Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Genome Editing in Human Stem Cells, Animals, and Plants Jin-Soo Kim Center for Genome Engineering, Institute for Basic Science, Seoul, South Korea Department of Chemistry, Seoul National University, Seoul, South Korea Genome editing that allows targeted mutagenesis in higher eukaryotic cells and organisms is broadly useful in biology, biotechnology, and medicine. We have developed ZFNs, TALENs, and Cas9 RNA-guided endonucleases (RGENs), derived from the type II CRISPR-Cas prokaryotic adaptive immune system, to modify chromosomal DNA in a targeted manner. In particular, we used purified Cas9 protein and in vitro transcribed guide RNAs rather than plasmids encoding these components to correct large chromosomal inversions in the blood coagulation factor VIII gene that cause hemophilia A in patient-derived induced pluripotent stem cells (iPSCs) and to modify diverse genes in large animals and plants. The resulting animals and plants contained small insertions or deletions (indels) at target sites, which are indistinguishable from naturally-occurring variations, possibly bypassing regulatory requirements associated with use of recombinant DNA. Despite broad interest in RNA-guided genome editing, RGENs are limited by offtarget mutations. We developed Cas9 nuclease-digested whole genome (digenome) sequencing (Digenome-seq) to profile genome-wide specificities of Cas9 nucleases in an unbiased manner. Digenome-seq captured nuclease cleavage sites at single nucleotide resolution and identified off-target sites at which indels were induced with frequencies below 0.1%. We also showed that these off-target effects could be avoided by using modified guide RNAs that contain two extra guanine nucleotides at the 5’ end. Digenome-seq is a robust, sensitive, unbiased, and cost-effective method for profiling genome-wide off-target effects of programmable nucleases including Cas9. Education 1987 BS Dept. of Chemistry, Seoul National University 1989 MS Dept. of Chemistry, Seoul National University 1994 PhD Dept. of Biochemistry, University of Wisconsin-Madison Experiences Research Associate - Howard Hughes Medical Institute/MIT 1994 - 1997 Principal Investigator - Samsung Biomedical Research Institute 1997 - 1999 CEO and CSO - ToolGen, Inc. 1999 - 2005 Assistant/Associate Professor - Seoul National University 2005 - present Director - Center for Genome Engineering, Institute for Basic Science 2014 - present Jin-Soo Kim is an entrepreneur and chemist-turned-biologist. He graduated from Seoul National University in 1987 with a major in chemistry. He then earned a master’s degree in chemistry from Seoul National University in 1989 and a Ph.D. in biochemistry from the University of Wisconsin-Madison in 1994. After postdoctoral training at Howard Hughes Medical Institute/Massachusetts Institute of Technology, he came back to Seoul in 1997 to serve as Principal Investigator at Samsung Biomedical Research Institute. He co-founded a biotechnology company, ToolGen, Inc., focused on zinc finger technology in 1999, and served as CEO and CSO for the subsequent 6 years. He joined the faculty of the Department of Chemistry at Seoul National University in 2005. He now serves as Director of Center for Genome Engineering at Institute for Basic Science. He has published over 60 articles and filed 20 patent applications, mostly in the field of gene regulation and genome editing. He has been a member of Faculty of 1000 since May, 2013. Throughout his independent scientific career, Jin-Soo Kim has been developing tools for genome editing, a method now used widely in biomedical research, biotechnology, and medicine. Genome editing enables genetic studies in model organisms and cell lines and gene correction in stem and somatic cells for the treatment of both genetic and acquired diseases. Furthermore, genome editing can be used to create value-added crops, livestock, fish, poultry, and pets. The broad interest in this rapidly evolving and expanding technology among researchers is highlighted by the choice of genome editing as the Method of the Year 2011 by Nature Methods and as the Breakthrough of the Year runner-up by Science in 2013. Genome editing in cultured cells, animals, and plants is catalyzed by programmable nucleases that cleave chromosomal DNA in a targeted manner. The Kim group has developed and improved three different types of programmable nucleases, namely, zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs), and RNA-guided engineered nucleases (RGENs) derived from CRISPR/Cas, an adaptive immune system in prokaryotes. These tools are now used for genome editing in human stem cells, model organisms, livestock, and plants in thousands of labs all around the world. The Kim group now focuses on target identification and validation for drug discovery using genome-scale collections of TALENs and RGENs and on gene correction in human pluripotent stem cells for the treatment of genetic disorders. He also collaborates with animal scientists to develop genome-engineered pigs appropriate for organ transplantation and with plant scientists to create value-added crops.