* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Math Review Packet
Survey
Document related concepts
Transcript
WordProblems Thissheetisdesignedasareviewaid.Ifyouhavenotpreviouslystudiedthisconcept,orifafter reviewingthecontentsyoustilldon’tpass,youshouldenrollintheappropriatemathclass. SimplifyingWordProblems Mostofusareintimidatedbywordproblems.Butifwetakeawaytheextrawords,alotof theconfusiongoeswiththem.Usethesefourstepsasanoutlinetoguideyouthroughthe problem: Step1‐UnderstandtheProblem.Readthroughtheproblemtogetageneralideaof thesituation.Whatishappeninginthestory?Whatquestion s doyouneedtoanswer? Whatinformationcanbedisregarded? Step2‐DeviseaPlan.Readthroughtheproblemagain,lookingfordetails.Decide whatoperationstouse addition,multiplication,etc. .Setuprelationships,translatefrom Englishtomath,makelists,drawandlabelpictures.Useanystrategyyouknowto organizetheinformationintoaworkableformat. Step3‐WorkthePlan.Nowthatyouhaveaplan,workit.Dothemath,crunchthe numbers.Someproblemsrequireseveralsteps,sobesuretoworkthemall. Step4‐LookBack.Nowthatyouaredone,areyoureallydone?Didyouanswerall thequestions?Doesyouanswermakesense?Didyouworktheproblemcorrectly? Someextraadvice Manywordproblemshavemorethanonepartthatneedstobeworkedout.Break downtheproblemtoitsindividualpartsandworkoneatatime.Ifsomething seemstobemissinginordertoworkasub‐problem,setitasideandworkanother part.Youmayfindthemissinginformationasyouworkothersub‐problems. Problemswithlistsofthesametypeofthingtendtobeadditionproblems.“John worked5hoursonMonday,12hoursonTuesday,6hoursofWednesdayand7 hoursand30minutesonThursday.Howmanyhourshasheworkedthisweek?”Be surethattheunitsmatchbeforeadding. o Units:hours,hours,hours,hoursandminutes. Problemswithmixedunitstendtobemultiplicationordivisionproblems.“An airplanetravelsat350milesperhour.Howfardoestheairplanetravelin6hours?” o Units:milesperhour,hours,miles. Vocabulary TherearemanykeywordsinEnglishthatcanhelpusdecidewhatmathematicaloperation orrelationshiptouse.Herearesomeexamples. Words,Phrases Symboloroperation plus,sumof,addedto,joinedwith,increasedby,more,more than,and,total minus,differencebetween,subtractedfrom,decreasedby, reducedby,less,lessthan,exceeds,takeaway,remove,purchase times,timesmorethan,multipliedby,product,equalamounts of,of,at,each,every,total ∗ dividedby,divides,quotient,ratio,compared to,separatedinto equalparts,per,outof,goesinto,over equals,isequalto,is,isthesameas,was,were,willbe,resultsin, makes,gives,leaves twotime,double,twice 2 ∗ half,halfasmuch,halves,onehalfof 1 ∗ 2 What number,part,percent,amount,price,etc. ,anumber,the number,how many,much,often,far,few,etc. , , ? , _______ Thisisasymbol placeholder forthenumberyouaretryingto findasyouconstructyourformula. Example BestBakeryishavingasaleonpumpkinpies.Eachpieiscutinto8equal slices.Theyhave2 piesleft.Jimwantstopurchase1 piesfordinner. Howmanypieswillbeleft? At$0.75perslice,howmuchwillthepieJimisbuyingcost? Step1‐UnderstandtheProblem.Youcandothisbycrossingoutunnecessary