Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. HighlyparallelgenomevariantengineeringwithCRISPR/Cas9ineukaryoticcells MeruJ.Sadhu1,*,†,JoshuaS.Bloom1,*,†,LauraDay1,JakeJ.Siegel1,‡,SriramKosuri2, LeonidKruglyak1,† 1DepartmentofHumanGenetics,DepartmentofBiologicalChemistry,Howard HughesMedicalInstitute,UniversityofCalifornia,LosAngeles,LosAngeles,CA 90095,USA. 2DepartmentofChemistryandBiochemistry,UniversityofCalifornia,LosAngeles, LosAngeles,CA90095,USA. *Theseauthorscontributedequallytothiswork. †Correspondingauthor.Email:[email protected](M.J.S.); [email protected](J.S.B.);[email protected](L.K.) ‡Presentaddress:DepartmentofChemistry,MassachusettsInstituteofTechnology, Cambridge,MA02139,USA. Abstract: DirectmeasurementoffunctionaleffectsofDNAsequencevariantsthroughouta genomeisamajorchallenge.WedevelopedamethodthatusesCRISPR/Cas9to engineermanyspecificvariantsofinterestinparallelinthebuddingyeast Saccharomycescerevisiae,andtoscreenthemforfunctionaleffects.Weusedthe methodtoexaminethefunctionalconsequencesofprematureterminationcodons (PTCs)atdifferentlocationswithinallannotatedessentialgenesinyeast.Wefound bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. thatmostPTCswerehighlydeleteriousunlesstheyoccurredclosetotheC-terminal endanddidnotinterruptanannotatedproteindomain.Surprisingly,wediscovered thatsomeputativelyessentialgenesaredispensable,whileothershavelarge dispensableregions.Thisapproachcanbeusedtoprofiletheeffectsoflargeclasses ofvariantsinahigh-throughputmanner. Maintext: UnderstandingthefunctionaleffectsofDNAsequencevariantsisofcritical importanceforstudiesofbasicbiology,evolution,andmedicalgenetics,but measuringtheseeffectsinahigh-throughputmannerisamajorchallenge.One promisingavenueispreciseeditingwiththeCRISPR/Cas9system,whichallows generationofDNAdouble-strandbreaks(DSBs)atgenomicsitesmatchingthe targetingsequenceofaguideRNA(gRNA).RecentstudieshaveusedCRISPR librariestogeneratemanyframeshiftmutationsgenome-widethroughfaultyrepair ofCRISPR-directedbreaksbynonhomologousend-joining(NHEJ)(1).Wesoughtto adaptthisapproachtoprecisevariantengineering.Generationofprecisegeneedits byCRISPR/Cas9requiresintroductionofarepairtemplatethatcanbeusedto directrepairthroughhomology-directedrepair(HDR)pathways(2),intheprocess incorporatingthedesiredsequencevariantspresentonthetemplateintothe genomiclocus.Generatingmanyuniquelyeditedcellsinparallelthusrequireseach celltoreceivethecorrectgRNA-repairtemplatepair.Wedevisedanapproachthat accomplishessuchpairingbyencodinggRNAtargetingsequencesandtheir correspondingrepairtemplatesincisonoligonucleotidesgeneratedinbulkwith bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. high-throughputsynthesis.Theseoligonucleotidelibrariesarethenusedto generatepoolsofplasmidspairingthetwocomponentsfordeliveryintoyeastcells. Asimilarmethodwasrecentlyreportedinbacteria(3).Weusedthisapproachto understandtheconsequencesofoneimportantclassofgeneticvariants:premature terminationcodons(PTCs). PTCsinterrupttheopenreadingframes(ORFs)ofprotein-codinggenes.Such mutationsaregenerallyexpectedtohavestrongdeleteriouseffects,eitherby