* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Single component and binary mixtures of BECs in double
Quantum fiction wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Tight binding wikipedia , lookup
Bell's theorem wikipedia , lookup
Orchestrated objective reduction wikipedia , lookup
Molecular Hamiltonian wikipedia , lookup
Measurement in quantum mechanics wikipedia , lookup
Quantum computing wikipedia , lookup
Quantum entanglement wikipedia , lookup
Quantum decoherence wikipedia , lookup
Hydrogen atom wikipedia , lookup
Interpretations of quantum mechanics wikipedia , lookup
Coherent states wikipedia , lookup
Electron configuration wikipedia , lookup
EPR paradox wikipedia , lookup
Quantum teleportation wikipedia , lookup
Quantum key distribution wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
Quantum machine learning wikipedia , lookup
History of quantum field theory wikipedia , lookup
Density matrix wikipedia , lookup
Hidden variable theory wikipedia , lookup
Quantum group wikipedia , lookup
Canonical quantization wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Single component and
binary mixtures of BECs
in a double-well
Bruno Juliá-Díaz
Departament d’Estructura i Constituents
de la Matèria
Universitat de Barcelona (Spain)
In collaboration with:
D. Dagnino, M. Guilleumas, M. Lewenstein,
J. Martorell, M. Melé-Messeguer, A. Polls
Summary
1.
2.
3.
4.
5.
Introduction
Single component case
Static properties of the
two-site Bose-Hubbard
hamiltonian
Mean-field vs exact
dynamics
(brief) Binary mixtures
of BECs
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
Josephson (GP)
1150 atoms 87Rb, trap conditions
as in Albiez/Oberthaler
The initial phase is set to ZERO
for all z
Definitions (standard):
Z(t) = (Nleft(t)-Nright(t))/Ntotal
Phase difference= =right-left
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
Self trapping (GP)
1150 atoms, trap conditions as
before
If the initial imbalance is large
enough, no Josephson oscillation
occurs. Instead a self trapping
regime appears
Smerzi et al. (1997)
This is a genuine effect of having
atom-atom contact interactions
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
Experimentally…
Albiez et al. (2005)
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
A simple, but many-body H
Lets consider the following two-site Bose-Hubbard model:
J:
hopping parameter >0
U:
atom-atom interaction >0 (proportional to g)(attractive)
Epsilon: Bias>0, promotes the left well
The bias is here taken very small, Epsilon<<J
It is customary to define, =NU/J
Milburn et al (1997)
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
One body density matrix
The one body density matrix reads,
1 aL aL
N aR aL
aL aR
aR aR
Eigenvalues, n1+n2=1
If the system is fully condensed,
then the eigenvalues are 1 and 0.
The eigenvector corresponding to 1 is,
Departure from 0,1 indicates the system is fragmented
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
semiclassics
The semiclassics is governed by the well known:
z:
:
2J:
population imbalance, (NL-NR)/N
phase difference, R-L
Rabi time (the time it takes for the atoms to go
from left to right and back in absence of atomatom interactions)
Smerzi et al. (1997) (Assuming a two mode ansatz for the Gross Pitaevskii equation)
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
Ground and highest excited state
With the usual base:
|ck|2
Black, ground state
Red, highest excited
|NL,NR>={|N-k,k>}=
{ |N,0>,|N-1,1>,…,|0,N>}
Cat-like state
The hamiltonian can be written
as an N+1 square matrix (here
50+1)
Any N particle vector can be
written as,
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
Properties of the whole spectrum
=0
GS: binomial
=4
In the plot,
x-axis: k index
y-axis: eigenvector index
1, ground,
N+1 highest excited
Color, proportional to |ck|2
GS: Cat-like
=8
GS: Trapped
=12
GS: Trapped
N=50, bias=J/10^10
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
Population imbalance
Ground state: imbalance
NU/J
Blue dashed: Semiclassical prediction: sqrt(1-4/^2)
Red solid: quantum result for the imbalance
Band: dispersion of the imbalance
Julia-Diaz, Dagnino, Lewenstein, Martorell, Polls, PRA (2010)
N=50, bias=J/10^10
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
Variation with N
The semiclassical behavior is
the same in all cases (the bias is
taken the same)
The size of the highly disperse
region decreases abruptly as N
is increased
For which value of does the
‘quantum hop’ take place? It
turns out to be an interesting
interplay between N, U, J and
the bias:
Julia-Diaz, Martorell, Polls (2010)
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
Dispersion of z versus N and
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
Occupations of the orbitals
Blue dashed: Semiclassical prediction 1,0
Red solid: quantum result for the eigenvalues of the one body
density matrix
N=50, epsilon=J/10^10
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
Experimentally observed…
Beautiful experimental exploration ..but just of the mean field
properties. Internal Josephson. (repulsive interactions) (N=500)
T. Zibold et al. (Oberthaler’s group), arXiv 1008.3057
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
G.S. evolution with Lambda
Most occupied eigenstate of ,
normalized to its eigenvalue
dotted: Semiclassical
Red/Blue: quantum
results
N=50, epsilon=J/10^10
Less occupied eigenstate of ,
normalized to its eigenvalue
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
For fixed N and
starting from a ‘meanfield’ like state:
•The smaller the
interaction, the
better the meanfield describes the
exact result.
