* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Beyond the limits of cosmological perturbation theory: resummations
Routhian mechanics wikipedia , lookup
Elementary particle wikipedia , lookup
Faster-than-light wikipedia , lookup
Biofluid dynamics wikipedia , lookup
Derivations of the Lorentz transformations wikipedia , lookup
Velocity-addition formula wikipedia , lookup
Equations of motion wikipedia , lookup
Fluid dynamics wikipedia , lookup
Beyond the limits of cosmological perturbation theory: resummations and effective approaches Massimo Pietroni - INFN Padova Paris, November 25th, 2013 Outline From particles to fluids Exact results (consistency relations) Approximate results (resummations, effective approaches) with S. Anselmi, M. Peloso, A. Manzotti, M. Viel, F. Villaescusa-Navarro Why do we need to study the late (and non-linear) evolution? Dark Energy (Baryonic Acoustic Oscillations) Neutrino masses Primordial non-Gaussianity Cosmic shear, .... DO IT ACCURATE, FLEXIBLE, FAST!! (O(%)) (not only LCDM) (<O(mins)) And, if possible, simple to use... The Eulerian way + · [(1 + )v] = 0 , @v + Hv + (v · r)v = @⌧ 2 3 = 2 r + “sources” 2 H M subhorizon scales, newtonian gravity (for Lagrangian approaches, see Kitaura, Matsubara, Sugiyama, Tassev- Zaldarriaga, Porto-Senatore-Zaldarriaga, Valageas...) 1) From particles to fluids Rederiving the fluid equations Buchert, Dominguez, ’05, Pueblas Scoccimarro, ’09, Baumann et al. ’10 M.P., G. Mangano, N. Saviano, M. Viel, 1108.5203, Carrasco, Hertzberg, Senatore, 1206.2976 X nmic (x, ⌧ ) = xn (⌧ )) , D (x n vni = ẋn (⌧ ) , ain = fmic (x, p, ⇥ ) = X n D (x xn (⇥ )) D (p pn (⇥ )) rix mic (x, ⌧ ) Satisfies the “Vlasov eq.” Rederiving the fluid equations Buchert, Dominguez, ’05, Pueblas Scoccimarro, ’09, Baumann et al. ’10 M.P., G. Mangano, N. Saviano, M. Viel, 1108.5203, Carrasco, Hertzberg, Senatore, 1206.2976 n, v i , , ij ,... LU V 1 f (x, p, ⌧ ) ⌘ V Z d3 yW(y/LU V )fmic (x + y, p, ⌧ ) Coarse-Grained Vlasov eq. large scales i @ p @ @ i + amrx (x, ⌧ ) i f (x, p, ⌧ ) = i am @x @p @⌧ @ @ i i am h i fmic r mic iLU V (x, p, ⌧ ) f (x, p, ⌧ )rx (x, ⌧ ) i @p @p hgiLU V (x) ⌘ =h 1 VU V mic iLU V Z short scales d3 y W(y/LU V )g(x + y) f = hfmic iLU V Vlasov in the L_uv ➞ 0 limit! Short-distance sources @ @ i n(x) + (n(x)v (x)) = 0 @⌧ @xi Short-distance sources @ i @ i i k v (x) + Hv (x) + v (x) k v (x) @⌧ @x 1 @ i ki i = rx (x) (n(x) (x)) J1 (x) k n(x) @x @ @⌧ ij + 2H ij @ +v @xk k ij + ik @ j v + k @x jk @ i v k @x 1 @ ij kij = n(x)! (x) J2 k n(x) @x ij and all higher-order moments are dynamically generated by coarse-graining Standard Eulerian treatment corresponds to L (single stream approximation) 0 Short-distance sources J1i (x) 1 ⌘ hnmic ri n(x) n(x)ri (x) mic