abrogatingorchangingthefunctionsoftheencodedproteinsorbycausingmRNA degradationthroughthenonsense-mediateddecay(NMD)surveillancepathway. Morethan10%ofannotatedpathogenichumanvariantsarePTCs(4,5). Nonetheless,ourunderstandingofthedetrimentaleffectsofPTCsisincomplete, particularlywhentheyoccurnearthe3’endsofgenes.Suchmutationsmaynot shortentheencodedproteinssufficientlytoaffecttheirfunction,andoftenescape NMD. Wefirsttestedgeneeditingthatemploysaplasmid-encodedpairedgRNAand repairtemplate(figure1a)bytargetingeightspecificPTCstotheS.cerevisiae genome.S.cerevisiaehasanaturallyhighpropensitytorepairDSBsthroughHDR (6),whichweenhancedbyusingayeaststraininwhichNHEJisabolishedbya deletionoftheNEJ1gene(7)(SupplementaryTable1).Foreachtargetedmutation, wesequencedthecorrespondinggenomiclocusinthousandsoftransformedyeast bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. cells.Inalleightcases,thedesiredmutationwaspresentin>95%ofsequencing reads,demonstratingthehighefficiencyofthisstrategy(Table1). Wenextscaleduptheapproachbyusinglarge-scaleoligonucleotidesynthesisto generateapoolofover10,000distinctpairedgRNA-repairtemplateplasmids (Supplementaryfigure1).TheseplasmidstargetedPTCstodifferentsitesin1034 yeastgenesconsideredessentialforviability(8,9).Eachgenewastargetedat10 sites,chosenwithapreferenceforsitesclosertothe3’end(SupplementaryFigure 2).Wetransformedyeastinbulkwiththisplasmidpool.AfterinducingCas9 expression,wecollectedmillionsofsurvivingtransformedcellsevery24hoursfor fourdays(figure1b).PTCsthatdisruptthefunctionofgenesessentialforviability areexpectedtodropoutofthepoolovertime,whilethosethatdonotareexpected topersist. Wedeterminedtheabundanceofeachedit-directingplasmidateachtimepointby bulksequencing,andcomputeda“PTCtolerancescore”basedonthepersistenceof eachplasmidoverthedurationofthetime-courseexperiment(Materialsand Methods).Ascontrols,weusedasetof90“dubiousORFs,”whichwereoriginally annotatedasgenesbutlaterreclassifiedduetolackofconservationandascribable function(10).Asexpected,PTCsinessentialgenesweremuchlesstoleratedthan thoseindubiousORFs(Wilcoxonranktest,P<2x10-16)(figure1c).Asafurther control,71sitesinessentialgenesweretargetedwithtwoplasmidsthathadthe samegRNAbutdifferentrepairtemplates,onlyoneofwhichintroducedaPTC. bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. PlasmidsthatintroducedaPTCweresignificantlylesstolerated(Supplementary Figure3)(pairedt-testt=6.5,P=8x10-9),showingthattheobservedphenotypic effectsarepredominantlyduetospecificintroductionofthedesiredmutations, ratherthanrepair-template-independentCas9activities. OnepossibilityfortheobservedPTCintoleranceisthatmosttruncationsof essentialgenesfatallydisruptproteinfunction.AnotherpossibilityisthatNMD removesmosttranscriptscarryingPTCs,whichisfatalinthecaseofPTCsin essentialgenes.WetestedthesealternativesbyintroducingPTCsinastrainthatis NMD-deficient(11).PTCsinthisstrainweresimilarlydeleterious(Supplementary Figure4)(χ2=1.66,P=0.20)(SupplementaryTable8),suggestingthatprotein truncation,ratherthandegradationoftranscriptsviaNMD,explainstheobserved PTCintolerance. AlthoughmostPTCsinannotatedessentialgeneswerehighlydeleterious,some