* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Discrete Structure
Jesús Mosterín wikipedia , lookup
Fuzzy logic wikipedia , lookup
Meaning (philosophy of language) wikipedia , lookup
Axiom of reducibility wikipedia , lookup
Willard Van Orman Quine wikipedia , lookup
Tractatus Logico-Philosophicus wikipedia , lookup
Mathematical logic wikipedia , lookup
History of logic wikipedia , lookup
First-order logic wikipedia , lookup
History of the function concept wikipedia , lookup
Combinatory logic wikipedia , lookup
Boolean satisfiability problem wikipedia , lookup
Modal logic wikipedia , lookup
Foundations of mathematics wikipedia , lookup
Bernard Bolzano wikipedia , lookup
Intuitionistic logic wikipedia , lookup
Quantum logic wikipedia , lookup
Natural deduction wikipedia , lookup
Analytic–synthetic distinction wikipedia , lookup
Propositional formula wikipedia , lookup
Propositional calculus wikipedia , lookup
Laws of Form wikipedia , lookup
Law of thought wikipedia , lookup
Discrete Structure รศ.ดร. สาธิต อินทจักร์ Goals of a Discrete Mathematics • Mathematical Reasoning: to read, comprehend, and construct math. arg. – Logic, methods of proof • Combinatorial Analysis: – Counting problems • Discrete Structures: to represent discrete objects and relationships between objects – Sets, permutations, relations, graphs, trees, and finitestate machines • Algorithmic Thinking: – Both English and pseudocode Introduction to Discrete mathematics • Discrete Mathematics (DM) เป็ นทฤษฎีพ้นื ฐานทาง เทคโนโลยีที่มีประโยชน์อย่างมากในปัจจุบนั • ในการศึกษาเพื่อให้เข้าใจคอมพิวเตอร์ท้ งั ส่ วนของฮาร์ดแวร์และ ซอฟต์แวร์ ระบบการสื่ อสาร การประมวลผลสัญญาณ ทฤษฎี สารสนเทศ ฯลฯ จาเป็ นจะต้องเรี ยนรู ้ DM • นอกจากนี้ DM ยังเป็ น Prerequisite(PR) ของ คณิ ตศาสตร์และทฤษฎีในศาสตร์ทางคอมพิวเตอร์ ดังนั้นถ้าต้องการ ที่จะรู ้ศาสตร์ทางคอมพิวเตอร์อย่างแท้จริ งจึงจาเป็ นจะต้องศึกษา DM ให้เข้าใจอย่างถ่องแท้ What exactly is DM? • DM is mathematics that uses only arithmetic and algebra, and does not involve calculus. • DM จะแตกต่างจากแคลคูลสั ที่ DM ใช้อธิบายการเปลี่ยนแปลง ของกระบวนการอย่างต่อเนื่อง เป็ นแนวคิดพื้นฐานทางวิทยาศาสตร์ และเทคโนโลยีในเชิงการปฏิวตั ิทางด้านอุตสาหกรรม ส่ วนแนวคิด ของ DM ก็มีแนวคิดพื้นฐานของวิทยาศาสตร์และเทคโนโลยี เช่นกัน แต่จะมุงไปทางด้านคอมพิวเตอร์ For The Student • PR ของวิชานี้คือพีชคณิ ตของมัธยมปลาย • For the students, the best way to study is to try to do the homework problems before reading the texts, and to read the texts only when you get stuck. • เอกสารประกอบการเรี ยน – แนวคิดหลักมูลทางคณิ ตศาสตร์ (MA 201), คณิ ตศาสตร์ทางด้านวิธีการจัดหมู่ (CO 233) มหาวิทยาลัยรามคาแหง – Mathematical Structures for Computer Science, Judith L. Gersting [QA39.2G435m] – Discrete Mathematics and Its Applications, 5e, Rosen, McGrawHill, 2003, [QA39.3 R67] ตรรกะ(Logic) เมื่อเรี ยนจบเรื่ องตรรกะแล้ว: • มีความรู ้ในการนาสัญลักษณ์ทางตรรกะไปใช้งานใน ประพจน์และพรี ดิเคตลอจิก • สามารถหาค่าความจริ งของนิพจน์ในประพจน์ได้ • หาค่าความจริ งในการแปลความหมายของนิพจน์ในพรี ดิเค ตลอจิกได้ • สามารถพิสูจน์ประพจน์และพรี ดิเคตลอจิกเพื่อกาหนด Validity ได้ ประพจน์ (Propositions) • ประโยคที่สามารถกาหนดค่าความจริ ง (Truth Values) ได้ ในตรรกคณิ ตศาสตร์จะเรี ยกประโยคประเภทนี้วา่ “ข้อความ (statement)” หรื ออาจจะเรี ยกว่า “ประพจน์ (Proposition)” • ประโยคที่ไม่มีค่าความจริ งจะไม่เป็ นประพจน์ เช่นประโยคคาถาม ประโยคขอร้อง ประโยคคาสัง่ • ประโยคต่อไปนี้ขอ้ ใดเป็ นประพจน์ – จงตั้งใจเรี ยน – โลกกลม – 2+2 = 5 Propositional Logic • Propositional Logic เป็ นตรรกของข้อความหลายๆ ข้อความที่เกี่ยวเนื่องกัน (compound statements) โดยจะ เรี ยกตรรกนี้วา่ Boolean connectives. Some applications in computer science • Design of digital