i(x) takes into account short-scale density fluctuations ij J2 (x) 1 i ⌘ hvmic nmic rj n(x) mic i(x) v i (x)hnmic rj mic i(x) takes into account short-scale velocity fluctuations ... + (i $ j) Exact large scale dynamics for density and velocity ⇤ @ @ ⇥ i (x) + i (1 + (x))v (x) = 0 @⌧ @x @ i @ i i k v (x) + Hv (x) + v (x) k v (x) = @⌧ @x 3 2 r (x) = ⌦M H2 (x) 2 external input on UV-physics needed { i rx n(x) = n0 (1 + (x)) 1 i J1 (x) ⌘ hnmic ri n(x) 1 @ J (x) ⌘ (n(x) k n(x) @x i (x) mic i(x) ki (x)) J (x) i i J1 (x) n(x)ri (x) 2) Exact results (extended) galilean invariance and LSS M. Peloso, M.P. 1302.0223 1310.7915 Kehagias, Riotto, 1302.0130 Kehagias, Norena, Perrier, Riotto 1311.0786 Kehagias, Perrier, Riotto, 1311.5524 Creminelli, Norena, Simonovic, Vernizzi 1309.3557 Creminelli, Gleyzes, Simonovic, Vernizzi, 1311.0290 Valageas, 1311.1236, 1311.4286 (extended) galilean invariance and LSS M. Peloso, M.P. 1302.0223 1310.7915 Kehagias, Riotto, 1302.0130 Kehagias, Norena, Perrier, Riotto 1311.0786 Kehagias, Perrier, Riotto, 1311.5524 Creminelli, Norena, Simonovic, Vernizzi 1309.3557 Creminelli, Gleyzes, Simonovic, Vernizzi, 1311.0290 Valageas, 1311.1236, 1311.4286 extended galilean transformations the equations of motions are invariant under time-dependent, uniform boosts: 0 Rn physical coordinates = Rn Z t dt V0 (t ) Vn0 = Vn 0 xn comoving coordinates 1 d(⌧ ) = a(⌧ ) Z ⌧ 0 vn d⌧ a(⌧ )V0 (⌧ ) 0 0 0 = xn = vn 0 0 V0 (t) d(⌧ ) @ d(⌧ ) @⌧ velocity zero-mode: tadpole all the variables and the sources transform as scalars (+ zero-modes) (x ) = (x) 0 0 vi (x ) = vi (x) d˙i (⌧ ) 0 0 (x ) = ij (x) ij ··· 0 0 0 ri (x ) = ri (x) + d¨i (⌧ ) + Hd˙i (⌧ ) 0 0 Ji (x ) = Ji (x) 0 0 x =x 0 d(⌧ ) the invariance holds at a fully non-perturbative level: non-linearities+beyond single-stream+beyond CDM in the equations of motion, the only non-trivial effect of the zero mode velocity shift comes from the non-linear terms in continuity and Euler equations @ @ ˙ [(1 + (x))vk (x)] ! dk k (x) k @x @x @ @ ˙ vk (x) k vi (x) ! dk k vi (x) @x @x @ (x) @⌧ @ vi (x) @⌧ invariance enforced by cancellation bet ween linear and non-linear terms at the same point x: it is a local (UV) property approximation schemes must respect the GI constraints at any order n-th order correlators related to the soft limit of (n+1)th order ones Galileo and IR sensitivity Jain Bertshinger, ’96 Scoccimarro Frieman, ’96 h'a (k, ⌘)'b (k , ⌘ )iV0 = e 0 0 iV0 ·(kT (⌘)+k0 T (⌘ 0 )) h'a (k, ⌘)'b (k , ⌘ )iV0 =0 0 0 Galileo and IR sensitivity Jain Bertshinger, ’96 Scoccimarro Frieman, ’96 h'a (k, ⌘)'b (k , ⌘ )iV0 = e 0 0 iV0 ·(kT (⌘)+k0 T (⌘ 0 )) h'a (k, ⌘)'b (k , ⌘ )iV0 =0 0 GI (+ translation invariance: k’=-k) (in the single species case) equal-time PS is insensitive to V0 