appearedtobetolerated.Weexaminedtherelationshipbetweentolerancescores andlocationsofPTCs.PTCsweregenerallydeleteriouswhenlocatedmorethan27 codonsawayfromthegeneend(figure1d).Withinthe27terminalcodons,the tolerancescoresrosetowardthe3’end.PTCswerealsomoretoleratediftheydid notinterruptorremoveanannotatedproteindomain(12)(χ2=317.2,P=5.86x1071)(Supplementaryfigure5,SupplementaryTable8).PTCsthatdisruptedprotein domainstendedtobedeleteriousevenwhentheyfellclosetogeneends. Evolutionaryconservationofthetruncatedregionamongrelatedyeastspecies(13) bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. wasalsosignificantlybutmoreweaklypredictiveofPTCtolerance(χ2=49.8,P= 1.66x10-12)(Supplementaryfigure5). Webuiltamodeltomorepreciselydelineatedispensable3’endsofessentialgenes. Whileourexperimentisnotdesignedtocomprehensivelyruleouttheexistenceof smalldispensableC-termini,itisinterestingtonotethat517genesdidnotappear totolerateanytestedPTCs(Supplementaryfigure6),insomecasesevenveryclose totheirends.Forinstance,weconfirmedthatPob3,involvedinnucleosome remodelingduringDNAreplicationandtranscription,doesnottoleratelossofits lasttwoaminoacids(SupplementaryFigure6),whichareadjacenttothenuclear localizationsequence(14).WealsoconfirmedthatPCNA,requiredforthe processivityofDNApolymerase,didnottoleratethelossofitslastfiveaminoacids. ThishighlyconservedregionispartofthebindingsurfaceofPCNAusedforproteinproteininteractions(15).IncontrasttothehighlyPTC-intolerantgenes,101genes toleratedfiveormorePTCs,suggestingthatthesegeneshavelargedispensableCtermini(SupplementaryFigure6).WecomputedtheoveralltoleranceofPTCsfor eachgeneandobservedconsiderablevariationamonggenes(figure2a).Agene ontologyenrichmentanalysis(16)showedthatgenesencodingproteinswith catalyticactivityweresignificantlylessPTC-tolerantthanothergenes(KolmogorovSmirnovtest,BonferronicorrectedP=0.0024)(Supplementarytable10, SupplementaryFigure7),whilegeneswithfunctionsrelatingtomRNAsplicingand processingweresignificantlymorePTC-tolerant(Kolmogorov-Smirnovtest, BonferronicorrectedP=0.0017). bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Tobetterunderstandwhysomegenesannotatedasessentialcouldtoleratemany PTCs,wecloselyexaminedthe16mostPTC-tolerantgenes(figure2a).Thesegenes includedSSY1,PTR3,andSSY5,thethreemembersoftheSPS(Ssy1-Ptr3-Ssy5) plasmamembraneaminoacidsensorsystem(17),aswellasSHR3,requiredforSPS cell-surfacelocalization(18).DefectsinSPSfunctioncompromiseleucineuptake, andthestrainoriginallyusedtodeterminewhichgenesareessentialisdeficientin leucinebiosynthesisandthusrequiresleucineuptake,whichexplainsthelethality ofSPSmutationsinthisstrain(19,20).Weconfirmedthatdeletionsofthesegenes wereviableinyeastthatcouldsynthesizeleucine,butlethalinyeastthatcouldnot (figure2b).Similarly,thePTC-tolerantgeneFUR1isrequiredfortheutilizationof exogenousuracil(21),anduracilbiosynthesisisalsodisruptedinthestrainusedto annotateessentialgenes.WeconfirmedthatFUR1isonlyessentialinyeastwhich cannotsynthesizeuracil(figure2b),consistentwithprevioussyntheticlethality results(22).Unexpectedly,wealsoobservedpoorgrowthofyeastwithdeletionsof bothURA3andthePTC-tolerantgeneSDH3(figure2b),amemberofthe