electronic circuits. George Boole • Expressing conditions in programs. (1815-1864) • Queries to databases & search engines. นิยามของประพจน์ นิยาม: ประพจน์ใดๆ (มักจะแทนด้วย p, q, r, …) ก็คือ: • ข้ อความ (ส่ วนใหญ่ แล้ วจะอยู่ในรู ปของประโยค) ที่มีความหมาย บางอย่างและความหมายจะต้องมีความชัดเจน • ประพจน์จะต้องมีค่าความจริ ง (Truth value) โดยค่าความจริ ง นี้จะมีค่าเป็ นจริง (true: T) หรื อไม่กเ็ ท็จ (false: F) ค่าความจริ งจะต้องมีค่าเพียงค่าใดค่าหนึ่ ง คือไม่จริ งก็เท็จโดยไม่มีค่าระหว่าง จริ งกับเท็จ ซึ่ งค่าความจริ งของข้อความ มักจะขึ้นอยูก่ บั สถานะการณ์หรื อ บริ บท และเมื่อเราได้ศึกษาทฤษฎีความน่าจะเป็ น จะมีการกาหนดระดับของค่าความ จริ งที่อยูร่ ะหว่าง T กับ F แต่ ณ ตอนนีใ้ นจาไว้ ว่าค่ าความจริงของ ประพจน์ มีเพียงจริงกับเท็จเท่ านั้น ตัวเชื่ อมต่ อข้ อความ (Logical Connectives) • An operator or connective combines one or more operand expressions into a larger expression. (E.g., “+” in numeric exprs.) – Unary operators take 1 operand (e.g., −3); – binary operators take 2 operands (eg 3 4). • Propositional or Boolean operators operate on propositions (or their truth values) instead of on numbers. ตัวดาเนินการบูลนี โดยทัว่ ไป Formal Name Nickname Operand Symbol Negation operator NOT Unary ¬,~ Conjunction operator AND Binary Disjunction operator OR Binary Exclusive-OR operator XOR Binary Implication operator IMPLIES Binary Biconditional operator IFF Binary ↔ ตัวดาเนินการปฏิเสธ (Negation Operator) The unary negation operator “¬” (NOT) transforms a prop. into its logical negation. E.g. If p = “I have brown hair.” then ¬p = “I do not have brown hair.” p p The truth table for NOT: T :≡ True; F :≡ False “:≡” means “is defined as” T F F T ข้ อความร่ วม (Conjunctive Statements) The binary conjunction operator “” (AND) combines two propositions to form their logical conjunction. E.g. If ND p=“I will have salad for lunch.” and q=“I will have steak for dinner.”, then pq=“I will have salad for lunch and I will have steak for dinner.” Remember: “” points up like an “A”, and it means “ND” ตารางค่ าความจริงของ AND • Note that: a conjunction p1 p2 … pn of n propositions will have 2n rows in its truth table. Operand columns p F F T T q F T F T pq F F F T • Remark. ¬ and operations together are sufficient to express any Boolean truth table! ตัวเชื่ อมการเลือก (Disjunctive Operator) The binary disjunction operator “” (OR) combines two propositions to form their logical disjunction. p=“My car has a bad engine.” q=“My car has a bad carburetor.” pq=“Either my car has a bad engine, or my car has a bad carburetor.” After the downwardMeaning is like “and/or” in English. pointing “axe” of “” splits the wood, you can take 1 piece OR the other, or both. ตารางค่ าความจริงของ OR Note that pq means p q pq that p is true, or q is F F F Note true, or both are true! F T T difference So, this operation is T F T from AND also called inclusive or, T T T because it includes the possibility that both p and q are true. Remark.“¬” and “” together are also universal. ข้ อความมีเงื่อนไข Use parentheses to group sub-expressions: “I just saw my old friend, and either he’s grown or I’ve shrunk.” = f (g s) (f g) s would mean something different f g s would be ambiguous By convention, “¬” takes precedence over both “” and “”. ¬s f means (¬s) f , not ¬ (s f) A Simple Exercise • Let p=“It rained last night”, q=“The sprinklers came on last night,” r=“The lawn was wet this morning.” • Translate each of the following into English: • ¬p = “It didn’t rain last night.” • r ¬p = • ¬rpq= “The lawn was wet this morning, and it didn’t rain last night.” “Either the lawn wasn’t wet this morning, or it rained last night, or