0 Galileo and IR sensitivity Jain Bertshinger, ’96 Scoccimarro Frieman, ’96 h'a (k, ⌘)'b (k , ⌘ )iV0 = e 0 0 iV0 ·(kT (⌘)+k0 T (⌘ 0 )) h'a (k, ⌘)'b (k , ⌘ )iV0 =0 0 0 GI (+ translation invariance: k’=-k) (in the single species case) equal-time PS is insensitive to V0 '¯a O(V0 2 ) '¯a '¯a '¯a '¯a '¯a =0 Galileo and IR sensitivity Jain Bertshinger, ’96 Scoccimarro Frieman, ’96 h'a (k, ⌘)'b (k , ⌘ )iV0 = e 0 0 iV0 ·(kT (⌘)+k0 T (⌘ 0 )) h'a (k, ⌘)'b (k , ⌘ )iV0 =0 0 0 GI (+ translation invariance: k’=-k) (in the single species case) equal-time PS is insensitive to V0 '¯a O(V0 2 ) '¯a '¯a '¯a '¯a '¯a =0 same structure as 1-loop PS with 0 Pab (q; s, s0 ) ! '¯2 (q, s) '¯2 ( q, s0 ) V0 · q D (q) IR divs cancel order by order in standard PT Galilean Ward identities at 1-loop... Valid at all loop: exact relation bet ween the soft limit of a n+1-point function and a n-point one. To be satisfied in any resummation (=reorganization of the PT expansion) scheme. From Ward to Consistency relations (k ! 0) q vi (k) k q h (q, ⌧ ) (k 0 q (k ! 0) vi (k) k q q, ⌧ )ivi (k,⌧ ) 00 Take the average over the soft velocity v_i, constrained to be a solution of the equations of motion M. Peloso, M.P. 1302.0223 Kehagias,, Riotto 1302.0130 From Ward to Consistency relations (k ! 0) q vi (k) k q h (q, ⌧ ) (k 0 q (k ! 0) vi (k) k q q, ⌧ )ivi (k,⌧ ) 00 Take the average over the soft velocity v_i, constrained to be a solution of the equations of motion (in the single species case) fully nonlinear bispectrum and power spectrum M. Peloso, M.P. 1302.0223 Kehagias,, Riotto 1302.0130 all-order result Spontaneous GI breaking t wo species with large scale velocity bias: ✓2 (k) bv = lim k!0 ✓1 (k) ✓(k) = ik j vj (k) Spontaneous GI breaking t wo species with large scale velocity bias: ✓2 (k) bv = lim k!0 ✓1 (k) ✓(k) = ik j vj (k) the IR is not GI invariant: ✓2 (k) ✓20 (k) lim ! lim 0 6= bv k!0 ✓1 (k) k!0 ✓1 (k) Spontaneous GI breaking t wo species with large scale velocity bias: ✓2 (k) bv = lim k!0 ✓1 (k) ✓(k) = ik j vj (k) the IR is not GI invariant: ✓2 (k) ✓20 (k) lim ! lim 0 6= bv k!0 ✓1 (k) k!0 ✓1 (k) the consistency relations get modified by new terms: exact at all orders, nonvanishing at equal times order parameter of GI breaking Peloso, MP , 1310.7915 Spontaneous GI breaking: examples 1) new long range force in the DM sector = 0 for baryons 3 ⌦CDM (2 2 2 3 + 1) + bv ⌦b 2 3 ⌦CDM 2 bv 3 ⌦b = 0 2 linear velocity bias Amendola ’04, Saracco et al ’10,... Spontaneous GI breaking: examples 1) new long range force in the DM sector = 0 for baryons 3 ⌦CDM (2 2 2 3 + 1) + bv ⌦b 2 3 ⌦CDM 2 bv 3 ⌦b = 0 2 linear velocity bias Amendola ’04, Saracco et al ’10,... 