Download Study the characteristics of negative feedback amplifiers and design

Document related concepts

Flip-flop (electronics) wikipedia , lookup

Scattering parameters wikipedia , lookup

Utility frequency wikipedia , lookup

Pro Tools wikipedia , lookup

Control system wikipedia , lookup

Tube sound wikipedia , lookup

Current source wikipedia , lookup

Chirp spectrum wikipedia , lookup

Stray voltage wikipedia , lookup

Islanding wikipedia , lookup

Power inverter wikipedia , lookup

Pulse-width modulation wikipedia , lookup

Heterodyne wikipedia , lookup

Three-phase electric power wikipedia , lookup

Amplifier wikipedia , lookup

Bode plot wikipedia , lookup

Rectifier wikipedia , lookup

Alternating current wikipedia , lookup

Variable-frequency drive wikipedia , lookup

Oscilloscope history wikipedia , lookup

Voltage optimisation wikipedia , lookup

Analog-to-digital converter wikipedia , lookup

Mains electricity wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Integrating ADC wikipedia , lookup

Voltage regulator wikipedia , lookup

Buck converter wikipedia , lookup

Wien bridge oscillator wikipedia , lookup

Power electronics wikipedia , lookup

Phase-locked loop wikipedia , lookup

Schmitt trigger wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Opto-isolator wikipedia , lookup

