turn into stone. Over time, the organism remains themselves may turn to stone, becoming preserved within the rock layer in which they came to rest. By measuring radioactivity in the rock in which a fossil is embedded, paleontologists (scientists who study the fossil record) can determine the age of a fossil. Fossils present a vivid record of the earliest life on Earth, and of a progression over time from simple to more-complex life forms. The earliest fossils, for example, are those of primitive bacteria some 3.5 billion years old. In more recent layers of rock, the first animal fossils appear—primitive jellyfish that date from 680 million years ago. Still more-complex forms, such as the first vertebrates (animals with backbones), are documented by fossils some 570 million years old. Fossils also indicate that the first mammals appeared roughly 200 million years ago. Although these ancient forms of life have not existed on Earth for millions of years, scientists have been able, in many instances, to show a clear evolutionary line between extinct animals and their modern descendants. For example, the extinct, winged creature Archaeopteryx lived about 145 million years ago. Its fossil shows the skeleton of a dinosaur and the feathers of a bird. Fossils show clear evidence that the earliest human species had many apelike features.These features included large, strong jaws and teeth; short stature, long, curved fingers; and faces that protruded outward from the forehead. Later species evolved progressively more humanlike features. Archaeopteryx , a birdlike dinosaur. It had teeth and a long, reptilelike tail covered with feathers. Archaeopteryx lived between 163 million and 144 million years ago during the Jurassic Period of the Mesozoic Era. B) Distribution of Species Scientists also learn about evolution by studying how different species of plants and animals are geographically distributed in nature, and how they relate to their environment and to each other.. The study of these evolutionary relationships, known as island biogeography, has its roots in Darwin’s observations of the adaptive radiation of the Galapagos finches. The Hawaiian Islands provide similar examples, particularly in the species of birds known as honeycreepers. Like the Galapagos finches, the honeycreepers of Hawaii evolved from a common ancestor and branched into several species, showing a striking variety of beak shapes adapted for obtaining different food sources in their various niches. Eg.Ostriches- The distribution of the world’s flightless birds, called ratites, is indicative of the shifting of continents in the Earth’s distant past. Ratites evolved on a landmass called Gondwanaland, which broke apart to give rise to Africa, South America, and Australia. Following this separation, the ratites of each of these continents gradually evolved into one or more distinct species—the ostrich of Africa, the rhea of South America, and the cassowary and emu of Australia. C) Molecular Similarities With advances in molecular biology in the last few decades, researchers seek evolutionary clues at the smallest level: within the molecules of living organisms. Despite the enormous variety of form and function seen in living things, the underlying genetic code—the molecular building material of life—displays a striking uniformity. Almost all living organisms have DNA, and in each case it consists of different pairings of the same building blocks: four nucleotide bases called adenine, thymine, guanine, and cytosine. Using different combinations of these bases, DNA directs the assembly of amino acids into functional proteins. The same uniform code operates within all living things. These molecules contain more than the master plan for living organisms—each is a record of an organism's evolutionary history. By examining the makeup of such molecules, scientists gain insights into how different species are related. For example, scientists compare the protein cytochrome c from different species. In closely related species, the proteins have amino-acid sequences that are very similar, perhaps varying by one or a few amino acids. More distantly related organisms generally have proteins with fewer similarities. The more distant the relationship, the less alike the proteins. D) Anatomical Similarities Detailed study of the internal and external features of different living things, a discipline known as comparative anatomy, also provides a wealth of information about evolution. The arm of a human, the flipper of a whale, the foreleg of a horse, and the wing of a bird have different forms and are adapted to different functions. In the case of the arm, flipper, foreleg, and wing, for example, each appendage shows a similar bone structure. The study of comparative anatomy has revealed many instances of correspondence within various groups of organisms and these bodily structures are said to be homologous. Analogous and Homologous Structures Structures that are similar due to evolutionary origin, such as the forearm bones of humans, birds, porpoises, and elephants, are called homologous. Structures that evolve separately to perform a similar function are analogous. The wings of birds, bats, and insects, for example, have different embryological origins but are all designed for flight. E ) Direct Observation Information about evolutionary processes is also obtained by direct observation of species that undergo rapid modification in only a few generations. One of the most powerful tools in the study of evolutionary mechanisms is also one of the tiniest—the common fruit fly. These insects have short life spans and, therefore, short generations. This enables researchers to observe and manipulate its reproduction in the laboratory and learn about evolutionary change in the process. Scientists also study organisms in their natural environments to learn about evolutionary processes—for example, how insects develop genetic resistance to human-made pesticides, such as DDT. While pesticides are often initially effective in killing crop-destroying pests, sometimes the insect populations bounce back. The pesticide wipes out most of the population, leaving only the genetically resistant individuals to multiply and flourish. Gradually, resistant individuals predominate in the population, and the pesticide loses its effectiveness. The same phenomenon