information,organizingtheinformationintocharts,andwritingoutrelationships. Bestbakeryishavingasaleonpumpkinpies.Eachpieiscutinto8equal slices.Theyhave2 piesleft.Jimwantstopurchase1 piesfordinner. Howmanypieswillbeleft? At$0.75perslice,howmuchwillthepieJimisbuyingcost? Step2‐DeviseaPlan.Translatekeywordsandphrasesintotheirproper mathematicalsymbols,breakdifficultproblemsintosubproblems,andwritedownany pertinentformulasorcautions. Question1‐Howmanypieswillbeleft? Theproblemisaskingustocomparethenumberatthebeginningtothe numberaftersomepiesaretakenaway byJim .Thisisasubtractionproblem. Numberof piesinthe store Numberofpies resultsin bought takeaway 1 2 4 1 3 8 1 3 8 Numberof piesleft. ? ? Step3‐WorkthePlan. 2 1 4 7 8 Step4‐LookBack.Justbecauseyouhaveananswer,doesn’tmeanthatitistheright answer.Sometimesstoryproblemstakeseveralstepstocomplete,sobesurethatyou haveansweredallthequestionsthatwereasked.Workbackwardsoruseestimationto checkyouranswer,makesurethatyouranswerisreasonable.Mostimportantly,answer thequestionthatwasasked. 7 8 ofapieisleft. Question2‐Howmuchwillthepiecost? Theproblemisaskingforatotalcost,butweknowthecostforeachslice. Thisisamultiplicationproblem. Costofaslice foreach $. 75 numberof slices ∗ resultsin ?? TotalCost ? ? Thisproblemhasasubproblem,becausewedon’tactuallyknowhowmany slicesofpieJimbought.Jimbought1 ofapie,andeachpiewascutinto8slices. Thisisalsoamultiplicationproblem. Numberof slices 8 foreach pie ∗ resultsin 1 3 8 totalslices ? ? Step3‐WorkthePlan. 8∗1 3 8 11 Jimbought11slices,sousethisanswerintheoriginalquestion. Costofaslice foreach $. 75 ∗ numberof slices resultsin 11 TotalCost ? ? $. 75 ∗ 11 $8.25 Step4‐LookBack.Didyouanswertheoriginalquestion?Didyouincludethe appropriateunits?Doesyouranswerseemlogical? Howmuchwillthepiecost?Thepiewillcost$8.25. Thepiecosts$.75foronesliceofpie.Wecanestimatethateachslicecostsalittle lessthan$1.Usingthisestimate,weknowthatifhebought11slicesfor$1each,hewould pay$11.Becauseouractualpriceforeachsliceislessthanourestimate,ourtotalisless thantheestimatedtotal.$8.25islessthan$11,sotheanswermakessense. Practice 1. AplanetakesofffromapointonthefloorofDeathValleywhichis200feetbelow sealevel.Theplanemustclearan800ftmountainby300ft.Howmanyfeetmust theplaneclimbaftertakeofftosafelyclearthemountain? a. 900ft b. 1300ft c. 1100ft d. 500ft 2. Johnpaid$45.00forashirt.Thisrepresentsadiscountof25%.Whatwasthe originalpriceoftheshirt? a. $60.00 b. $180.00 c. $11.25 d. $33.75 3. If37%ofanumberis36,whatisthenumber? a. 64 b. 32 c. 15 d. 97 4. Whatpercentofanhouris36minutes? a. 60% b. 40% c. 24% d. 4% 5. 5/8expressedasapercentis? a. 56% b. 62.5% c. 87.5 d. 114.3% 6. Aplanetravelsatanaveragespeedof600milesperhourfor4hours.Howfardid theplanetravel,inmiles? a. 150miles b. 240miles c. 2400miles d. 1500miles 7. Mariaismakingascaledrawingofherbasement,whichis20ftlong.Ifherscaleis ½in 1ft,howmanyincheslongshouldshemakeherdrawing? a. 20inches b. 6inches c. 10inches d. 15inches 8. Theweightsof4childrenare80,85,90,and75lbs.Whatistheaverageweight,in pounds,ofthefourchildren? a. 90lbs b. 75lbs c. 80.4lbs d. 82.5lbs 9. Allofthefollowingarewaystowrite20percentofnEXCEPT a. . 