Download Highly parallel genome variant engineering with CRISPR

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Neurogenomics wikipedia , lookup

Biology and consumer behaviour wikipedia , lookup

Transcript
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
HighlyparallelgenomevariantengineeringwithCRISPR/Cas9ineukaryoticcells
MeruJ.Sadhu1,*,†,JoshuaS.Bloom1,*,†,LauraDay1,JakeJ.Siegel1,‡,SriramKosuri2,
LeonidKruglyak1,†
1DepartmentofHumanGenetics,DepartmentofBiologicalChemistry,Howard
HughesMedicalInstitute,UniversityofCalifornia,LosAngeles,LosAngeles,CA
90095,USA.
2DepartmentofChemistryandBiochemistry,UniversityofCalifornia,LosAngeles,
LosAngeles,CA90095,USA.
*Theseauthorscontributedequallytothiswork.
†Correspondingauthor.Email:[email protected](M.J.S.);
[email protected](J.S.B.);[email protected](L.K.)
‡Presentaddress:DepartmentofChemistry,MassachusettsInstituteofTechnology,
Cambridge,MA02139,USA.
Abstract:
DirectmeasurementoffunctionaleffectsofDNAsequencevariantsthroughouta
genomeisamajorchallenge.WedevelopedamethodthatusesCRISPR/Cas9to
engineermanyspecificvariantsofinterestinparallelinthebuddingyeast
Saccharomycescerevisiae,andtoscreenthemforfunctionaleffects.Weusedthe
methodtoexaminethefunctionalconsequencesofprematureterminationcodons
(PTCs)atdifferentlocationswithinallannotatedessentialgenesinyeast.Wefound
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
thatmostPTCswerehighlydeleteriousunlesstheyoccurredclosetotheC-terminal
endanddidnotinterruptanannotatedproteindomain.Surprisingly,wediscovered
thatsomeputativelyessentialgenesaredispensable,whileothershavelarge
dispensableregions.Thisapproachcanbeusedtoprofiletheeffectsoflargeclasses
ofvariantsinahigh-throughputmanner.
Maintext:
UnderstandingthefunctionaleffectsofDNAsequencevariantsisofcritical
importanceforstudiesofbasicbiology,evolution,andmedicalgenetics,but
measuringtheseeffectsinahigh-throughputmannerisamajorchallenge.One
promisingavenueispreciseeditingwiththeCRISPR/Cas9system,whichallows
generationofDNAdouble-strandbreaks(DSBs)atgenomicsitesmatchingthe
targetingsequenceofaguideRNA(gRNA).RecentstudieshaveusedCRISPR
librariestogeneratemanyframeshiftmutationsgenome-widethroughfaultyrepair
ofCRISPR-directedbreaksbynonhomologousend-joining(NHEJ)(1).Wesoughtto
adaptthisapproachtoprecisevariantengineering.Generationofprecisegeneedits
byCRISPR/Cas9requiresintroductionofarepairtemplatethatcanbeusedto
directrepairthroughhomology-directedrepair(HDR)pathways(2),intheprocess
incorporatingthedesiredsequencevariantspresentonthetemplateintothe
genomiclocus.Generatingmanyuniquelyeditedcellsinparallelthusrequireseach
celltoreceivethecorrectgRNA-repairtemplatepair.Wedevisedanapproachthat
accomplishessuchpairingbyencodinggRNAtargetingsequencesandtheir
correspondingrepairtemplatesincisonoligonucleotidesgeneratedinbulkwith
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
high-throughputsynthesis.Theseoligonucleotidelibrariesarethenusedto
generatepoolsofplasmidspairingthetwocomponentsfordeliveryintoyeastcells.
Asimilarmethodwasrecentlyreportedinbacteria(3).Weusedthisapproachto
understandtheconsequencesofoneimportantclassofgeneticvariants:premature
terminationcodons(PTCs).