Transcript
Analog
System
Lab Kit PRO
MANUAL
5
introduction
4
6
10
9
7
8
3
2
1
Analog System Lab Kit PRO
Photo of ASLK PRO
1
1
page 15
Chapter 1
Experiment 1
Study the characteristics of negative feedback
amplifiers and design of an instrumentation amplifier
Analog System Lab Kit PRO
page 17
5
introduction
4
6
10
9
7
8
3
2
1
Analog System Lab Kit PRO
Photo of ASLK PRO
1
1
page 15
Negative Feedback Amplifiers
Frequency Response of Negative Feedback Amplifiers
Instrumentation Amplifiers
(a)
(b)
Measurement
1. Apply square wave of amplitude 1V at the input.
Change the input frequency and study the peak to peak amplitude of the output.
S. No.
Input Frequency
Peak to Peak Amplitude of output (Vpp)
1
2
3
4
2. Frequency Response –
Apply sine wave input to the system and study the magnitude and phase response.
S. No.
1
2
3
4
Input Frequency
Magnitude Variation
Phase Variation
Measurement
3. DC transfer Characteristics –
Vary the DC input voltage and study its effect on the output voltage.
S. No.
1
2
3
4
DC Input Voltage
DC Output Voltage
Phase Variation
Chapter 2
Experiment 2
Study the characteristics of regenerative feedback
system with extension to design an astable and
monostable multivibrator
Analog System Lab Kit PRO
page 23
5
introduction
4
6
10
9
7
8
3
2
1
Analog System Lab Kit PRO
Photo of ASLK PRO
1
1
page 15
Regenerative Comparator
(a)Inverting Schmitt-Trigger and its Hysteresis Characteristic
(b)Non-inverting Schmitt Trigger and its Hysteresis Characteristic
Astable Multivibrator and its characteristics
S. No.
Regenerative Feedback
Hysteresis
1
2
3
4
Hysteresis=2 × π›½ × π‘‰π‘ π‘ 
Regenerative Feedback 𝛽 =
𝑅1
𝑅1 +𝑅2
Chapter 3
Experiment 3
Study the characteristics of integrators and
differentiator circuits
Analog System Lab Kit PRO
page 27
5
introduction
4
6
10
9
7
8
3
2
1
Analog System Lab Kit PRO
Photo of ASLK PRO
1
1
page 15
Measurement
1. Frequency Response Apply a sine wave to the integrator (similarly to the differentiator) and vary
the input frequency to obtain phase and magnitude error.
𝑉𝑖𝑛 = 2𝑉𝑝𝑝
𝑅 = 1π‘˜Ξ©
𝐢 = 1πœ‡πΉ
𝑉𝑖𝑛
|π‘‰π‘œ | =
2πœ‹π‘“πΆπ‘…
S. No. Input Frequency
Magnitude
Phase
|π‘‰π‘œ | = 2πœ‹π‘“πΆπ‘… βˆ— 𝑉𝑖𝑛
S. No. Input Frequency
1
500
1
100
2
1000
2
200
3
1500
3
500
4
2000
4
800
5
2500
5
1000
Magnitude
Phase
Measurement
2. Transient response –
Apply the square wave as an input to integrator, vary the peak amplitude
of the square wave and obtain the peak to peak value of output wave.
S. No.
Peak Value of input Vp
Peak to Peak value of output
1
2
3
4
𝑉𝑝𝑝 =
𝑉𝑃 βˆ™ 𝑇
2 βˆ™ 𝑅𝐢
Chapter 4
Experiment 4
Design of Analog Filters
Analog System Lab Kit PRO
page 31
5
introduction
4
6
10
9
7
8
3
2
1
Analog System Lab Kit PRO
Photo of ASLK PRO
1
1
page 15
A Second-order Universal Active Filter
Magnitude and Phase response of LPF, BPF, BSF, and HPF filters
For the bandpass filter, the magnitude response peaks at πœ” = πœ”0 ,and is given by𝐻0 𝑄.
The bandstop filter shows a null magnitude response at πœ” = πœ”0 .
Measurement
1. Frequency Response Apply a sine wave input and vary its input frequency to obtain the phase and
magnitude error.
Band Pass
S.No. Input Frequency Phase
100
1
2
159
3
200
4
300
Magnitude
Band Stop
Phase
Magnitude
Table 4-2: Frequency Response of a BPF with πœ”0 = 1π‘˜π»π‘§, 𝑄 = 1
Band Pass
S.No. Input Frequency Phase
1.59k
1
2
1.7k
3
1.4k
4
1.2k
Magnitude
Band Stop
Phase
Magnitude
Table 4-3: Frequency Response of a BSF with πœ”0 = 10π‘˜π»π‘§, 𝑄 = 10
Chapter 6
Experiment 6
Design a function generator and convert it to
Voltage-Controlled Oscillator/FM Generator
Analog System Lab Kit PRO
page 39
5
introduction
4
6
10
9
7
8
3
2
1
Analog System Lab Kit PRO
Photo of ASLK PRO
1
1
page 15
Function Generator
Function Generator Output
5v
3v
Voltage-Controlled Oscillator (VCO)
in1
Vout
in2
S.No.
Control Voltage (Vc)
1
1
2
2
3
3
4
5
Change in Frequency
ANALOG MULTIPLIER
𝑋1 ζŽ₯𝑖𝑛1
π‘Œ1 ζŽ₯𝑖𝑛2
𝑍1 ζŽ₯π‘‰π‘œπ‘’π‘‘
𝑋2 , π‘Œ2 , 𝑍2 ζŽ₯𝑔𝑛𝑑
1/SFη©ΊζŽ₯
Chapter 7
Experiment 7
Design of a Phase Lock Loop (PLL)
Analog System Lab Kit PRO
page 43
5
introduction
4
6
10
9
7
8
3
2
1
Analog System Lab Kit PRO