2 b. c. d. 20 10. Whichofthefollowingisclosestto√10.5? a. 3 b. 4 c. 5 d. 8 11. Threepeoplewhoworkpart‐timearetoworktogetheronaproject,buttheirtotal timeontheprojectistobeequivalenttoonlyonepersonworkingfulltime.Ifoneof thepeoplebudgeted½ofhistimefortheprojectandthesecondpersonbudgeted 1/3ofhertime,whatfractionofhistimeshouldthethirdpersonputintothe project? a. 1/3 b. ¼ c. 1/6 d. 1/8 Key 1. B 2. A 3. D 4. A 5. B 6. C 7. C 8. D 9. D 10. A 11. C Integers Thissheetisdesignedasareviewaid.Ifyouhavenotpreviouslystudiedthisconcept,orifafter reviewingthecontentsyoustilldon’tpass,youshouldenrollintheappropriatemathclass. Integersarepositiveandnegativewholenumbers.Applicationswithintegersinvolve OrderofOperations.Operationsarewaystocombinetwonumbers.Theoperationswe usemostoftenareaddition,subtraction,multiplicationanddivision. OrderofOperations 1. Dooperationsinsidegroupingsymbolsbeforetheoperationsoutsideofthe groupingsymbols. a. Workgroupingsymbolsfromtheinsidetotheoutside. 3 12 5 3 7 21 b. Groupingsymbolsinclude parentheses , brackets , braces ,aswellas operationssuchas ,|absolutevalues|,and√roots. 5 7 3 5 √4 5 2 7 c. Onceanoperationsuchasarootoranabsolutevaluehasbeenperformed,it mayhelptoreplaceitwithparenthesestoavoidmistakes. 3| 6| 3 6 18 2. Evaluateexponentsandrootsbeforeotheroperations.Followtheappropriaterules ofexponents. 12 3 12 9 3 3. Performmultiplicationanddivisionbeforeadditionandsubtraction.Workleftto right,andworkmultiplicationanddivisiontogether.DONOTperformallthe multiplicationandthenallthedivision. 4 20 2 ∗ 5 4 10 ∗ 5 4 50 54 4. Additionandsubtractionisthelaststepintheorderofoperations.Rememberthat numberscanbeaddedinanyorder. a. Itisoftenhelpfultochangetheordertomakesumsthatareeasytowork with,suchasmultiplesof10. 53 14 7 53 7 4 60 14 74 b. Tochangetheorderforsubtraction,keepthenegativeorthesubtraction signwiththenumberthatfollowsit. 10 15 12 10 12 15 22 15 7 5. Rememberspecialproperties,suchastheDistributiveProperty.Theseallowyouto workinaslightlydifferentorderwithoutchangingtheanswer. 4 25 3 12 4 25 4 3 12 100 12 12 100 RulesofIntegers 1. Whenaddingtwointegers,thelargersignwins: a. Ifthesignsarethesame,addandkeepthesign. 3 5 8 3 5 8 b. Ifthesignsaredifferent,subtractandkeepthesignofthelargernumber. 7 4 3 7 4 3 2. Whensubtractingtwointegers,changesubtractiontoadditionoftheopposite. 13 4 13 4 17 3. Whenmultiplyingintegers,twonegativesmakeapositive: a. Whenmultiplyingtwopositives,theanswerispositive. 3 8 24 b. Whenmultiplyingtwonegatives,theanswerispositive. 3 8 24 c. Whenmultiplyingapositiveandanegative,theanswerisnegative. 3 8 24 3 8 24 4. Formorethantwointegersbeingmultipliedtogether,countthesigns: a. Anevennumberofnegativesignswillmultiplytoapositivenumber. 2 5 4 1 40 b. Anoddnumberofnegativesignswillmultiplytoanegativenumber. 2 5 4 40 5. Todividetwointegers,therulesarethesameasmultiplication. 6. Anabsolutevalueisthedistanceanumberisfromzero.Distanceisnevernegative, soabsolutevalueswillneverbenegative. a. |5| 5 b. | 3| 3 c. |0| 0 Practice 1. 