PTCsinterrupttheopenreadingframes(ORFs)ofprotein-codinggenes.Such
mutationsaregenerallyexpectedtohavestrongdeleteriouseffects,eitherby
abrogatingorchangingthefunctionsoftheencodedproteinsorbycausingmRNA
degradationthroughthenonsense-mediateddecay(NMD)surveillancepathway.
Morethan10%ofannotatedpathogenichumanvariantsarePTCs(4,5).
Nonetheless,ourunderstandingofthedetrimentaleffectsofPTCsisincomplete,
particularlywhentheyoccurnearthe3’endsofgenes.Suchmutationsmaynot
shortentheencodedproteinssufficientlytoaffecttheirfunction,andoftenescape
NMD.
Wefirsttestedgeneeditingthatemploysaplasmid-encodedpairedgRNAand
repairtemplate(figure1a)bytargetingeightspecificPTCstotheS.cerevisiae
genome.S.cerevisiaehasanaturallyhighpropensitytorepairDSBsthroughHDR
(6),whichweenhancedbyusingayeaststraininwhichNHEJisabolishedbya
deletionoftheNEJ1gene(7)(SupplementaryTable1).Foreachtargetedmutation,
wesequencedthecorrespondinggenomiclocusinthousandsoftransformedyeast
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
cells.Inalleightcases,thedesiredmutationwaspresentin>95%ofsequencing
reads,demonstratingthehighefficiencyofthisstrategy(Table1).
Wenextscaleduptheapproachbyusinglarge-scaleoligonucleotidesynthesisto
generateapoolofover10,000distinctpairedgRNA-repairtemplateplasmids
(Supplementaryfigure1).TheseplasmidstargetedPTCstodifferentsitesin1034
yeastgenesconsideredessentialforviability(8,9).Eachgenewastargetedat10
sites,chosenwithapreferenceforsitesclosertothe3’end(SupplementaryFigure
2).Wetransformedyeastinbulkwiththisplasmidpool.AfterinducingCas9
expression,wecollectedmillionsofsurvivingtransformedcellsevery24hoursfor
fourdays(figure1b).PTCsthatdisruptthefunctionofgenesessentialforviability
areexpectedtodropoutofthepoolovertime,whilethosethatdonotareexpected
topersist.
Wedeterminedtheabundanceofeachedit-directingplasmidateachtimepointby
bulksequencing,andcomputeda“PTCtolerancescore”basedonthepersistenceof
eachplasmidoverthedurationofthetime-courseexperiment(Materialsand
Methods).Ascontrols,weusedasetof90“dubiousORFs,”whichwereoriginally
annotatedasgenesbutlaterreclassifiedduetolackofconservationandascribable
function(10).Asexpected,PTCsinessentialgenesweremuchlesstoleratedthan
thoseindubiousORFs(Wilcoxonranktest,P<2x10-16)(figure1c).Asafurther
control,71sitesinessentialgenesweretargetedwithtwoplasmidsthathadthe
samegRNAbutdifferentrepairtemplates,onlyoneofwhichintroducedaPTC.
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
PlasmidsthatintroducedaPTCweresignificantlylesstolerated(Supplementary
Figure3)(pairedt-testt=6.5,P=8x10-9),showingthattheobservedphenotypic
effectsarepredominantlyduetospecificintroductionofthedesiredmutations,
ratherthanrepair-template-independentCas9activities.
OnepossibilityfortheobservedPTCintoleranceisthatmosttruncationsof
essentialgenesfatallydisruptproteinfunction.AnotherpossibilityisthatNMD
removesmosttranscriptscarryingPTCs,whichisfatalinthecaseofPTCsin
essentialgenes.WetestedthesealternativesbyintroducingPTCsinastrainthatis
NMD-deficient(11).PTCsinthisstrainweresimilarlydeleterious(Supplementary
Figure4)(χ2=1.66,P=0.20)(SupplementaryTable8),suggestingthatprotein
truncation,ratherthandegradationoftranscriptsviaNMD,explainstheobserved
PTCintolerance.