has been observed in strains of disease-causing bacteria that have become resistant to even the most powerful antibiotics. DEVELOPMENT OF EVOLUTIONARY THEORY The origins of life on Earth have been a source of speculation among philosophers, religious thinkers, and scientists for thousands of years. Many human civilizations used rich and complex creation stories and myths to explain the presence of living organisms. Ancient Greek philosophers and scientists were among the earliest to apply the principles of modern science to the mysterious complexity and variety of life around them. During early Christian times, ancient Greek ideas gave way to Creationism, the view that a single God created the universe, the world, and all life on Earth. A) Ancient Views The Greek philosopher Anaximander, believed that the Earth first existed in a liquid state. Further, he believed that humans evolved from fishlike aquatic beings who left the water once they had developed sufficiently to survive on land. Greek scientist Empedocles speculated in the 400s bc that plant life arose first on Earth, followed by animals. Empedocles proposed that humans and animals arose not as complete individuals but as various body parts that joined together randomly to form strange, fantastic creatures.. The Greek philosopher and scientist Aristotle, who lived in the 300s bc, referred to a "ladder of nature"—a progression of life forms from lower to higher—but his ladder was a static hierarchy of levels of perfection, not an evolutionary concept. Each rung on this ladder was occupied by organisms of higher complexity than the rung before it, with humans occupying the top rung. B) Linnaeus and Scientific Classification Many centuries later, the idea of a perfect and unchanging natural world—the product of divine creation—was predominant not only in religion and philosophy, but in science. Gradually, however, as knowledge accumulated from seemingly disparate areas, the beginnings of modern evolutionary theory began to take shape. A key figure in this regard was the Swedish naturalist Carolus Linnaeus, who became known as the father of modern taxonomy, the science of classifying organisms. In his major work SystemaNaturae(The System of Nature), first published in 1735, Linnaeus devised a system of classification of organisms that is still in use today. This system places living things within increasingly specific categories based on common attributes— from a general grouping (kingdom) down to the specific individual (species). Using this system, Linnaeus named nearly 10,000 plant and animal species in his lifetime. C) 19th-Century Foundations Perhaps the most prominent of those who embraced the idea of progressive change in the living world was the early 19th-century French biologist Jean-Baptiste Lamarck. Lamarck's theory, now known as Lamarckism and based in part on his study of the fossils of marine invertebrates, was that species do change over time. He believed, furthermore, that animals evolve because unfavorable conditions produce needs that animals try to satisfy. For example, short-necked ancestors of the modern giraffe voluntarily stretched their necks to reach leaves high in trees during times when food was scarce. Proponents of Lamarckism thought this voluntary use slightly changed the hereditary characteristics controlling neck growth; the giraffe then transmitted these alterations to its offspring as what Lamarck called acquired characteristics. Modern scientists know that adaptation and natural selection are far more complicated than Lamarck supposed, having nothing to do with an animal's voluntary efforts.. D) Darwin and Natural Selection Darwin published a book On the Origin of Species by Means of Natural Selection, it popularized—evolution through natural selection—set off a storm of controversy. Some of the protest came from the clergy and other religious thinkers. Charles Darwin gave the theory of natural selection, which was to become the foundation concept supporting the theory of evolution. Darwin’s theory holds that environmental effects lead to varying degrees of reproductive success in individuals and groups of organisms. This revolutionary theory was published in 1859 in Darwin’s now famous treatise On the Origin of Species by Means of Natural Selection. E) Mendel and Early Genetics Darwin did not know it, but the answer was at hand—although it would not be acknowledged in his lifetime. In the Augustinian monastery at Brünn (now Brno in the Czech Republic), Austrian monk Gregor Mendel experimented with the breeding of garden peas, observing how their traits were passed down through generations. In crossbreeding pea plants to produce different combinations of traits—color, height, smoothness, and other characteristics—Mendel noted that although a given trait might not appear in every generation, the trait did not disappear. Mendel discovered that the expression of traits hinged on whether the traits were dominant or recessive, and on how these dominant and recessive traits combined. These units are now known as genes. Mendel performed hundreds of experiments and produced precise statistical models and principles of heredity, now known as Mendel’s Laws, showing how dominant and recessive traits are expressed over generations. F) Population Genetics and the Modern Synthesis Further investigation into population genetics and such fields as paleontology, taxonomy, biogeography, and the biochemistry of genes eventually led to what is called the modern synthesis. This modern view of evolution integrated discoveries and ideas from many different disciplines. In so doing, this view reconciled the many disparate ideas about evolution into the all-encompassing evolutionary science studied today. The modern synthesis was advanced in such books as Genetics and the Origin of Species, published in 1937 by the Russian-born American geneticist Theodosius Dobzhansky; Evolution: The Modern Synthesis (1942) by British biologist Sir Julian Huxley; and Systematics and the Origin of Species (1942) by German-born American evolutionary biologist Ernst Mayr. In 1942, American paleontologist George Gaylord Simpson demonstrated from the fossil record that rates and modes of evolution are correlated: New kinds of organisms arise when their ancestors invade a new niche, and evolve rapidly to best exploit the conditions