27 3 ∗ 2 2. 17 15 13 7. 2|5 9| 8. √9 16 3. 3 10 2 7 9. 3 4. ‐4 5 3 12 10. 10 5. 5 6. Key 1. 2. 3. 4. 5 18 15 31 ‐28 4 ∗ 3 4 11. 4 4 ∗ 3 12. 5. 6. 7. 8. 17 27 8 5 6 6 7 2 15 9. 1 10. 0 11. 8 12. 9 15 5 5 ∗ 3 ‐1 8 AddingandSubtractingDecimals Thissheetisdesignedasareviewaid.Ifyouhavenotpreviouslystudiedthisconcept,orifafter reviewingthecontentsyoustilldon’tpass, youshouldenrollintheappropriatemathclass. AddingandSubtractingDecimals 1. 2. 3. 4. Writetheproblemincolumnform. Lineupthedecimals. Addzerostotherighttofillinmissingplacevalues. Addorsubtractjustlikeawholenumber.Carrythedecimalstraightdownintothe answer. :24.62 3.4 Line up the decimal :24.62 3.40 Fill in zeros to the right 21.22 Bring the decimal straight down Practice 1. 2. 3. 4. 24.62 3.4 61.4 0.34 1.2 . 4 .023 .06 1.6 0.7 2.42 5. .3 Key 1. 21.22 2. 62.94 6. 3. .483 4. 2.3 5.1 . 32 1.456 7. 2.12 .32 5. 2.12 6. 6.876 . 41 8. . 023 .68 7. 1.8 8. 1.113 MultiplyingandDividingDecimals Thissheetisdesignedasareviewaid.Ifyouhavenotpreviouslystudiedthisconcept,orifafter reviewingthecontentsyoustilldon’tpass,youshouldenrollintheappropriatemathclass. MultiplyingDecimals Multiplyingdecimalsisverysimilartomultiplyingwholenumbers,exceptthatyouneedto determinewheretoputthedecimalintheanswer.Followthesestepstomultiplydecimal numbers: 1. Multiplythenumberasthoughyouwereworkingwithwholenumbers. 2. Countthetotalnumberofdigitsafter totherightof thedecimal. 3. Beginningatthefarright,countthesamenumberofdigitstotheleft,sothatthe answerhasthesamenumberofdigitsafterthedecimalasthetotalofthenumberof digitsintheproblem. Example :1.03 ∗ 2.5 : 103 ∗ 25 1.03 ∗ 2.5 2575 2.575 2 digits after the decimal 3 digits after the decimal 1 digit after the decimal Practice 1. 1.03 ∗ .25 5. 3 ∗ 1.42 2. 2.4 ∗ 1.2 6. 12.3 ∗ .005 3. . 06 ∗ .63 7. 300 ∗ .04 4. 0.4 ∗ 1.5 8. 0.0007 ∗ .002 Key 1. 2. 3. 4. 0.2575 2.88 .0378 0.6 5. 6. 7. 8. 4.26 0.0615 12 0.0000014 DividingDecimals Dividingdecimalssimilartodividingwholenumbers.Againtheconcerniswheretoplace thedecimal.Followthesestepstodividedecimals. 1. Writetheprobleminlongdivisionformat.Besuretoidentifytheplacementofthe decimalinboththedivisor outside andthedividend inside . 2. Inthedivisor,movethedecimaltotherightuntilallnon‐zerodigitsareinfrontof thedecimal.Movethedecimalinthedividendthesamenumberofplacestothe right.Thedecimalsshouldbemovedthesamedistanceandthesamedirection. 3. Addzerostotheend afterthedecimal ifneeded. 4. Divide.Bringthedecimalinthedividendstraightupintothequotient answer . 5. Rememberthatdivisiondoesnotalwayscomeouteven.Asaruleofthumb,you shouldroundyouranswertofourdecimalplaces.Youmayneedtoaddzerostothe endofthedividendsothatyouhaveenoughdigits. Example 38.8 1.2isthesameas1.238.8 32.333333… 12.388.0000 Move the decimal so that the divisor is a whole number Add zeros if needed Move this decimal the same distance and direction, and then carry it straight up. 38.8 1.2 32.3333 Round your answer to 4 decimal places. Practice 1. 37.5 2. 2.123 0.2 3. 