AlthoughmostPTCsinannotatedessentialgeneswerehighlydeleterious,some
appearedtobetolerated.Weexaminedtherelationshipbetweentolerancescores
andlocationsofPTCs.PTCsweregenerallydeleteriouswhenlocatedmorethan27
codonsawayfromthegeneend(figure1d).Withinthe27terminalcodons,the
tolerancescoresrosetowardthe3’end.PTCswerealsomoretoleratediftheydid
notinterruptorremoveanannotatedproteindomain(12)(χ2=317.2,P=5.86x1071)(Supplementaryfigure5,SupplementaryTable8).PTCsthatdisruptedprotein
domainstendedtobedeleteriousevenwhentheyfellclosetogeneends.
Evolutionaryconservationofthetruncatedregionamongrelatedyeastspecies(13)
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
wasalsosignificantlybutmoreweaklypredictiveofPTCtolerance(χ2=49.8,P=
1.66x10-12)(Supplementaryfigure5).
Webuiltamodeltomorepreciselydelineatedispensable3’endsofessentialgenes.
Whileourexperimentisnotdesignedtocomprehensivelyruleouttheexistenceof
smalldispensableC-termini,itisinterestingtonotethat517genesdidnotappear
totolerateanytestedPTCs(Supplementaryfigure6),insomecasesevenveryclose
totheirends.Forinstance,weconfirmedthatPob3,involvedinnucleosome
remodelingduringDNAreplicationandtranscription,doesnottoleratelossofits
lasttwoaminoacids(SupplementaryFigure6),whichareadjacenttothenuclear
localizationsequence(14).WealsoconfirmedthatPCNA,requiredforthe
processivityofDNApolymerase,didnottoleratethelossofitslastfiveaminoacids.
ThishighlyconservedregionispartofthebindingsurfaceofPCNAusedforproteinproteininteractions(15).IncontrasttothehighlyPTC-intolerantgenes,101genes
toleratedfiveormorePTCs,suggestingthatthesegeneshavelargedispensableCtermini(SupplementaryFigure6).WecomputedtheoveralltoleranceofPTCsfor
eachgeneandobservedconsiderablevariationamonggenes(figure2a).Agene
ontologyenrichmentanalysis(16)showedthatgenesencodingproteinswith
catalyticactivityweresignificantlylessPTC-tolerantthanothergenes(KolmogorovSmirnovtest,BonferronicorrectedP=0.0024)(Supplementarytable10,
SupplementaryFigure7),whilegeneswithfunctionsrelatingtomRNAsplicingand
processingweresignificantlymorePTC-tolerant(Kolmogorov-Smirnovtest,
BonferronicorrectedP=0.0017).
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
Tobetterunderstandwhysomegenesannotatedasessentialcouldtoleratemany
PTCs,wecloselyexaminedthe16mostPTC-tolerantgenes(figure2a).Thesegenes
includedSSY1,PTR3,andSSY5,thethreemembersoftheSPS(Ssy1-Ptr3-Ssy5)
plasmamembraneaminoacidsensorsystem(17),aswellasSHR3,requiredforSPS
cell-surfacelocalization(18).DefectsinSPSfunctioncompromiseleucineuptake,
andthestrainoriginallyusedtodeterminewhichgenesareessentialisdeficientin
leucinebiosynthesisandthusrequiresleucineuptake,whichexplainsthelethality
ofSPSmutationsinthisstrain(19,20).Weconfirmedthatdeletionsofthesegenes
wereviableinyeastthatcouldsynthesizeleucine,butlethalinyeastthatcouldnot
(figure2b).Similarly,thePTC-tolerantgeneFUR1isrequiredfortheutilizationof
exogenousuracil(21),anduracilbiosynthesisisalsodisruptedinthestrainusedto
annotateessentialgenes.WeconfirmedthatFUR1isonlyessentialinyeastwhich
cannotsynthesizeuracil(figure2b),consistentwithprevioussyntheticlethality
results(22).Unexpectedly,wealsoobservedpoorgrowthofyeastwithdeletionsof
bothURA3andthePTC-tolerantgeneSDH3(figure2b),amemberofthe
mitochondrialinnermembraneproteintranslocasecomplex(23),whichsuggests
thatproperuracilutilizationmayinvolveanunknownmitochondrialfunction.
