Download Chapter30

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts

Power MOSFET wikipedia, lookup

Audio crossover wikipedia, lookup

Tektronix analog oscilloscopes wikipedia, lookup

Cellular repeater wikipedia, lookup

Phase-locked loop wikipedia, lookup

Surge protector wikipedia, lookup

Oscilloscope wikipedia, lookup

CMOS wikipedia, lookup

Index of electronics articles wikipedia, lookup

Standing wave ratio wikipedia, lookup

Flip-flop (electronics) wikipedia, lookup

Test probe wikipedia, lookup

Oscilloscope types wikipedia, lookup

Oscilloscope history wikipedia, lookup

Current source wikipedia, lookup

Audio power wikipedia, lookup

Public address system wikipedia, lookup

Analog-to-digital converter wikipedia, lookup

Integrating ADC wikipedia, lookup

Power electronics wikipedia, lookup

Scattering parameters wikipedia, lookup

Transistor–transistor logic wikipedia, lookup

Voltage regulator wikipedia, lookup

Zobel network wikipedia, lookup

Wilson current mirror wikipedia, lookup

Resistive opto-isolator wikipedia, lookup

Two-port network wikipedia, lookup

Radio transmitter design wikipedia, lookup

Current mirror wikipedia, lookup

Switched-mode power supply wikipedia, lookup

Regenerative circuit wikipedia, lookup

Tube sound wikipedia, lookup

Negative feedback wikipedia, lookup

Amplifier wikipedia, lookup

Schmitt trigger wikipedia, lookup

Wien bridge oscillator wikipedia, lookup

Rectiverter wikipedia, lookup

Valve RF amplifier wikipedia, lookup

Opto-isolator wikipedia, lookup

Operational amplifier wikipedia, lookup

Transcript
Chapter 30
Operational Amplifiers
Introduction
• Characteristics
– High input impedance
– Low output impedance
– High open-loop gain
– Two inputs
– One output
– Usually + and – dc power supplies
2
Introduction
• Ideal Characteristics
– zin (inverting) ≈ ∞
– zin (non-inverting) ≈ ∞
– zout ≈ 0
– Av ≈ ∞
Inverting
Input
V+
-
Output
+
Non-Inverting
Input
V-
3
Introduction
• Uses
– Comparators
– Voltage amplifiers
– Oscillators
– Active filters
– Instrumentation
amplifiers
Inverting
Input
V+
-
Output
+
Non-Inverting
Input
V-
4
Introduction
• Single-ended amplifier
– One input grounded
– Signal at other input
• Double-ended
amplifier/Differential
amplifier
Inverting
Input
V+
-
Output
+
Non-Inverting
VInput
– Signals at both inputs
5
Differential Amplifier and
Common-Mode Signals
• Basic differential amplifier
– Q1 identical to Q2
– RC1 = RC2
–
IC1 = IC2 and emitter currents equal
– Also, IC ≈ IE for high β
– and VBE ≈ 0.7 V
• Similar calculation of Bias

6
Differential Amplifier and
Common-Mode Signals
◦
IC1
VCC
RC1
RC2
Q1
__
_
IE
Q2
◦
IC2
__
_
-
RE
–VEE
7
Differential Amplifier and CommonMode Signals
• Apply same signal to
both Bases
Vout = Vout1 – Vout2 ≈ 0
– Eliminates commonmode signals
– 60 Hz
– Noise
◦ VCC
IC1
RC1
Q1
__
_
-
RC2
IC2
Q2
IE
RE
__
_
-
◦
–VEE
8
Differential Amplifier and CommonMode Signals
• Apply sinusoids to
both bases:
– Same amplitude,
180° difference in
phase,
 if Vin1 = –Vin2
Vout = 2Vin
◦ VCC
IC1
RC1
Q1
__
_
-
RC2
IC2
Q2
IE
RE
__
_
-
◦
–VEE
9
Differential Amplifier and CommonMode Signals
• Common-mode signals
– Differential voltage gain
vout
Avd 
vd
also called open-loop voltage gain
20,000 ≤ Av ≤ 200,000
10
Differential Amplifier and CommonMode Signals
• Common-mode signals
– Common-mode voltage gain
vout
Avc 
vc
11
Differential Amplifier and CommonMode Signals
• Common-mode rejection ratio (CMRR)
– Equations
Avd
CMRR 
Avc
[CMRR]db  20 log10 (CMRR)
– Values
70db  CMRR  90db
12
Differential Amplifier and
Common-Mode Signals
• Noise
– Static in audio signal
– Increases as signal is
amplified
– Common mode signal
– Significantly reduced
by differential amplifier
vnoise
vin
__
_
- __
_
-
+
13
Negative Feedback
• Op-amp
– Large differential, open-loop voltage gain
• Avol ≈ 100,000
– Small input yields saturated output (VCC or
VEE)
14
Negative Feedback
• Negative feedback
– Returns a portion of output signal to the input
– Open-loop voltage gain decreased
15
Negative Feedback
• Input impedance still
high
• Output impedance low
• Circuit voltage gain, Av
– Adjustable
– Stable
vout
Av 
vin
Negative
Feedback
+
vout
vin
__
_
16
Inverting Amplifier
• Basic circuit
17
Inverting Amplifier
• Output 180° out of phase with input
• Significant decrease in gain
– Gain now called closed-loop voltage gain
• Output impedance ≈ 0
• vd ≈ 0
18
Inverting Amplifier
• Inverting input at virtual
ground, vin(-) ≈ 0
• iin to op-amp ≈ 0
• Input current only
dependent on vin and R1
• Avcl only dependent on
input resistor and
feedback resistor
vin
iin 
R1
vout
iin RF
Avcl 