mitochondrialinnermembraneproteintranslocasecomplex(23),whichsuggests thatproperuracilutilizationmayinvolveanunknownmitochondrialfunction. Theseexamplesillustratethatgenesnotuniversallyessentialforyeastviabilitycan appearessentialinaspecificgeneticbackground. AnotherPTC-tolerantgene,MMF1,encodesaproteinhomologoustothewidely conservedRidA,whichprocessestoxiciminesproducedduringisoleucine bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. biosynthesisinSalmonella(24).WenoticedthatdeletionofMMF1isviableunder ourgrowthconditions,butnotunderthosepreviouslyusedtodefinethesetof essentialgenes(Supplementaryfigure8).Thusinthiscase,thelethalityofagene disruptionisdeterminedbyagene-environmentinteraction.Wehypothesizethat MMF1isessentialinyeastwhenisoleucineissynthesized,butnotwhenitistaken upfromthegrowthmedium.Importantly,theisoleucinetransportersBap2and Bap3arepoorlyexpressedunderthegrowthconditionsusedtoannotateessential genes,butmorehighlyexpressedunderthegrowthconditionsusedinour experiments(25). ThreeadditionalPTC-tolerantgenesweremisannotatedasessentialbecausetheir deletiondisruptsthefunctionofanearbyessentialgene.YJR012Coverlapsthe5’ endofthePTC-intolerantessentialgeneGPI14(Supplementaryfigure9,figure2a). CloseexaminationofYJR012CRNAsequencingandribosomefootprintingdata(26) indicatesthatthestartpositionofYJR012Cismisannotated(Supplementaryfigure 9).DeletionofYJR012CfromitstruestartatM76totheendoftheORFwasviable, confirmingYJR012Cisnotessential.Similarly,closeexaminationofUTR5revealed thatitoverlapstheTATAboxoftheessentialgeneHYP2(27);deletionfromthe 34thcodonofUTR5sparedtheTATAboxandwasviable(Supplementaryfigure9). Finally,deletionofTRE2isinviableduetoitseffectsontheneighboringessential geneCDC31(28).TheseexamplesillustratethevalueofPTCintroductionfor characterizationofgeneessentiality. bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. SixPTC-tolerantessentialgenesencodeproteinswithlargedispensableC-terminal regions.OnestrikingcaseisCWC24,ahighlyconservedmemberofthespliceosome. Cwc24hasaCCCH-typeZincfingerdomain(Znf)andaRING-typeZnfdomain. AnalysisoftheeffectofPTCsinCWC24suggestedtheRINGfingerdomainwas dispensablewhiletheCCCHZnfwasessential(figure3a),whichweconfirmedby engineeringCWC24truncations(seealsoWuetal.,2016(29)).Itisinterestingto notethataPTCaftertheRINGfingerdomainoftheessential(30)humanhomologof CWC24,RNF113A,isviable(31).FourotherPTC-tolerantgenes,TAF7,TAF8,COG3, andLSM4,havebeenreportedtotoleratelargetruncations(32–35).Weverifiedthat SEC5,a971-aminoacidmemberoftheessentialexocystcomplex(36),tolerates truncationofatleast615aminoacids(figure3b).Ourobservationthat101genes toleratedfiveormorePTCssuggeststhatmanyadditionalgeneshavedispensable C-terminalregions. Ourresultsimprovetheannotationofessentialgenesinthewell-studiedyeast genome.Wediscoveredseveralcasesofgenesthatappearedtobeessentialasa consequenceofthespecificstrainandgrowthconditionsoriginallyusedtotest viabilityofgenedeletions.Adeletionscreeninadifferentyeastisolatealsorevealed examplesofconditionallyessentialgenes(37).Applyingourapproachandrelated methods(38)inadiversesetofisolatesandgrowthconditionswillfurtherrefine