471.012 4. 1.159 Key 1. 2. 3. 4. 5. 0.055 4 2.3 4.8 9.375 10.615 204.7878 0.2415 6. 725 0.005 7. 1.25 50 8. 453 0.7 5. 6. 7. 8. 11 0.005 145000 0.025 647.1429 AddingandSubtractingFractions Thissheetisdesignedasareviewaid.Ifyouhavenotpreviouslystudiedthisconcept,orifafter reviewingthecontentsyoustilldon’tpass,youshouldenrollintheappropriatemathclass. TheLowestCommonDenominator LCD Whenaddingandsubtractingfractions,thedenominatorsofthefractionsmustbeequal,or like.Followthesestepstofindacommondenominator: 1. Identifythelargestdenominator.TheLCDcannotbesmallerthanthisnumber,and mustbeamultipleofthisnumber. 2. TherearepossibilitieswhenlookingforanLCD: a. Thesmallernumberdividesevenlyintothelargernumber.Inthiscase,the largernumberistheLCD. Example: and . 8 4 2.8dividesevenlyby4 8istheLCD b. Thenumbersmaynotdivideevely,buttheyhaveacommonfactor.Divide thesmallernumberbythecommonfactorandmultiplytheresulttothe largernumber.ThisistheLCD. Example: and 9 6 ?, butboth6and9divideevelyby3 6 3 2, 2 ∗ 9 18. 18istheLCD c. Thenumbersdonotdivideevenlyandhavenofactorincommon otherthan 1 .TofindtheLCD,multiplythetwonumbers. Example: and 4 3 4∗3 ? andtheyhavenofactorsincommon 12 12istheLCD AddingandSubtractingFractions 1. FirstidentifytheLCD.Multiplyeachfractionby1 1 2/2or3/3or4/4etc. to buildacommondenominator. 2. Add orsubtract thenumerators tops andkeepthedenominator bottom . 3. Simplify.Thefractionmustbereducedtolowestterms. Example 1 3 2 5 TheLCDof3and5is15.Multiplyeachfractionbytheappropriateversionof1. 1 5 ∗ 3 5 2 3 ∗ 5 3 5 15 6 15 Nowthatwehavecommondenominators,addthetopsandkeepthebottom. 5 6 15 11 15 Reduceifpossible.Inthiscase,thefractiondoesnotreduce. AddingandSubtractingMixedNumbers 1. Writetheadditionorsubtractionproblemincolumnform.Makesurethefraction partshaveacommondenominator. 2. Addandsubtractthefractionpartsfirst. a. Foraddition,ifthefractionsadduptoanumber1orlarger,youwillneedto changetheanswertoamixednumberandcarrythewholenumberpartto thewholenumbercolumn. b. Forsubtraction,ifthefirstfractionissmallerthanthesecondfraction,you willneedtoborrow1fromthewholenumbercolumn.Rememberthat 1 1/1or2/2or3/3,etc. 3. Addorsubtractthewholenumbercolumn. 4. Besurethatyouranswerisinlowestterms.Allfractionanswersmustbereduced tolowestterms. Example 3 1 3 1 1 2 Writetheproblemincolumnformat.Findacommondenominatorforthefraction parts. 1 2 2 3 ∗ → 3 3 2 6 3 1 3 1 ∗ → 1 6 2 3 Because2/6issmallerthan3/6wewillneedtoregrouporborrowfromthewhole number. 21 2 8 → 2 6 6 3 1 6 Performthesubtraction. 5 1 6 Reducethefractionpart,ifpossible.Inthiscase,thefractionisalreadyinlowest terms. Practice 1. 4. 2. 5. 1 2 3. 6. 5 3 Key 1. 4. 1 2. 5. 4 3. 6. 1 MultiplyingandDividingFractions Thissheetisdesignedasareviewaid.Ifyouhavenotpreviouslystudiedthisconcept,orifafter reviewingthecontentsyoustilldon’tpass,youshouldenrollintheappropriatemathclass. Whenmultiplyinganddividingfractions,itisnotnecessarytogetacommondenominator. However,multiplyingworksmuchbetterifyouworkwitheitherproperorimproper fractions.Donotattempttomultiplymixednumberswithoutfirstchangingthemto improperfractions! MultiplyingFractions 1‐ Changeanymixednumberstoimproperfractions 2‐ Multiplystraightacross,numeratortonumeratoranddenominatortodenominator. 