the sprinklers came on last night.” The Exclusive Or Operator The binary exclusive-or operator “” (XOR) combines two propositions to form their logical “exclusive or” (exjunction?). p = “I will earn an A in this course,” q = “I will drop this course,” p q = “I will either earn an A in this course, or I will drop it (but not both!)” ตารางค่ าความจริงของ Exclusive-Or Note that pq means that p is true, or q is true, but not both! p F F T T q pq F F T T F T T F This operation is Note called exclusive or, difference from OR. because it excludes the possibility that both p and q are true. Remark. “¬” and “” together are not universal. ความคลุมเครื อในตรรกะของภาษาพูด Note that English “or” can be ambiguous regarding the “both” case! p q p "or" “Pat is a singer or F F F Pat is a writer.” F T T “Pat is a man or T F T Pat is a woman.” - T T Need context to disambiguate the meaning! For this class, assume “or” means inclusive. ? q ข้ อความมีเงื่อนไข antecedent consequent The implication p q states that p implies q. i.e., If p is true, then q is true; but if p is not true, then q could be either true or false. E.g., let p = “You study hard.” q = “You will get a good grade.” p q = “If you study hard, then you will get a good grade.” (else, it could go either way) ตารางค่ าความจริงของข้ อความมีเงื่อนไข p q is false only when p is true but q is not true. p q does not say that p causes q! p q does not require that p or q are ever true! p F F T T E.g. “(1=0) ox can fly” is TRUE! q pq F T T T The F F only False T T case! ตัวอย่ างของข้ อความมีเงื่อนไข • “If this lecture ever ends, then the sun will rise tomorrow.” True or False? • “If Tuesday is a day of the week, then I am a penguin.” True or False? • “If 1+1=6, then I will get A.” True or False? • “If the moon is made of green cheese, then I am richer than Bill Gates.” True or False? ข้ อความมีเงื่อนไขสองทาง (Bicondition) The biconditional p q states that p is true if and only if (IFF) q is true. p = “x+3=7” q = “x=4” p q = “x+3=7 ก็ต่อเมื่อ x=4” ตารางค่ าความจริงของ Biconditional p q means that p and q have the same truth value. Remark. This truth table is the exact opposite of ’s! Thus, p q means ¬(p q) p F F T T q pq F T T F F F T T p q does not imply that p and q are true, or that either of them causes the other, or that they have a common cause. สรุปตัวดาเนินการแบบบูล We have seen 1 unary operator and 5 binary operators. Their truth tables are below. p F F T T q F T F T p pq pq pq pq pq T F F F T T T F T T T F F F T T F F F T T F T T ตรรกสมมูล(Logical Equivalence) • Compound proposition p is logically equivalent to compound proposition q, written pq, IFF the compound proposition pq is a tautology. • Compound propositions p and q are logically equivalent to each other IFF p and q contain the same truth values as each other in all rows of their truth tables. การพิสูจน์ ความสมมูลกันโดยใช้ ตารางค่ าความจริง Ex. Prove that pq (p q). p F F T T q F T F T pq F T T T p T T F F q p q (p q) T T F F F T T F T F F T สั จนิรันดร์ (Tautology) ความขัดแย้ ง(Contradiction) A tautology is a compound proposition that is true no matter what the truth values of its atomic propositions are! Ex. p p [What is its truth table?] A contradiction is a compound proposition that is false no matter what! Ex. p p [Truth table?] Other compound props. are contingencies. กฎของความสมมูล These are similar to the arithmetic identities you may have learned in algebra, but for propositional equivalences instead. They provide a pattern or template that can be used to match all or part of a much more complicated proposition and to find an equivalence for