thecoresetofessentialyeastgenes. bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. PTCsareprioritizedinstudiesofhumangeneticsbecauseofthehighlikelihoodthat theyabolishgenefunction.OurresultssuggestthatPTCsaremostlikelytobe deleteriouswhentheydisruptannotatedproteindomainsortruncatemorethan27 aminoacids,andthesecriteriamayimprovefilteringofcandidatecausalvariants. WeobservedthatNMDdidnotmakeastrongcontributiontoPTCtolerance.This resultisconsistentwithrecentfindingsthatNMDinyeastactsmoststronglyon transcriptswithPTCstowardtheir5’ends(39).PTCsneartheendsofhumangenes arealsolikelytoescapeNMDaccordingtothe50-base-pairrule(40) (Supplementaryfigure10),andourcriteriamaybeespeciallyusefulforpredicting theireffects. Inourstudywecarriedoutapooledscreenofthefunctionaleffectsof approximately10,000directedmutations.Ourmethodcanbeusedtoassessthe functionaleffectsofanydesirednucleotidevariantsinahighlyparallelmanner.The abilitytoprofiletheimpactofbroadclassesofalleles,includingmissenseand regulatoryvariants,willenableamorefine-grainedunderstandingofthe relationshipbetweengenotypesandphenotypes. References: 1. O.Shalem,N.E.Sanjana,F.Zhang,High-throughputfunctionalgenomicsusing CRISPR–Cas9.Nat.Rev.Genet.16,299–311(2015). 2. J.E.Dicarloetal.,GenomeengineeringinSaccharomycescerevisiaeusing bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. CRISPR-Cassystems.NucleicAcidsRes.41,4336–4343(2013). 3. A.D.Garstetal.,Genome-widemappingofmutationsatsingle-nucleotide resolutionforprotein,metabolicandgenomeengineering.Nat.Biotechnol.,1– 12(2016). 4. M.J.Landrumetal.,ClinVar:publicarchiveofinterpretationsofclinically relevantvariants.NucleicAcidsRes.44,D862–D868(2016). 5. P.D.Stensonetal.,TheHumanGeneMutationDatabase:buildinga comprehensivemutationrepositoryforclinicalandmoleculargenetics, diagnostictestingandpersonalizedgenomicmedicine.Hum.Genet.133,1–9 (2014). 6. S.-H.Teo,S.P.Jackson,IdentificationofSaccharomycescerevisiaeDNAligase IV:involvementinDNAdouble-strandbreakrepair.EMBOJ.16,4788–4795 (1997). 7. M.Valenciaetal.,NEJ1controlsnon-homologousendjoiningin Saccharomycescerevisiae.Nature.414,666–669(2001). 8. G.Giaeveretal.,FunctionalprofilingoftheSaccharomycescerevisiaegenome. Nature.418,387–391(2002). 9. J.P.Kastenmayeretal.,Functionalgenomicsofgeneswithsmallopenreading frames(sORFs)inS.cerevisiae.GenomeRes.,365–373(2006). 10. D.G.Fisketal.,SaccharomycescerevisiaeS288Cgenomeannotation:a workinghypothesis.Yeast.23,857–865(2006). 11. F.He,A.Jacobson,IdentificationofanovelcomponentofthenonsensemediatedmRNAdecaypathwaybyuseofaninteractingproteinscreen.Genes bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Dev.9,437–54(1995). 12. R.D.Finnetal.,ThePfamproteinfamiliesdatabase:towardsamore sustainablefuture.NucleicAcidsRes.44,D279–D285(2016). 13. D.Scannelletal.,TheAwesomePowerofYeastEvolutionaryGenetics:New GenomeSequencesandStrainResourcesfortheSaccharomycessensustricto Genus.G3Genes,Genomes,Genet.1(2011),doi:10.1534/g3.111.000273. 14. C.Hoffmann,H.Neumann,InVivoMappingofFACT-HistoneInteractions IdentifiesaRoleofPob3C-terminusinH2A-H2BBinding.ACSChem.Biol.10, 2753–2763(2015). 