vin
iin R1
RF
Avcl  
R1
19
Inverting Amplifier
• Model
vd ≈ 0
Rin ≈ ∞
iin = if
zin ≈ R1
RF
R1
i=0
+
i
vin in
if
+
vd Rin
+
-
__
_
-
Rout
Avolvd internal +__
_
vout(OC)
-
-
20
Inverting Amplifier
• Low output
impedance
zout 
zout
RF
vout (OC )
iout ( SC )
 Rout 
 (1  Avcl ) 

 Avol 
R1
i=0
+
i
vin in
if
+
vd Rin
-
__
_
-
Rout
-
Avolvd
internal+__
_
-
i1
iout(sc)
__
_
21
Non-Inverting Amplifier
• Circuit
22
The Non-Inverting Amplifier
•
•
•
•
Very high input impedance
Voltage gain related to the two resistors
Very low output impedance
Excellent buffer
23
Non-Inverting Amplifier
• Differential voltage
– vd ≈ 0
• Input current to op-amp
–i=0
• Closed-loop voltage gain (Avcl) is a resistor
ratio
24
Non-Inverting Amplifier
vout
Av 
vin
RF iF  R1iF
Av 
R1iF
Avcl
RF

1
R1
25
Non-Inverting Amplifier
• Model
• Input impedance
vd
iin 
Rin
 Avol 
zin  1 
 Rin
 Avcl 
vin
iin
zin
+
vd Rin
-
+
R1
-
__
_
-
-
vout
Rout
Avolvd
internal __
_
+ - +
RF
if
26
Non-Inverting Amplifier
• Model
• Output impedance
iout ( sc )  i2  i f
zout
 Avcl

 Avol

 Rout

iin
-
+
R1
-
__
_
-
i2
+
vd Rin
-
Rout
Avolvd
internal __
_
+ - +
RF
if
__
_
-
iout(sc)
27
Non-Inverting Amplifier
•
•
•
•
•
Very high zin
Very low zout
Good buffer circuit
Also called voltage follower (gain = 1)
Or adjustable gain > 1
28
Non-Inverting Amplifier
• Voltage Follower Buffer Circuit
– Gain = 1
– High impedance source drives low impedance
load
29
Op-Amp Specifications
• LM 741 series
– Inexpensive
– Widely used
– Good general specifications
– Characteristic of all op-amp specifications
• Provide Minimum, Typical, and Maximum
ratings
30
Op-Amp Specifications
• Input Offset Voltage, Vio
– LM741C, Vio typical is 2 millivolts
– Model is voltage source with value, Vio in
series with + input
31
Op-Amp Specifications
• Input Offset Voltage, Vio
– Without feedback this would saturate output
with no input
– With negative feedback, output due to Vio is
closed-loop gain times Vio
32
Op-Amp Specifications
• Input Offset Current, Ios
• Ios = Difference between bias currents at +
and – inputs of op-amp
• 741C typical Ios is 20 nanoamps
• Multiplying resistor used to measure Ios
33
Op-Amp Specifications
• Input Resistance
– 741C: minimum = .3 MΩ, typical = 2 MΩ
• Open-Loop Voltage gain (Avol)
– 741C: Avol = Large Signal Voltage Gain
• minimum = 20,000, typical = 200,000
– Closely related to Bandwidth, BW
34
Op-Amp Specifications
• Gain-bandwidth product
– 741C = 1,000,000 = 106 MHz
35
Op-Amp
Specifications
• Gain versus
frequency curve
for op-amp
36
Op-Amp Specifications
• Slew rate
– Maximum rate of change of output voltage
V
Slew Rate 
t
• 741C maximum slew rate = 0.5 V/μsec
37
Op-Amp Specifications
• Fastest time for output to go from 0 to 10
volts is 20 μsec
• Can distort waveforms that have too fast
a rise time
38
Op-Amp Specifications
• Slew rate required for
Sinusoid with frequency
f and amplitude A
• Maximum amplitude of
a sine wave with
frequency f for a given
slew rate
v  A sin(t )
dv
  A cos(t )
dt
slew rate  2 fA
slew rate
f max 
2 A
slew rate
Amax 
2 f
39
Op-Amp Specifications
• Bias
Compensation: use
RC = R1||RF
40
Troubleshooting an Op-Amp Circuit
• Problems occur when circuit is first built
• Most important
– Correct connection of dual power supply
• Connecting a – supply to a + input (or vice
versa) can burn out an op-amp
• Single earth ground
• Short connecting wires
41