it. ตัวอย่ างของกฎความสมมูล • • • • • • Identity: pT p pF p Domination: pT T pF F Idempotent: pp p pp p Double negation: p p Commutative: pq qp pq qp Associative: (pq)r p(qr) (pq)r p(qr) กฎอื่นๆ ของความสมมูล p(qr) (pq)(pr) p(qr) (pq)(pr) • De Morgan’s: (pq) p q (pq) p q Augustus De Morgan • Trivial tautology/contradiction: (1806-1871) p p T p p F • Distributive: การนิยามตัวดาเนินการต่ างๆ ด้ วยความสมมูล Using equivalences, we can define operators in terms of other operators. Exclusive or: pq (pq)(pq) pq (pq)(qp) Implies: pq p q Biconditional: pq (pq) (qp) pq (pq) ตัวอย่ างของความสมมูล Check using a symbolic derivation whether (p q) (p r) p q r. (p q) (p r) (p q) (p r) [Expand definition of ] (p q) ((p r) (p r)) [Expand defn. of ] (p q) ((p r) (p r)) [DeMorgan’s Law] (p q) ((p r) (p r)) (q p) ((p r) (p r)) [ commutes] cont. q (p ((p r) (p r))) [ associative] q (((p (p r)) (p (p r))) [distrib. over ] q (((p p) r) (p (p r))) [assoc.] q ((T r) (p (p r))) [trivail taut.] q (T (p (p r))) [domination] q (p (p r)) [identity] q (p (p r)) q (p (p r)) [DeMorgan’s] q ((p p) r) [Assoc.] q (p r) [Idempotent] (q p) r [Assoc.] p q r [Commut.] Q.E.D. Remark. Q.E.D. (quod erat demonstrandum) ทบทวนตรรกประพจน์ Atomic propositions: p, q, r, … Boolean operators: Compound propositions: s : (p q) r Equivalences: pq (p q) Proving equivalences using: Truth tables. Symbolic derivations. p q r … Predicate Logic • Predicate logic is an extension of propositional logic that permits concisely reasoning about whole classes of entities. • Propositional logic (recall) treats simple propositions (sentences) as atomic entities. • In contrast, predicate logic distinguishes the subject of a sentence from its predicate. – Remember these English grammar terms? Applications of Predicate Logic • It is the formal notation for writing perfectly clear, concise, and unambiguous mathematical definitions, axioms, and theorems (more on these in module 2) for any branch of mathematics. • Predicate logic with function symbols, the “=” operator, and a few proof-building rules is sufficient for defining any conceivable mathematical system, and for proving anything that can be proved within that system! Other Applications • Predicate logic is the foundation of the field of mathematical logic, which culminated in Gödel’s incompleteness theorem, which revealed the ultimate limits of mathematical thought: Kurt Gödel 1906-1978 – Given any finitely describable, consistent proof procedure, there will always remain some true statements that will never be proven by that procedure. • i.e., we can’t discover all mathematical truths, unless we sometimes resort to making guesses. Practical Applications of Predicate Logic • It is the basis for clearly expressed formal specifications for any complex system. • It is basis for automatic theorem proverbs and many other Artificial Intelligence systems. – E.g. automatic program verification systems. • Predicate-logic like statements are supported by some of the more sophisticated database query engines and container class libraries – these are types of programming tools. Subjects and Predicates • In the sentence “The dog is sleeping”: – The phrase “the dog” denotes the subject the object or entity that the sentence is about. – The phrase “is sleeping” denotes the predicate- a property that is true of the subject. • In predicate logic, a predicate is modeled as a function P(·) from objects to propositions. – P(x) = “x is sleeping” (where x is any object). More About Predicates • Convention. Lowercase variables x, y, z... denote objects/entities; uppercase variables P, Q, R… denote