15. M.O’Donnell,J.Kuriyan,Clamploadersandreplicationinitiation.Curr.Opin. Struct.Biol.16,35–41(2006). 16. T.G.O.Consortium,GeneOntologyConsortium:goingforward.NucleicAcids Res.43,D1049–D1056(2015). 17. H.Forsberg,P.O.Ljungdahl,GeneticandBiochemicalAnalysisoftheYeast PlasmaMembraneSsy1p-Ptr3p-Ssy5pSensorofExtracellularAminoAcids. Mol.Cell.Biol.21,814–826(2001). 18. H.Klasson,G.R.Fink,P.O.Ljungdahl,Ssy1pandPtr3pArePlasmaMembrane ComponentsofaYeastSystemThatSensesExtracellularAminoAcids.Mol CellBiol.19,5405–5416(1999). 19. H.Forsberg,M.Hammar,C.Andréasson,A.Molinér,P.O.Ljungdahl, Suppressorsofssy1andptr3nullmutationsdefinenovelaminoacidsensorindependentgenesinSaccharomycescerevisiae.Genetics.158,973–988 (2001). bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 20. P.O.Ljungdahl,C.J.Gimeno,C.A.Styles,G.R.Fink,SHR3:anovelcomponent ofthesecretorypathwayspecificallyrequiredforlocalizationofaminoacid permeasesinyeast.Cell.71,463–78(1992). 21. L.Kern,J.deMontigny,R.Jund,F.Lacroute,TheFUR1geneofSaccharomyces cerevisiae:cloning,structureandexpressionofwild-typeandmutantalleles. Gene.88,149–157(1990). 22. A.Koren,S.Ben-Aroya,R.Steinlauf,M.Kupiec,Pitfallsofthesynthetic lethalityscreeninSaccharomycescerevisiae:animproveddesign.Curr.Genet. 43,62–69(2003). 23. N.Gebertetal.,DualfunctionofSdh3intherespiratorychainandTIM22 proteintranslocaseofthemitochondrialinnermembrane.Mol.Cell.44,811– 818(2011). 24. J.A.Lambrecht,J.M.Flynn,D.M.Downs,ConservedYjgfproteinfamily deaminatesreactiveenamine/imineintermediatesofpyridoxal5’-phosphate (PLP)-dependentenzymereactions.J.Biol.Chem.287,3454–3461(2012). 25. T.Didion,M.Grauslund,M.C.Kielland-Brandt,H.A.Andersen,Aminoacids induceexpressionofBAP2,abranched-chainaminoacidpermeasegenein Saccharomycescerevisiae.J.Bacteriol.178,2025–9(1996). 26. F.W.Albert,D.Muzzey,J.S.Weissman,L.Kruglyak,GeneticInfluenceson TranslationinYeast.PLoSGenet.10,e1004692(2014). 27. H.S.Rhee,B.F.Pugh,Genome-widestructureandorganizationofeukaryotic pre-initiationcomplexes.Nature.483,295–301(2012). 28. H.E.M.Stimpson,M.J.Lewis,H.R.B.Pelham,Transferrinreceptor-like bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. proteinscontrolthedegradationofayeastmetaltransporter.EMBOJ.25, 662–72(2006). 29. N.-Y.Wu,C.-S.Chung,S.-C.Cheng,TheRoleofCwc24intheFirstCatalyticStep ofSplicingandFidelityof5’SpliceSiteSelection.Mol.Cell.Biol.(2016), doi:10.1128/MCB.00580-16. 30. T.Wangetal.,Identificationandcharacterizationofessentialgenesinthe humangenome.Science,1–10(2015). 31. M.A.Corbettetal.,AnovelX-linkedtrichothiodystrophyassociatedwitha nonsensemutationinRNF113A.J.Med.Genet.52,269–274(2015). 32. O.Matangkasombut,R.M.Buratowski,N.W.Swilling,S.Buratowski, Bromodomainfactor1correspondstoamissingpieceofyeastTFIID.Genes Dev.14,951–62(2000). 33. A.Volanakisetal.,Spliceosome-mediateddecay(SMD)regulatesexpression ofnonintronicgenesinbuddingyeast.GenesDev.27,2025–2038(2013). 34. R.G.Spelbrink,S.F.Nothwehr,TheyeastGRD20geneisrequiredforprotein sortinginthetrans-Golginetwork/endosomalsystemandforpolarizationof theactincytoskeleton.Mol.Biol.Cell.10,4263–81(1999). 