Theseexamplesillustratethatgenesnotuniversallyessentialforyeastviabilitycan
appearessentialinaspecificgeneticbackground.
AnotherPTC-tolerantgene,MMF1,encodesaproteinhomologoustothewidely
conservedRidA,whichprocessestoxiciminesproducedduringisoleucine
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
biosynthesisinSalmonella(24).WenoticedthatdeletionofMMF1isviableunder
ourgrowthconditions,butnotunderthosepreviouslyusedtodefinethesetof
essentialgenes(Supplementaryfigure8).Thusinthiscase,thelethalityofagene
disruptionisdeterminedbyagene-environmentinteraction.Wehypothesizethat
MMF1isessentialinyeastwhenisoleucineissynthesized,butnotwhenitistaken
upfromthegrowthmedium.Importantly,theisoleucinetransportersBap2and
Bap3arepoorlyexpressedunderthegrowthconditionsusedtoannotateessential
genes,butmorehighlyexpressedunderthegrowthconditionsusedinour
experiments(25).
ThreeadditionalPTC-tolerantgenesweremisannotatedasessentialbecausetheir
deletiondisruptsthefunctionofanearbyessentialgene.YJR012Coverlapsthe5’
endofthePTC-intolerantessentialgeneGPI14(Supplementaryfigure9,figure2a).
CloseexaminationofYJR012CRNAsequencingandribosomefootprintingdata(26)
indicatesthatthestartpositionofYJR012Cismisannotated(Supplementaryfigure
9).DeletionofYJR012CfromitstruestartatM76totheendoftheORFwasviable,
confirmingYJR012Cisnotessential.Similarly,closeexaminationofUTR5revealed
thatitoverlapstheTATAboxoftheessentialgeneHYP2(27);deletionfromthe
34thcodonofUTR5sparedtheTATAboxandwasviable(Supplementaryfigure9).
Finally,deletionofTRE2isinviableduetoitseffectsontheneighboringessential
geneCDC31(28).TheseexamplesillustratethevalueofPTCintroductionfor
characterizationofgeneessentiality.
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
SixPTC-tolerantessentialgenesencodeproteinswithlargedispensableC-terminal
regions.OnestrikingcaseisCWC24,ahighlyconservedmemberofthespliceosome.
Cwc24hasaCCCH-typeZincfingerdomain(Znf)andaRING-typeZnfdomain.
AnalysisoftheeffectofPTCsinCWC24suggestedtheRINGfingerdomainwas
dispensablewhiletheCCCHZnfwasessential(figure3a),whichweconfirmedby
engineeringCWC24truncations(seealsoWuetal.,2016(29)).Itisinterestingto
notethataPTCaftertheRINGfingerdomainoftheessential(30)humanhomologof
CWC24,RNF113A,isviable(31).FourotherPTC-tolerantgenes,TAF7,TAF8,COG3,
andLSM4,havebeenreportedtotoleratelargetruncations(32–35).Weverifiedthat
SEC5,a971-aminoacidmemberoftheessentialexocystcomplex(36),tolerates
truncationofatleast615aminoacids(figure3b).Ourobservationthat101genes
toleratedfiveormorePTCssuggeststhatmanyadditionalgeneshavedispensable
C-terminalregions.