3‐ Reducethefraction. Example 4 2 ∗1 5 3 Firstchangeanymixednumbersto improperfractions 4 5 ∗ 5 3 Multiplystraightacross.Becausewewillbe reducingthefraction,don’tactuallycarry outthemultiplication.Instead,lookfor commonfactors. 4∗5 5∗3 4 3 4∗5 5 5 5∗3 Dividethenumerator top and denominator bottom bythesamenumber. Youcanalsoreducebeforeyoumultiplyandmanypeoplepreferthismethod.Becautious toonlyreducethiswayformultiplication.Thisdoesnotworkwithanyotheroperation. 5 5 1 ∗1 7 9 Changemixednumberstoimproper fractions 12 14 ∗ 7 9 Reducebeforemultiplying.Besuretodivide anumeratorandadenominatorbythesame number. 12 3 14 7 ∗ 7 7 9 3 4 2 ∗ 1 3 8 3 Multiplystraightacross.Checktoseeifyour answerreduces‐ theremayhavebeena commonfactorthatwasmissed. DividingFractions 1‐ Changeanymixednumberstoimproperfractions. 2‐ Changedivisiontomultiplicationbymultiplyingbythereciprocal 3‐ Followtherulesformultiplyingfractions. Example 5 6 2 2 3 First, changemixednumberstoimproper fractions. 8 3 5 6 Second,changedivisionbyafractionto multiplicationbythereciprocal. 5 3 ∗ 6 8 5 6 3 ∗ DONOTREDUCEFRACTIONSTHATARE BEINGDIVIDED. 3 5 1 ∗ 2 8 8 3 Nowthatwehavetwofractionsbeing multiplied,wecanreduceandmultiply. 5 16 Practice 1. 5 3 ∗ 12 4 2. 3 1 ∗2 4 3. 1 2 2 ∗3 3 3 4. 4 1 ∗1 3 5 5. 1 2 2 ∗3 4 3 6. 1 2 2 2 3 8. 9. 3 4 15 16 7. 2 1 4 10. 3 4 9 16 11. 3 2 5 6 1 5 8 8 1 5 12. 2 1 3 3 1 7 Key 1. 5 16 7. 3 3 8 1 3 2 3. 8. 17 30 9. 2. 8 4 5 5 9 4. 10. 3 5 1 1 3 5. 1 8 4 6. 11. 65 328 12. 1 4 1 19 30 Conversions Thissheetisdesignedasareviewaid.Ifyouhavenotpreviouslystudiedthisconcept,orifafter reviewingthecontentsyoustilldon’tpass,youshouldenrollintheappropriatemathclass. ConvertingFractionstoDecimals Everyfractionisreallyadivisionproblem.Tochangeafractiontoadecimal,dothe division. 0.8 4 4 5 4.0 isthesameas4 5 0.8 5 5 ConvertingDecimalstoFractions Therearetwotypesofdecimalsthatcanbeconvertedintofractions,thedecimalsthat terminate stop ,andthedecimalsthatrepeat. Terminatingdecimals‐tochangeaterminatingdecimaltoafractionsayitsname.Besure toreducethefractiontolowestterms. . 25 25 100 1 4 Noticethatthedecimalformofthenumberhastwodigitsafterthedecimal,andthe denominatoroftheoriginalfractionhastwozerosaftertheone. Twodecimaldigits twozeros. Repeatingdecimals‐tochangearepeatingdecimaltoafraction,firstdeterminewhatis repeating.Thisisthenumeratorofthefraction. 27 ? . 27272727 … Becausetherearetwodigitsthatrepeat,thedenominatorwillbe99.Besuretoreduce yourfractiontolowestterms. Twodigitsrepeating twonines. . 27272727 … 27 99 3 11 Thisruleappliesregardlessofhowmanydigitsarerepeating. . 2222222 … 2 9 Onedigitrepeating onenineinthedenominator. . 358358358 … 358 999 Threedigitsrepeating threeninesinthedenominator. ConvertingPercentagestoDecimals Apercentisaspecialfractioninwhichthedenominatorisalways100.Percentliterally meansdivideby100.Tochangeapercenttodecimal,justdivideby100.Theeasiestway todothisistomovethedecimaltwoplacestotheleftanddropthepercentsign. 