Photo of ASLK PRO
1
1
page 15
Phase Locked Loop (PLL) and its characteristics
As the frequency of input signal is changed, the control voltage will change correspondingly,
so as to lock the output frequency to the input frequency.
As a result, there is a change of phase difference between the two signals away from 90˚.
Sample output waveform for the Phase Locked Loop (PLL) Experiment
Vf1(output)
input
Vf3
Vf2
Measurement
1.
Measure the change in the phase of the output signal as input frequency is
varied within the lock range.
S.No.
Input Frequency
Output Phase
1
2
3
4
2.
Vary the input frequency and obtain the change in the control voltage.
S.No.
1
2
3
4
Input Frequency
Control Voltage
Chapter 8
Experiment 8
Automatic Gain Control (AGC) Automatic Volume
Control (AVC)
Analog System Lab Kit PRO
page 47
5
introduction
4
6
10
9
7
8
3
2
1
Analog System Lab Kit PRO
Photo of ASLK PRO
1
1
page 15
Automatic Gain Control (AGC)/Automatic Volume Control (AVC)
the output value of the system remains constant at 2𝑉𝑅 π‘‰π‘Ÿπ‘’π‘“ beyond input voltage 𝑉𝑝𝑖 = 2𝑉𝑅 π‘‰π‘Ÿπ‘’π‘“
AGC circuit
input
Vf2
Vf1(output)
Measurement
1.
Assume that the input comes from a function generator; use a sine wave input
of a single frequency.
S.No.
Input Voltage
1
2
2
4
3
6
4
8
Vpp
Output Voltage
Vpp
ANALOG MULTIPLIER
𝑋1 ζŽ₯𝑖𝑛1
π‘Œ1 ζŽ₯𝑖𝑛2
𝑍1 ζŽ₯π‘‰π‘œπ‘’π‘‘
𝑋2 , π‘Œ2 , 𝑍2 ζŽ₯𝑔𝑛𝑑
1/SFη©ΊζŽ₯
Chapter 11
Experiment 11
To study the parameters of an LDO integrated circuit
Analog System Lab Kit PRO
page 59
5
introduction
4
6
10
9
7
8
3
2
1
Analog System Lab Kit PRO
Photo of ASLK PRO
1
1
page 15
Schematic diagram of on-board evaluation module
1.
Obtain the Line Regulation: Vary the input voltage and plot the output voltage
as the function of the input voltage for a fixed output load.
S.No.
Input voltage (VIN)
Output voltage (VOUT)
1
2
3
4
Table 11.1: Line regulation
2.
Obtain the Load Regulation: Vary the load (within the permissible limits) such
that load current varies and obtain the output voltage for a fixed input voltage.
Plot the output voltage as function of the load current.
S.No.
Load current (IOUT)
Output voltage(VOUT)
1
2
3
4
Table 11.2: Load regulation
Chapter 12
Experiment 12
To study the parameters of a DC-DC Converter using
on-board Evaluation module
Analog System Lab Kit PRO
page 63
5
introduction
4
6
10
9
7
8
3
2
1
Analog System Lab Kit PRO
Photo of ASLK PRO
1
1
page 15
Schematic of on-board evaluation module
Simulation waveforms –
TP3 is the PWM waveform and TP4 is the switching waveform
1.Vary the input voltage for a regulated output voltage of 5V and observe the change in the duty cycle of the
PWM waveform.
Input voltage (Vin)
S.No.
Duty cycle
1
2
3
4
2. Vary the input voltage for a fixed load and observe the output voltage.
S.No.
Input voltage (Vin)
Output voltage (Vout)
1
2
3
4
3. Vary the load so that load current varies; observe the output voltage for a fixed input voltage.
S.No.
1
2
3
4
Load current
Output voltage (Vout)
Chapter 13
Experiment 13
Design of a Digitally Controlled Gain Stage Amplifier
Analog System Lab Kit PRO
page 67
5
introduction
4
6
10
9
7
8
3
2
1
Analog System Lab Kit PRO
Photo of ASLK PRO
1
1
page 15
Circuit for Digital Controlled Gain Stage Amplifier
Measurement
1. Apply the sine wave of fixed amplitude and vary the bit pattern.
S.No.
BIT Pattern
1
100000000000
2
010000000000
3
001000000000
4
000100000000
Peak to Peak Amplitude of the output
Table 13.1: Variation in output amplitude with bit pattern
Chapter 14
Experiment 14
Design of a Digitally Programmable Square and
Triangular wave generator/oscillator
Analog System Lab Kit PRO
page 71
5
introduction
4
6
10
9
7
8
3
2
1
Analog System Lab Kit PRO
Photo of ASLK PRO
1
1
page 15
Circuit for Digital Controlled Oscillator
Measurement
1. Vary the bit pattern input to the DAC in manner specified in Table 14.1 and note down the
change in the frequency of oscillations
S.No.
BIT Pattern
1
100000000000
2
010000000000
3
001000000000
4
000100000000
output Frequency
Table 14.1: Varying the bit pattern input to the DAC
參考文獻
Analog System Lab Kit PRO
http://www.mikroe.com/aslk-pro/