Ourresultsimprovetheannotationofessentialgenesinthewell-studiedyeast
genome.Wediscoveredseveralcasesofgenesthatappearedtobeessentialasa
consequenceofthespecificstrainandgrowthconditionsoriginallyusedtotest
viabilityofgenedeletions.Adeletionscreeninadifferentyeastisolatealsorevealed
examplesofconditionallyessentialgenes(37).Applyingourapproachandrelated
methods(38)inadiversesetofisolatesandgrowthconditionswillfurtherrefine
thecoresetofessentialyeastgenes.
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
PTCsareprioritizedinstudiesofhumangeneticsbecauseofthehighlikelihoodthat
theyabolishgenefunction.OurresultssuggestthatPTCsaremostlikelytobe
deleteriouswhentheydisruptannotatedproteindomainsortruncatemorethan27
aminoacids,andthesecriteriamayimprovefilteringofcandidatecausalvariants.
WeobservedthatNMDdidnotmakeastrongcontributiontoPTCtolerance.This
resultisconsistentwithrecentfindingsthatNMDinyeastactsmoststronglyon
transcriptswithPTCstowardtheir5’ends(39).PTCsneartheendsofhumangenes
arealsolikelytoescapeNMDaccordingtothe50-base-pairrule(40)
(Supplementaryfigure10),andourcriteriamaybeespeciallyusefulforpredicting
theireffects.
Inourstudywecarriedoutapooledscreenofthefunctionaleffectsof
approximately10,000directedmutations.Ourmethodcanbeusedtoassessthe
functionaleffectsofanydesirednucleotidevariantsinahighlyparallelmanner.The
abilitytoprofiletheimpactofbroadclassesofalleles,includingmissenseand
regulatoryvariants,willenableamorefine-grainedunderstandingofthe
relationshipbetweengenotypesandphenotypes.
References:
1.
O.Shalem,N.E.Sanjana,F.Zhang,High-throughputfunctionalgenomicsusing
CRISPR–Cas9.Nat.Rev.Genet.16,299–311(2015).
2.
J.E.Dicarloetal.,GenomeengineeringinSaccharomycescerevisiaeusing
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
CRISPR-Cassystems.NucleicAcidsRes.41,4336–4343(2013).
3.
A.D.Garstetal.,Genome-widemappingofmutationsatsingle-nucleotide
resolutionforprotein,metabolicandgenomeengineering.Nat.Biotechnol.,1–
12(2016).
4.
M.J.Landrumetal.,ClinVar:publicarchiveofinterpretationsofclinically
relevantvariants.NucleicAcidsRes.44,D862–D868(2016).
5.
P.D.Stensonetal.,TheHumanGeneMutationDatabase:buildinga
comprehensivemutationrepositoryforclinicalandmoleculargenetics,
diagnostictestingandpersonalizedgenomicmedicine.Hum.Genet.133,1–9
(2014).
6.
S.-H.Teo,S.P.Jackson,IdentificationofSaccharomycescerevisiaeDNAligase
IV:involvementinDNAdouble-strandbreakrepair.EMBOJ.16,4788–4795
(1997).
7.
M.Valenciaetal.,NEJ1controlsnon-homologousendjoiningin
Saccharomycescerevisiae.Nature.414,666–669(2001).
8.
G.Giaeveretal.,FunctionalprofilingoftheSaccharomycescerevisiaegenome.
Nature.418,387–391(2002).
9.
J.P.Kastenmayeretal.,Functionalgenomicsofgeneswithsmallopenreading
frames(sORFs)inS.cerevisiae.GenomeRes.,365–373(2006).
10. D.G.Fisketal.,SaccharomycescerevisiaeS288Cgenomeannotation:a
workinghypothesis.Yeast.23,857–865(2006).
11. F.He,A.Jacobson,IdentificationofanovelcomponentofthenonsensemediatedmRNAdecaypathwaybyuseofaninteractingproteinscreen.Genes
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
Dev.9,437–54(1995).