35. C.J.Decker,D.Teixeira,R.Parker,Edc3pandaglutamine/asparagine-rich domainofLsm4pfunctioninprocessingbodyassemblyinSaccharomyces cerevisiae.J.CellBiol.179,437–449(2007). 36. D.R.TerBush,T.Maurice,D.Roth,P.Novick,TheExocystisamultiprotein complexrequiredforexocytosisinSaccharomycescerevisiae.EMBOJ.15, 6483–94(1996). bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 37. R.D.Dowelletal.,Genotypetophenotype:acomplexproblem.Science,80309 (2010). 38. A.H.Micheletal.,Functionalmappingofyeastgenomesbysaturated transposition.Elife.6,e23570(2017). 39. L.Decourtyetal.,LongOpenReadingFrameTranscriptsEscapeNonsenseMediatedmRNADecayinYeast.CellRep.6,593–598(2014). 40. E.Nagy,L.E.Maquat,Arulefortermination-codonpositionwithinintroncontaininggenes:whennonsenseaffectsRNAabundance.TrendsBiochem.Sci. 23,198–9(1998). 41. Z.Baoetal.,Homology-IntegratedCRISPR-Cas(HI-CRISPR)SystemforOneStepMultigeneDisruptioninSaccharomycescerevisiae.ACSSynth.Biol. (2014),doi:10.1021/sb500255k. 42. D.G.Gibsonetal.,EnzymaticassemblyofDNAmoleculesuptoseveral hundredkilobases.Nat.Methods.6,343–5(2009). 43. D.M.Becker,V.Lundblad,inCurrentprotocolsinmolecularbiology,F.M. Ausubel,Ed.(2001),p.Unit13.7. 44. J.Zhang,K.Kobert,T.Flouri,A.Stamatakis,PEAR:afastandaccurateIllumina Paired-EndreAdmergeR.Bioinformatics.30,614–620(2014). 45. A.M.Bolger,M.Lohse,B.Usadel,Trimmomatic:Aflexibletrimmerfor Illuminasequencedata.Bioinformatics.30,2114–2120(2014). 46. H.Li,R.Durbin,FastandaccurateshortreadalignmentwithBurrowsWheelertransform.Bioinformatics.25,1754–1760(2009). 47. M.Martin,Cutadaptremovesadaptersequencesfromhigh-throughput bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. sequencingreads.EMBnet.journal.17,10(2011). 48. D.Bates,M.Mächler,B.Bolker,S.Walker,FittingLinearMixed-EffectsModels Usinglme4.J.Stat.Softw.67,1–48(2015). 49. S.Nielsen,Y.Yuzenkova,N.Zenkin,MechanismofEukaryoticRNAPolymerase IIITranscriptionTermination.Science.340,1577–1580(2013). 50. A.Alexa,J.Rahnenfuhrer,topGO:EnrichmentAnalysisforGeneOntology. (2016). 51. B.J.Grant,A.P.C.Rodrigues,K.M.ElSawy,J.A.McCammon,L.S.D.Caves, Bio3d:anRpackageforthecomparativeanalysisofproteinstructures. Bioinformatics.22,2695–2696(2006). 52. G.Liuetal.,GeneEssentialityIsaQuantitativePropertyLinkedtoCellular Evolvability.Cell.163,1–12(2015). 53. J.C.Wootton,S.Federhen,Analysisofcompositionallybiasedregionsin sequencedatabases.MethodsEnzymol.266,554–71(1996). 54. J.Fox,S.Weisberg,An{R}CompaniontoAppliedRegression(Sage,Thousand Oaks,CA,ed.2,2011; http://socserv.socsci.mcmaster.ca/jfox/Books/Companion). 55. V.M.R.Muggeo,segmented:anRPackagetoFitRegressionModelswith Broken-LineRelationships.RNews.8,20–25(2008). 56. K.A.Curranetal.,ShortSyntheticTerminatorsforImprovedHeterologous GeneExpressioninYeast.ACSSynth.Biol.4,824–832(2015). 57. S.Brachatetal.,ReinvestigationoftheSaccharomycescerevisiaegenome annotationbycomparisontothegenomeofarelatedfungus:Ashbyagossypii. bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. GenomeBiol.4,R45(2003). 58. M.J.Sadhu,J.S.Bloom,L.Day,L.Kruglyak,CRISPR-directedmitotic recombinationenablesgeneticmappingwithoutcrosses.Science.352,1113– 6(2016). 