325% 325. 100 3.25 Rememberthatwearedividing by100,sothe decimalshouldappearsmaller thanthepercent. ConvertingaDecimaltoaPercent Tochangeadecimalintoapercent,reversetheprocessofchangingapercentintoa decimal.Thismeansthatinsteadofdividingby100andremovingthepercentsign,you willneedtomultiplyby100andaddthepercentsign.Todothis,movethedecimaltwo placestotherightandputapercentsignontheendofthenumber. 0.357 .357 ∗ 100% Herewearemultiplyingby100,sothepercent shouldappearlargerthanthedecimal. 35.7% ConvertingaPercenttoaFraction Rememberthatpercentmeansdivideby100.Whenworkingwithfractions,wechange divisionintomultiplicationbythereciprocal,somultiplyby1/100. 35% 35 35 1 ∗ 1 100 100 35 100 7 20 Simplifyyouranswer.Ifthereisadecimalinthenumerator,youwillneedtomoveboth decimalsthesamedistanceandthesamedirectionuntiltherearenodigitsafterthe decimal. sameruleasdecimaldivision . 2.4 100 2.4% 24 1000 3 125 ConvertingaFractiontoaPercent Ifyoucanmakethedenominatorequalto100,thenumeratoristhepercent 3 10 30 100 30% Ifyoucannot,firstchangethefractionintoadecimal,thenconvertthedecimalintoa percent. 1 7 .1429 14.29% Practice Completethechartbyconvertingeachnumbertotheothertwoforms. Fraction Decimal Percent Ex 3 1 4 1.75 175% 1. 1 7 2. 3. 0.125 12% 5 8 4. 5. 6. 0.33333 … 3.5% 2 5 5 7. 8. 9. 2.6 485% Key Ex Fraction Decimal Percent 3 4 1.75 175% . 142857 … 14.29% 1 1. 2. 1 8 . 3. 3 25 0.12 4. 1 3 6. 7 200 7. 8. 9. . 62.5% … . 035 33.33% . % 5.4 540% 3 5 . 260% 17 20 4.85 2 4 % 0.625 5. 12.5% % Percentages Thissheetisdesignedasareviewaid.Ifyouhavenotpreviouslystudiedthisconcept,orifafter reviewingthecontentsyoustilldon’tpass,youshouldenrollintheappropriatemathclass. Tocalculatethepercentageofanumber: Inmath,whenwetakeapercentofanumber,theword‘of’canbetranslatedas multiplication,andtheword‘is’translatesasanequalssign. 30percentof120is40 30% ∗ 120 40 Tosolveaprobleminvolvingpercent,firsttranslatethesentencefromEnglishinto mathematicalsymbols,thenworktheproblem.Sometimesyouwillbeabletomultiplyto findtheanswer,andothertimesyouwillneedtodivide. Example 32%of55iswhatnumber? Firsttranslatethesentenceintoamathequation 32% ∗ 55 Convertthepercentageintoeitherafractionoradecimal . 32 ∗ 55 _________? Worktheproblem.Inthisexample,performthe multiplicationtofindtheanswer. . 32 ∗ 55 17.6 _________? Example Ifyoudonotknowwhattomultiplyby,youshoulddivideinstead.Takealookatthenext problem: 5%ofwhatnumberis24? 5% ∗ __________ 24 . 05 ∗ __________ 24 Inthisexample,oneofthefactorsisunknown,sowecannotmultiply.However,wedo knowtheanswertomultiplication,sowecanmakethisadivisionprobleminstead. 24 24 .05 .05 __________ 480 Example Inthethirdexample,theunknownnumberisthepercentage.Besuretoputyouranswer intherightform!Changetheanswertopercentageform. Whatpercentof40is15? __________? % ∗ 40 15 40 15 40 . 375 15 __________? 