* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download m 3
Algebraic geometry wikipedia , lookup
Cartan connection wikipedia , lookup
Lie sphere geometry wikipedia , lookup
Riemannian connection on a surface wikipedia , lookup
Rational trigonometry wikipedia , lookup
Perspective (graphical) wikipedia , lookup
Geometrization conjecture wikipedia , lookup
History of geometry wikipedia , lookup
3-3 Proving Lines Parallel Warm Up State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If mA + mB = 90°, then A and B are complementary. 3. If AB + BC = AC, then A, B, and C are collinear. Holt McDougal Geometry 3-3 Proving Lines Parallel Objective Use the angles formed by a transversal to prove two lines are parallel. Holt McDougal Geometry 3-3 Proving Lines Parallel Recall that the converse of a theorem is found by exchanging the hypothesis and conclusion. The converse of a theorem is not automatically true. If it is true, it must be stated as a postulate or proved as a separate theorem. Holt McDougal Geometry 3-3 Proving Lines Parallel Holt McDougal Geometry 3-3 Proving Lines Parallel Example 1A: Using the Converse of the Corresponding Angles Postulate Use the Converse of the Corresponding Angles Postulate and the given information to show that ℓ || m. 4 8 4 8 ℓ || m Holt McDougal Geometry 4 and 8 are corresponding angles. Conv. of Corr. s Post. 3-3 Proving Lines Parallel Example 1B: Using the Converse of the Corresponding Angles Postulate Use the Converse of the Corresponding Angles Postulate and the given information to show that ℓ || m. m3 = (4x – 80)°, m7 = (3x – 50)°, x = 30 m3 = 4(30) – 80 = 40 m8 = 3(30) – 50 = 40 m3 = m8 3 8 ℓ || m Holt McDougal Geometry 3-3 Proving Lines Parallel The Converse of the Corresponding Angles Postulate is used to construct parallel lines. The Parallel Postulate guarantees that for any line ℓ, you can always construct a parallel line through a point that is not on ℓ. Holt McDougal Geometry 3-3 Proving Lines Parallel Holt McDougal Geometry 3-3 Proving Lines Parallel Example 2B: Determining Whether Lines are Parallel Use the given information and the theorems you have learned to show that r || s. m2 = (10x + 8)°, m3 = (25x – 3)°, x = 5 m2 = 10x + 8 = 10(5) + 8 = 58 Substitute 5 for x. m3 = 25x – 3 = 25(5) – 3 = 122 Substitute 5 for x. Holt McDougal Geometry 3-3 Proving Lines Parallel Use the given information and the theorems you have learned to show that r || s. m2 = (10x + 8)°, m3 = (25x – 3)°, x = 5 m2 = 10x + 8 = 10(5) + 8 = 58 m3 = 25x – 3 = 25(5) – 3 = 122 m2 + m3 = 58° + 122° = 180° r || s Holt McDougal Geometry . 3-3 Proving Lines Parallel Given: p || r , 1 3 Prove: ℓ || m Statements Reasons 1. p || r 1. Given 2. 3 2 2. Alt. Ext. s Thm. 3. 1 3 3. Given 4. 1 2 4. Trans. Prop. of 5. Conv. of Corr. s Post. 5. ℓ ||m Holt McDougal Geometry 3-3 Proving Lines Parallel Check It Out! Example 3 Given: 1 4, 3 and 4 are supplementary. Prove: ℓ || m Holt McDougal Geometry 3-3 Proving Lines Parallel Check It Out! Example 3 Continued Statements 1. 2. 3. 4. 5. 6. 7. 1 4 m1 = m4 3 and 4 are supp. m3 + m4 = 180 m3 + m1 = 180 m2 = m3 m2 + m1 = 180 8. ℓ || m Holt McDougal Geometry Reasons 1. Given 2. Def. s 3. Given 4. Trans. Prop. of 5. Substitution 6. Vert.s Thm. 7. Substitution 8. Conv. of Same-Side Interior s Post. 3-3 Proving Lines Parallel Classwork/Homework • Pg. 166 (1-22 all) Holt McDougal Geometry