12. R.D.Finnetal.,ThePfamproteinfamiliesdatabase:towardsamore
sustainablefuture.NucleicAcidsRes.44,D279–D285(2016).
13. D.Scannelletal.,TheAwesomePowerofYeastEvolutionaryGenetics:New
GenomeSequencesandStrainResourcesfortheSaccharomycessensustricto
Genus.G3Genes,Genomes,Genet.1(2011),doi:10.1534/g3.111.000273.
14. C.Hoffmann,H.Neumann,InVivoMappingofFACT-HistoneInteractions
IdentifiesaRoleofPob3C-terminusinH2A-H2BBinding.ACSChem.Biol.10,
2753–2763(2015).
15. M.O’Donnell,J.Kuriyan,Clamploadersandreplicationinitiation.Curr.Opin.
Struct.Biol.16,35–41(2006).
16. T.G.O.Consortium,GeneOntologyConsortium:goingforward.NucleicAcids
Res.43,D1049–D1056(2015).
17. H.Forsberg,P.O.Ljungdahl,GeneticandBiochemicalAnalysisoftheYeast
PlasmaMembraneSsy1p-Ptr3p-Ssy5pSensorofExtracellularAminoAcids.
Mol.Cell.Biol.21,814–826(2001).
18. H.Klasson,G.R.Fink,P.O.Ljungdahl,Ssy1pandPtr3pArePlasmaMembrane
ComponentsofaYeastSystemThatSensesExtracellularAminoAcids.Mol
CellBiol.19,5405–5416(1999).
19. H.Forsberg,M.Hammar,C.Andréasson,A.Molinér,P.O.Ljungdahl,
Suppressorsofssy1andptr3nullmutationsdefinenovelaminoacidsensorindependentgenesinSaccharomycescerevisiae.Genetics.158,973–988
(2001).
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
20. P.O.Ljungdahl,C.J.Gimeno,C.A.Styles,G.R.Fink,SHR3:anovelcomponent
ofthesecretorypathwayspecificallyrequiredforlocalizationofaminoacid
permeasesinyeast.Cell.71,463–78(1992).
21. L.Kern,J.deMontigny,R.Jund,F.Lacroute,TheFUR1geneofSaccharomyces
cerevisiae:cloning,structureandexpressionofwild-typeandmutantalleles.
Gene.88,149–157(1990).
22. A.Koren,S.Ben-Aroya,R.Steinlauf,M.Kupiec,Pitfallsofthesynthetic
lethalityscreeninSaccharomycescerevisiae:animproveddesign.Curr.Genet.
43,62–69(2003).
23. N.Gebertetal.,DualfunctionofSdh3intherespiratorychainandTIM22
proteintranslocaseofthemitochondrialinnermembrane.Mol.Cell.44,811–
818(2011).
24. J.A.Lambrecht,J.M.Flynn,D.M.Downs,ConservedYjgfproteinfamily
deaminatesreactiveenamine/imineintermediatesofpyridoxal5’-phosphate
(PLP)-dependentenzymereactions.J.Biol.Chem.287,3454–3461(2012).
25. T.Didion,M.Grauslund,M.C.Kielland-Brandt,H.A.Andersen,Aminoacids
induceexpressionofBAP2,abranched-chainaminoacidpermeasegenein
Saccharomycescerevisiae.J.Bacteriol.178,2025–9(1996).
26. F.W.Albert,D.Muzzey,J.S.Weissman,L.Kruglyak,GeneticInfluenceson
TranslationinYeast.PLoSGenet.10,e1004692(2014).
27. H.S.Rhee,B.F.Pugh,Genome-widestructureandorganizationofeukaryotic
pre-initiationcomplexes.Nature.483,295–301(2012).
28. H.E.M.Stimpson,M.J.Lewis,H.R.B.Pelham,Transferrinreceptor-like
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
proteinscontrolthedegradationofayeastmetaltransporter.EMBOJ.25,
662–72(2006).