0.375 37.5% Acommonmistakethatstudentsmakewhenperformingadivisionproblemisdividingin thewrongorder.Hereareafewpointerstohelpyougettheorderright‐ Dividebythesamenumberthatyoumultiplyby. Whendividingbyanumberlargerthan1 or100% ,youranswerwillgetsmaller. Whendividingbyanumbersmallerthan1 or100% ,youranswerwillgetlarger. Checkyourworkbyrewritingthesentence‐37.5%of40is15 thirdexample . Doesthisseemreasonable? Practice 1. 2. 3. 4. 5. 6. 7. 8. 9. 32%of46iswhatnumber? 125%of250iswhat? Whatnumberis45%of12? 15%ofwhatnumberis45? 150%ofwhatnumberis270? 540is90%ofwhatnumber? Whatpercentof25is30? Whatpercentof155is12? 4.2iswhatpercentof200? Key 1 14.72 2 312.5 3 5.4 4 300 5 180 6 600 7 120% 8 7.74% 9 2.1% AverageorMeanAverage Thissheetisdesignedasareviewaid.Ifyou havenotpreviouslystudiedthisconcept,orif afterreviewingthecontentsyoustilldon’tpass,youshouldenrollintheappropriatemath class. Theaverage,themeanaverage,orthemeanallrefertothesameconcept.Ameanaverage isawaytotakealistofpossiblyverydifferentnumbersandtreatthemasthoughthey wereallthesame.Ifyouaregivenalistofnumbers,theaverageisthenumberthatallthe valueswouldbeiftheywereallthesame. Considerthelistofnumbers:5,5,5 Inthiscaseallthreenumbersarethesamenumber,sotheaverageis5.Three5’s haveatotalof15. Nowlookatthislistofnumbers:3,6,6 Thesethreenumbersalsohaveatotalof15,andtheaverageis5. Tocalculateamean,addallthevaluesanddividebythetotalnumberofvalues. Example Findtheaverageofthefollowingnumbers: 1, 2, 5, 6, 3, 7 Addthevalues: Dividebythenumberofvalues: 1 24 2 5 6 Theaverageis4 6 4 3 7 24 Example Supposethatseveralemployeesinashopweremakingparts.Oneemployeecanmake5 partsinanhourwhileanotheremployeemakes4partsinanhourandthethirdemployee makes9partsinanhour.Theemployerwantstobeabletopredicthowmanypartswillbe madeeachhour.Whatistheaveragenumberofpartsthateachemployeeproduceseach hour? Thelistis: 5, 4, 9 Addtofindthetotal: 5 Dividetofindtheaverage: 4 18 9 3 18 6 Theemployeesaverage6partsperhour. WorkingBackwards Youcanuseanaveragetofindamissingvaluebyworkingbackwards.Insteadofadding thendividingtofindtheaverage,multiplyandsubtracttofindthemissingvalue. Example Theaverageof4numbersis12.Thefirstthreenumbersare10,15,and6.Whatisthe missingvalue? Thelistis: Theaverageis: 10, 15, 6, ? ? 12 Multiplytofindthetotal: 4 ∗ 12 48 Subtracttofindthemissingvalue: 10 15 6 31 _____? 48 31 48 31 _____? 48 48 _____? 17 17isthemissingvalue. Practice Findtheaverageofthefollowinglistsofnumbers: 1. 13, 15, 17, 18, 12 2. 8.2, 1.6, 3.5, 2.8, 7.4, 2.0 3. , ,1 ,2 4. 9.5,11 , 16.12, 3 Findthemissingvaluefromthelisttoobtainthegivenaverage: 5. 3,5,4,7,___?Average 5 6. 3 , 2 , 4 , 6 , ___?Average 4 7. 93.7,94.1,96.5,_____?Average 95.5 8. 12.12, 3 , 6.34, 7 , 5 , _____?Average 8 Solvethefollowingwordproblemsinvolvingaverages: 9. Maryannhastakenthreetestsforhermathclass,andearnedscoresof85%,91% and94%.Whatisheraverageintheclass? 10. Michaelneedsa70%averagetopasshishistoryclass.Ifhistestscoressofarare 82%,65%,and74%,whatscoredoesheneedtogetonthefourthtesttopassthe class? Key 1.15 2.4.25 3. 1 5.6 6.7 7. 97.7 9.Maryannhasa90%intheclass. 1.2125 4. 10.03 8. 13.84 10. Michael needs a 59% onhislasttest.