2) halo/DM velocity bias Desjacques, ’08, Elia, Ludlow, Porciani, ’11 3) Approximate results Exact large scale dynamics for density and velocity ⇤ @ @ ⇥ i (x) + i (1 + (x))v (x) = 0 @⌧ @x @ i @ i i k v (x) + Hv (x) + v (x) k v (x) = @⌧ @x 3 2 r (x) = ⌦M H2 (x) 2 external input on UV-physics needed { i rx n(x) = n0 (1 + (x)) 1 i J1 (x) ⌘ hnmic ri n(x) 1 @ J (x) ⌘ (n(x) k n(x) @x i (x) mic i(x) ki (x)) J (x) i i J1 (x) n(x)ri (x) Three strategies particles non-linear non-perfect fluid k target physics scale 2⇡ LU V Three strategies particles non-linear non-perfect fluid 2⇡ LU V k target physics scale 1) Single stream approximation: J = i i J1 = 0, 2⇡/LU V ! 1 Three strategies particles non-linear non-perfect fluid 2⇡ LU V k target physics scale 1) Single stream approximation: J = i i J1 = 0, J i (k; LU V ), J1i (k; LU V ), in 2⇡/LU V ! 1 2) EFT of LSS: expand terms of , v then measure them at k = k̄ and send 2⇡/LU V ! 1 i (Baumann et al ’10, Carrasco et al ’12, ’13) Three strategies particles non-linear non-perfect fluid 2⇡ LU V k target physics scale 1) Single stream approximation: J = i i J1 = 0, 2⇡/LU V ! 1 J i (k; LU V ), J1i (k; LU V ), in 2) EFT of LSS: expand terms of , v then measure them at k = k̄ and send 2⇡/LU V ! 1 i (Baumann et al ’10, Carrasco et al ’12, ’13) 3) Coarse-grained PT: insert a new scale, L, bet ween the mildly non-linear and the non linear fluid regime. MP, Mangano, Saviano, Viel, ’11 particles non-linear non-perfect fluid 2⇡ LU V 1 L k “PT” ok coarse-grained sources Physics at k is independent on L, L_uv (“Wilsonian approach”) Expansion in J’s: 1 h iJ = h iJ=0 + h J iJ=0 + h JJ iJ=0 + · · · 2 computed in PT with cutoff at 1/L measured from simulations Computing the sources LU V = 1, 2, 4 Mpc/h LU V : , v i , J1i , J i Manzotti, Peloso, MP, Villaescusa-Navarro, Viel, in progress Lbox = 512 Mpc/h Nparticles = (512)3 Computing the sources LU V = 1, 2, 4 Mpc/h LU V : , v i , J1i , J i L : ¯, v̄ i , J¯1i , J¯i ✓ ◆3/2 2 1 W(R/L) = e 3 ⇡ L R2 2L2 Manzotti, Peloso, MP, Villaescusa-Navarro, Viel, in progress Lbox = 512 Mpc/h Nparticles = (512)3 How big are the non-perfect fluid effects? 1 L=2 Mpc/h L=4 Mpc/h 0.1 z=0 <delta J>/<delta delta> D 2 D 0.01 4 <JJ>/<delta delta> 0.001 0.01 genuine nonperturbative effect 0.1 Manzotti, Peloso, MP, Villaescusa-Navarro, Viel, in progress How big are the non-perfect fluid effects? Pueblas Scoccimarro, ’09 1 L=2 Mpc/h L=4 Mpc/h 0.1 z=0 <delta J>/<delta delta> D 2 D 0.01 4 <JJ>/<delta delta> 0.001 0.01 genuine nonperturbative effect 0.1 Manzotti, Peloso, MP, Villaescusa-Navarro, Viel, in progress How big are the non-perfect fluid effects? 