29. N.-Y.Wu,C.-S.Chung,S.-C.Cheng,TheRoleofCwc24intheFirstCatalyticStep
ofSplicingandFidelityof5’SpliceSiteSelection.Mol.Cell.Biol.(2016),
doi:10.1128/MCB.00580-16.
30. T.Wangetal.,Identificationandcharacterizationofessentialgenesinthe
humangenome.Science,1–10(2015).
31. M.A.Corbettetal.,AnovelX-linkedtrichothiodystrophyassociatedwitha
nonsensemutationinRNF113A.J.Med.Genet.52,269–274(2015).
32. O.Matangkasombut,R.M.Buratowski,N.W.Swilling,S.Buratowski,
Bromodomainfactor1correspondstoamissingpieceofyeastTFIID.Genes
Dev.14,951–62(2000).
33. A.Volanakisetal.,Spliceosome-mediateddecay(SMD)regulatesexpression
ofnonintronicgenesinbuddingyeast.GenesDev.27,2025–2038(2013).
34. R.G.Spelbrink,S.F.Nothwehr,TheyeastGRD20geneisrequiredforprotein
sortinginthetrans-Golginetwork/endosomalsystemandforpolarizationof
theactincytoskeleton.Mol.Biol.Cell.10,4263–81(1999).
35. C.J.Decker,D.Teixeira,R.Parker,Edc3pandaglutamine/asparagine-rich
domainofLsm4pfunctioninprocessingbodyassemblyinSaccharomyces
cerevisiae.J.CellBiol.179,437–449(2007).
36. D.R.TerBush,T.Maurice,D.Roth,P.Novick,TheExocystisamultiprotein
complexrequiredforexocytosisinSaccharomycescerevisiae.EMBOJ.15,
6483–94(1996).
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
37. R.D.Dowelletal.,Genotypetophenotype:acomplexproblem.Science,80309
(2010).
38. A.H.Micheletal.,Functionalmappingofyeastgenomesbysaturated
transposition.Elife.6,e23570(2017).
39. L.Decourtyetal.,LongOpenReadingFrameTranscriptsEscapeNonsenseMediatedmRNADecayinYeast.CellRep.6,593–598(2014).
40. E.Nagy,L.E.Maquat,Arulefortermination-codonpositionwithinintroncontaininggenes:whennonsenseaffectsRNAabundance.TrendsBiochem.Sci.
23,198–9(1998).
41. Z.Baoetal.,Homology-IntegratedCRISPR-Cas(HI-CRISPR)SystemforOneStepMultigeneDisruptioninSaccharomycescerevisiae.ACSSynth.Biol.
(2014),doi:10.1021/sb500255k.
42. D.G.Gibsonetal.,EnzymaticassemblyofDNAmoleculesuptoseveral
hundredkilobases.Nat.Methods.6,343–5(2009).
43. D.M.Becker,V.Lundblad,inCurrentprotocolsinmolecularbiology,F.M.
Ausubel,Ed.(2001),p.Unit13.7.
44. J.Zhang,K.Kobert,T.Flouri,A.Stamatakis,PEAR:afastandaccurateIllumina
Paired-EndreAdmergeR.Bioinformatics.30,614–620(2014).
45. A.M.Bolger,M.Lohse,B.Usadel,Trimmomatic:Aflexibletrimmerfor
Illuminasequencedata.Bioinformatics.30,2114–2120(2014).
46. H.Li,R.Durbin,FastandaccurateshortreadalignmentwithBurrowsWheelertransform.Bioinformatics.25,1754–1760(2009).
47. M.Martin,Cutadaptremovesadaptersequencesfromhigh-throughput
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
sequencingreads.EMBnet.journal.17,10(2011).
48. D.Bates,M.Mächler,B.Bolker,S.Walker,FittingLinearMixed-EffectsModels
Usinglme4.J.Stat.Softw.67,1–48(2015).