in the new environment. G) New Techniques in Molecular Biology In 1953, American biochemist James Watson and British biophysicist Francis Crick described the three-dimensional shape of DNA, the molecule that contains hereditary information in nearly all living organisms. In the following decade, geneticists developed techniques to rapidly compare DNA and proteins from different organisms. In one such procedure, electrophoresis, geneticists evaluate different specimens of DNA or proteins by observing how they behave in the presence of a slight electric charge. Such techniques opened up entirely new ways to study evolution. For the first time geneticists could quantitatively determine, for example, the genetic change that occurs during the formation of new species. H) Punctuated Equilibria Evolutionary theory has undergone many further refinements in recent years. One such theory challenges the central idea that evolution proceeds by gradual change. In 1972 the American paleontologists Stephen Jay Gould and Niles Eldredge proposed the theory of punctuated equilibria. According to this theory, trends in the fossil record cannot be attributed to gradual transformation within a lineage, but rather result from quick bursts of rapid evolutionary change. In Darwinian theory, new species arise by gradual, but not necessarily uniform, accumulation of many small genetic changes over long periods of geologic time. Gould and Eldredge recognized that speciation more likely occurs in small, isolated, peripheral populations than in the main population of the species, and that the unchanging nature of large populations contributes to the stasis of most fossil species over millions of years. Occasionally, when conditions are right, the equilibrium state becomes "punctuated" by one or more speciation events. While these events probably require thousands or tens of thousands of years to establish effective reproductive isolation and distinctive characteristics, this is but an instant in geologic time compared with an average life span of more than ten million years for most fossil species. I) Role of Extinction Historically, biologists regarded extinction as a natural outcome of competition between newly evolved, adaptively superior species and their older, more primitive ancestors. Recently, however, paleontologists have discovered that many different, unrelated species living in large ecosystems tend to become extinct at nearly the same time. The cause is always some sort of climate change or catastrophic event that produces conditions too severe for most organisms to endure. Moreover, new species evolve after the wave of extinction removes many of the species that previously occupied a region for millions of years. Thus extinction does not result from evolution, but actually causes it. Ammonite Fossil Now extinct, the ammonite mollusk was a shelled cephalopod, usually appearing in a coiled, spiral shape. The extinction of ammonites coincided with the extinction of dinosaurs, and more than 75 percent of all the species that lived at the time. By eliminating dominant species and so opening possibilities for different organisms to thrive, mass extinctions change the make up of life on Earth. HUMAN EVOLUTION Human evolution is the phenotypic history of the genus Homo, including the emergence of Homosapiens as a distinct species and as a unique category of hominids ("great apes") and mammals. The study of human evolution uses many scientific disciplines, including physical anthropology, primatology, archaeology, linguistics and genetics. Scientists have estimated that humans branched off from their common ancestor with chimpanzees about 5–7 million years ago. Several species and subspecies of Homo evolved and are now extinct, introgressed or extant. Examples includeHomoerectus(which inhabited Asia, Africa, and Europe) and Neanderthals. Archaic Homo sapiens evolved between 400,000 and 250,000 years ago. All species of organisms originate through the process of biological evolution. In this process, new species arise from a series of natural changes. In animals that reproduce sexually, including humans, the term species refers to a group whose adult members regularly interbreed, resulting in fertile offspring—that is, offspring themselves capable of reproducing. Scientists classify each species with a unique, two-part scientific name. In this system, modern humans are classified as Homo sapiens. The mechanism for evolutionary change resides in genes—the basic units of heredity. Genes affect how the body and behavior of an organism develop during its life. The information contained in genes can change—a process known as mutation. The way particular genes are expressed—how they affect the body or behavior of an organism—can also change. Over time, genetic change can alter a species’s overall way of life, such as what it eats, how it grows, and where it can live. Genetic changes can improve the ability of organisms to survive, reproduce, and, in animals, raise offspring. This process is called adaptation. Parents pass adaptive genetic changes to their offspring, and ultimately these changes become common throughout a population—a group of organisms of the same species that share a particular local habitat. Many factors can favor new adaptations, but changes in the environment often play a role. Ancestral human species adapted to new environments as their genes changed, altering their anatomy (physical body structure), physiology (bodily functions, such as digestion), and behavior. Over long periods, evolution dramatically transformed humansand their ways of life. Geneticists estimate that the human line began to diverge from that of the African apes between 8 million and 5 million years ago (paleontologists have dated the earliest human fossils to at least 6 million years ago). This figure comes from comparing differences in the genetic makeup of humans and apes, and then calculating how long it probably took for those differences to develop. Using similar techniques and comparing the genetic variations among human populations around the world, scientists have calculated that all people may share common genetic ancestors that lived sometime between 290,000 and 130,000 years ago. Evolution of Human Beings REFERENCES 1) Wikipedia 2)Microsoft Encarta Reference Library 2004 3) NCERT 12th Biology Book