59. C.BakerBrachmannetal.,Designerdeletionstrainsderived fromSaccharomycescerevisiaeS288C:Ausefulsetofstrainsandplasmidsfor PCR-mediatedgenedisruptionandotherapplications.Yeast.14,115–132 (1998). Acknowledgements: WethankKruglyaklaboratorymembers,F.Albert,M.P.Hughes,andJ.Rinefor helpfuldiscussion,R.CheungandE.Phamfortechnicalassistance,andG.Churchfor plasmids.FundingwasprovidedbytheHowardHughesMedicalInstituteandNIH grantsR01GM102308(L.K.)andF32GM116318(M.J.S.). bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Figures: Figure1:MeasuringtheeffectsofengineeredPTCsinessentialgenes.(A)Schematic ofpairingofCRISPRgRNAandrepairtemplateonplasmids.(B)Experimental design.FollowingCas9induction,DNAwasextractedevery24hours.Ateachtime point,edit-directingplasmidswerequantifiedbysequencing.(C)Tolerancescore foreachtestedPTCinessentialgenesanddubiousORFs,withoverlaidboxplots.P< 2x10-16,Wilcoxonranktest.(D)ScatterplotofPTCtolerancescoresversusdistance incodonsfromthe3’endsofessentialgenes.Thethickbluelineshowsasegmented bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. regressionfit.Verticalbluelinesindicatethe95%confidenceintervalforthe boundarybetweenthesegments. Figure2:PTCtoleranceofgenes.(A)Genetolerancescoresforessentialgenesand dubiousORFs,shownasaviolinplotthatdisplaystheindividualdatapoints.(B) Analysisofconditionallyessentialgenesinyeasttetrads.Eachverticalsetoffour coloniescorrespondstothefourhaploidmeioticproductsfromadiploidyeast strain.Eachdiploidwasheterozygousforadeletionmutationofinterestandforan interactingmutation.Haploidcoloniescarryingthedeletionofinterestare highlightedinredorbluebasedontheirgenotypeattheinteractinglocus.Absence ofavisiblecolony(firstfivepanels)indicatesalethalinteraction;smallcolonies (lastpanel)indicateaninteractioncausingpoorgrowth. bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. Figure3:Selectedtruncatableessentialgenes.(A)Tolerancescoresfor10PTCsin CWC24areshownbygraycircles;redandgreenbarsindicateHMMcallsof ‘deleterious’and‘tolerated’,respectively.TheRINGfingerandCCCHZnfdomainsof Cwc24arehighlighted.(B)Analysisofdeleteriousandtoleratedtruncationsof CWC24inyeasttetrads,displayedasinfigure2.Deletionsofthelast88and94 codonsofCWC24aretolerated(middleandrightpanels),whiledeletionofthelast 119codonsisnot(leftpanel).(C)TolerancescoresforeightPTCsinSEC5areshown bygraycircles;redandgreenbarsindicateHMMcallsof‘deleterious’and bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. ‘tolerated’,respectively.ThePfam-annotated“SEC5domain”ishighlighted.(D) AnalysisofdeleteriousandtoleratedtruncationsofSEC5inyeasttetrads.Deletion ofthelast615codonsofSEC5istolerated(rightpanel),whiledeletionofthelast 707codonsisnot(leftpanel). Tables: Expectededit Unedited Mismatch Indel ho-G582Stop 98.51% 0.08% 1.40% 0.00% his2-E308Stop 99.83% 0.07% 0.10% 0.00% mnd1-V219Stop 99.35% 0.53% 0.12% 0.00% spo11-F381Stop 95.56% 4.24% 0.19% 0.00% spo13-P252Stop 99.67% 0.20% 0.13% 0.00% ste3-P469Stop 99.75% 0.12% 0.13% 0.00% can1-G121Stop 99.81% 0.06% 0.13% 0.00% can1-G70Stop 99.80% 0.03% 0.17% 0.00% Table1:Assessingtheefficiencyofedit-directingplasmids.Outcomesofdirected mutationsateightlociinnej1∆cells,asdeterminedbypaired-endIlluminareadsof PCRsofgenomicDNAateachlocus.