1 L=2 Mpc/h L=4 Mpc/h z=1 0.1 <J delta>/<delta delta> 0.01 <J J>/<delta delta> 0.001 0.01 0.1 Compatible with best single-stream resummed PT approaches Compare with resummations (Anselmi, MP, ’12) 0.10 0.04 z=0 z = 0.5 z = 1.0 z = 2.0 z = 0.0 z = 0.5 z = 1.0 0.05 HPAP-PEmuLêPEmu HP-PNBLêPNB 0.02 0.00 0.00 -0.02 Sato & Matsubara N-Body - L=1000 Mpcêh -0.05 Coyote Emulator - Millennium Cosmology Wb=0.0448; Wm=0.265; ns=0.936; h=0.71 Wb=0.044; Wm=0.2485; ns=1.0; h=0.7272 w=-1; s8=0.8 w=-1; s8=0.9 -0.04 0.0 0.2 0.4 k HhêMpcL 0.6 0.8 1.0 -0.10 0.0 0.2 0.4 k HhêMpcL 0.6 0.8 1.0 Anselmi,Lopez Nacir, Sefusatti, in progress Compare with resummations (Anselmi, MP, ’12) O(mins) for a full run, only 1-loop type integrals 0.10 0.04 z=0 z = 0.5 z = 1.0 z = 2.0 z = 0.0 z = 0.5 z = 1.0 0.05 HPAP-PEmuLêPEmu HP-PNBLêPNB 0.02 0.00 0.00 -0.02 Sato & Matsubara N-Body - L=1000 Mpcêh -0.05 Coyote Emulator - Millennium Cosmology Wb=0.0448; Wm=0.265; ns=0.936; h=0.71 Wb=0.044; Wm=0.2485; ns=1.0; h=0.7272 w=-1; s8=0.8 w=-1; s8=0.9 -0.04 0.0 0.2 0.4 k HhêMpcL 0.6 0.8 1.0 -0.10 0.0 0.2 0.4 k HhêMpcL 0.6 0.8 1.0 Anselmi,Lopez Nacir, Sefusatti, in progress Compare with resummations (Anselmi, MP, ’12) 0.04 0.04 z=0 z = 0.5 z = 1.0 z = 2.0 z=0 z = 0.5 z = 1.0 z = 2.0 0.02 HPAP-PEmuLêPEmu HPAP-PEmuLêPEmu 0.02 0.00 -0.02 0.00 -0.02 Non-clustering Quintessence Wbh2 =0.0224; Wmh2 =0.1296; ns=0.97; h=0.648 w=-0.8; s8=0.749 Non-clustering Quintessence -0.04 -0.04 Wbh2 =0.0224; Wmh2 =0.1296; ns=0.97; h=0.798 w=-1.2; s8=0.847 0.0 0.2 0.4 k HhêMpcL 0.6 0.8 1.0 0.0 0.2 0.4 k HhêMpcL 0.6 0.8 1.0 Anselmi,Lopez Nacir, Sefusatti, in progress Sources: time and scale dependence time dep. agrees with PT at O(1) scale dep. agrees with PT for k<0.2 <h phi_in>/<phi_in phi_in> 0.1 z=0 z=1.5 z=3 z=5 PT z=5 <h3 phi>/(D^2 Omega/f^2) 0.01 <h4 phi>/(D^2 Omega/f^2) L= 8 Mpc/h Luv = 2 Mpc/h 0.001 0.1 k (h/Mpc) c2s / < h2,4 '¯1 > order of magnitude of cs fully predictable in plain PT with no multistream/virialization/etc. !! Propagator: 1-loop + sources L=8 Mpc, z=0 1 N-Body 0.8 No sources G Sources 0.6 0.4 0.2 0 0 0.1 0.2 k (h/Mpc) 0.3 0.4 0.5 Propagator: RPT+sources L=8 Mpc, z=0 1 Sources 0.8 No Sources G N-Body 0.6 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 k (h/Mpc) PT RESUMMATIONS STILL NEEDED ON THE SMOOTH FIELDS!! Sources: cosmology dependence hh3 h3 i k 4 P (k) R = 8 Mpc h 1.95 · 10 9 < As < 3.0 · 10 9 1 0.932 < ns < 1 Sources: cosmology dependence hh3 h3 i k 4 P (k)I[P (k); R] R = 8 Mpc h 1.95 · 10 9 < As < 3.0 · 10 9 1 0.932 < ns < 1 PT RECOVERS MOST OF THE COSMOLOGY DEPENDENCE Summary Exact results from extended GI: check of approximation schemes (including N-body), possible measure of large scale velocity bias; Non-perfect-fluid effects are O(%) in the BAO region (z=0), effective approaches needed to systematically treat them; Resummation schemes perform (surprisingly?) well, and are needed in the mildly non-linear regime, even in effective approaches.