propositional functions (predicates). • Remark. Keep in mind that the result of applying a predicate P to an object x is the proposition P(x). But the predicate P itself (e.g. P=“is sleeping”) is not a proposition (not a complete sentence). – E.g. if P(x) = “x is a prime number”, P(3) is the proposition “3 is a prime number.” Propositional Functions • Predicate logic generalizes the grammatical notion of a predicate to also include propositional functions of any number of arguments, each of which may take any grammatical role that a noun can take. – E.g. let P(x,y,z) = “x gave y the grade z”, then: if x=“Mike”, y=“Mary”, z=“A”, then P(x,y,z) = “Mike gave Mary the grade A.” Universes of Discourse (U.D.s) • The power of distinguishing objects from predicates is that it lets you state things about many objects at once. E.g., let P(x)=“x+1>x”. We can then say, “For any number x, P(x) is true” instead of (0+1>0) (1+1>1) (2+1>2) ... • The collection of values that a variable x can take is called x’s universe of discourse. Quantifier Expressions • Quantifiers provide a notation that allows us to quantify (count) how many objects in the univ. of disc. satisfy a given predicate. • “” is the FORLL or universal quantifier. x P(x) means for all x in the u.d., P holds. • “” is the XISTS or existential quantifier. x P(x) means there exists an x in the u.d. (that is, 1 or more) such that P(x) is true. The Universal Quantifier Example: Let the u.d. of x be parking spaces at the university. Let P(x) be the predicate “x is full.” Then the universal quantification of P(x), x P(x), is the proposition: – “All parking spaces at UF are full.” – i.e., “Every parking space at UF is full.” – i.e., “For each parking space at UF, that space is full.” The Existential Quantifier Example: Let the u.d. of x be parking spaces at the university. Let P(x) be the predicate “x is full.” Then the existential quantification of P(x), x P(x), is the proposition: – “Some parking space at UF is full.” – “There is a parking space at UF that is full.” – “At least one parking space at UF is full.” Free and Bound Variables • An expression like P(x) is said to have a free variable x (meaning, x is undefined). • A quantifier (either or ) operates on an expression having one or more free variables, and binds one or more of those variables, to produce an expression having one or more bound variables. Example of Binding P(x,y) has 2 free variables, x and y. x P(x,y) has 1 free variable, and one bound variable. [Which is which?] “P(x), where x=3” is another way to bind x. An expression with zero free variables is a bona-fide (actual) proposition. An expression with one or more free variables is still only a predicate: e.g. let Q(y) = x P(x,y) Nesting of Quantifiers Example: Let the u.d. of x & y be people. Let L(x,y)=“x likes y” (a predicate w. 2 f.v.’s) Then y L(x,y) = “There is someone whom x likes.” (A predicate w. 1 free variable, x) Then x (y L(x,y)) = “Everyone has someone whom they like.” (A __________ with ___ free variables.) Review: Predicate Logic • Objects x, y, z, … • Predicates P, Q, R, … are functions mapping objects x to propositions P(x). • Multi-argument predicates P(x, y). • Quantifiers: [x P(x)] :≡ “For all x’s, P(x).” [x P(x)] :≡ “There is an x such that P(x).” • Universes of discourse, bound & free vars. Quantifier Exercise กาหนดให้ R(x,y)=“x รัก y,” ให้เขียนประพจน์เปิ ดต่อไปนี้เป็ น ประโยค: • x(y R(x,y))= ทุกๆคนรักบางคน • y(x R(x,y))= มีบางคนที่ถกู ทุกๆคนรัก • x(y R(x,y))= มีบางคนรักทุกๆคน • y(x R(x,y))= ทุกคนถูกรักโดยบางคน • x(y R(x,y))= แต่ละคน(ทุกๆคน)รักทุกคน Quantifier Exercise(Cont.)