•Fragmentation
builds up with time
Population imbalance
And orbital ocupations
Time evolution of |N,0
Blue solid: Semiclassical
Black solid: quantum for the imbalance
Red dashed: n1, black dotted, n2
N=50, epsilon=J/10^10
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
Time evolution of |N,0
NU/J=1.5
NU/J=5
Population imbalance
And orbital ocupations
NU/J=1
Mele-Messeguer, M.Thesis. (2010)
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
Time evolution of |N,0
Population imbalance
And orbitalocupations
When starting from a ‘mean-field state’:
•For small N (here 10), clear deviations are
quickly seen (less than a Rabi time here)
between the mean-field/semiclassics results
and the full quantum behavior
•Correspondingly, the cloud is far from
condensed as time evolves
t/tRabi
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
Time evolution of |N,0
Population imbalance
And orbitalocupations
When starting from a ‘mean-field state’:
•For large N (here 1000), the mean field
provides an excellent account of the full
dynamics during long times (here almost
two Rabi periods)
•The cloud, thus, remains condensed for a
while.
t/tRabi
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
Binary mixtures
(just a taste)
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
Binary Mixture
1150 atoms, trap conditions as the
Heidelberg experiment.
We consider now the other limit:
(50%,0%,50%) configuration
The initial phases are all ZERO
Initial population imbalances are:
z1 (0) = - z-1(0)
Note there would be no josephson
at all if both components were just
one
A longer oscillation is seen.
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
Binary Mixture (II)
1150 atoms,
We consider a (98%,0%,2%)
configuration
The initial phases are all ZERO
Initial population imbalances
are: z1 (0) = - z-1(0)
The most populated component
follows the usual Josephson
oscillation
The less populated one follows
the most populated one
(“anti-Josephson”).
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
A novel way of extracting a0 and a2
We proposed an experimental way of accessing the spin
independent and spin dependent scattering lenghts: a0
and a2
The key points are:
a)
Consider a binary mixture made by populating the
(F=1, m=1) and (F=1, m=-1) states of an F=1 spinor.
In this way, gaa=gbb~gab
b)
Perform two measurements:
1) highly polarized, Na>>Nb
2) Na~Nb and za(0)=-zb(0)
c)
Extract from za(t) and zb(t) the scattering lengths.
Julia-Diaz, Guilleumas, Lewenstein, Polls, Sanpera (PRA 2009)
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
Beyond two-mode
Mele-Messeguer, et al. arXiv: 1005.5272
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
Summary
Single component case
Static properties of the Bose-Hubbard hamiltonian with
small bias
Existence of strongly correlated ‘cat-like’ ground states
Cat-like states appear in the spectrum when the mean
field predicts a bifurcation
Can we see any ‘traces of the cats’?
When does the mean-field description break down?
J-D, Dagnino, Lewenstein, Martorell, Polls, PRA A 81, 023615 (2010)
J-D, Martorell, Polls, PRA81, 063625 (2010)
Binary mixtures populating m=+/-1 of an F=1 spinor
Extraction of the scattering lengths
Complete analysis, beyond two-mode, …
J-D, Guilleumas, Lewenstein, Polls, Sanpera, PRA 80, 023616 (2009)
Mele-Messeguer, J-D, Guilleumas, Polls, Sanpera, arXiv: 1005.5272
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010
A measure of the “spread”
Blue dashed: Semiclassical prediction: sqrt(1-4/^2)
Red solid: quantum result for S=
N=50, epsilon=J/10^10
B. Juliá-Díaz, Trobades Científiques de la Mediterrània, Menorca, 2010