49. S.Nielsen,Y.Yuzenkova,N.Zenkin,MechanismofEukaryoticRNAPolymerase
IIITranscriptionTermination.Science.340,1577–1580(2013).
50. A.Alexa,J.Rahnenfuhrer,topGO:EnrichmentAnalysisforGeneOntology.
(2016).
51. B.J.Grant,A.P.C.Rodrigues,K.M.ElSawy,J.A.McCammon,L.S.D.Caves,
Bio3d:anRpackageforthecomparativeanalysisofproteinstructures.
Bioinformatics.22,2695–2696(2006).
52. G.Liuetal.,GeneEssentialityIsaQuantitativePropertyLinkedtoCellular
Evolvability.Cell.163,1–12(2015).
53. J.C.Wootton,S.Federhen,Analysisofcompositionallybiasedregionsin
sequencedatabases.MethodsEnzymol.266,554–71(1996).
54. J.Fox,S.Weisberg,An{R}CompaniontoAppliedRegression(Sage,Thousand
Oaks,CA,ed.2,2011;
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion).
55. V.M.R.Muggeo,segmented:anRPackagetoFitRegressionModelswith
Broken-LineRelationships.RNews.8,20–25(2008).
56. K.A.Curranetal.,ShortSyntheticTerminatorsforImprovedHeterologous
GeneExpressioninYeast.ACSSynth.Biol.4,824–832(2015).
57. S.Brachatetal.,ReinvestigationoftheSaccharomycescerevisiaegenome
annotationbycomparisontothegenomeofarelatedfungus:Ashbyagossypii.
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
GenomeBiol.4,R45(2003).
58. M.J.Sadhu,J.S.Bloom,L.Day,L.Kruglyak,CRISPR-directedmitotic
recombinationenablesgeneticmappingwithoutcrosses.Science.352,1113–
6(2016).
59. C.BakerBrachmannetal.,Designerdeletionstrainsderived
fromSaccharomycescerevisiaeS288C:Ausefulsetofstrainsandplasmidsfor
PCR-mediatedgenedisruptionandotherapplications.Yeast.14,115–132
(1998).
Acknowledgements:
WethankKruglyaklaboratorymembers,F.Albert,M.P.Hughes,andJ.Rinefor
helpfuldiscussion,R.CheungandE.Phamfortechnicalassistance,andG.Churchfor
plasmids.FundingwasprovidedbytheHowardHughesMedicalInstituteandNIH
grantsR01GM102308(L.K.)andF32GM116318(M.J.S.).
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
Figures:
Figure1:MeasuringtheeffectsofengineeredPTCsinessentialgenes.(A)Schematic
ofpairingofCRISPRgRNAandrepairtemplateonplasmids.(B)Experimental
design.FollowingCas9induction,DNAwasextractedevery24hours.Ateachtime
point,edit-directingplasmidswerequantifiedbysequencing.(C)Tolerancescore
foreachtestedPTCinessentialgenesanddubiousORFs,withoverlaidboxplots.P<
2x10-16,Wilcoxonranktest.(D)ScatterplotofPTCtolerancescoresversusdistance
incodonsfromthe3’endsofessentialgenes.Thethickbluelineshowsasegmented
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
regressionfit.Verticalbluelinesindicatethe95%confidenceintervalforthe
boundarybetweenthesegments.
Figure2:PTCtoleranceofgenes.(A)Genetolerancescoresforessentialgenesand
dubiousORFs,shownasaviolinplotthatdisplaystheindividualdatapoints.(B)
Analysisofconditionallyessentialgenesinyeasttetrads.Eachverticalsetoffour
coloniescorrespondstothefourhaploidmeioticproductsfromadiploidyeast
strain.Eachdiploidwasheterozygousforadeletionmutationofinterestandforan
interactingmutation.Haploidcoloniescarryingthedeletionofinterestare
highlightedinredorbluebasedontheirgenotypeattheinteractinglocus.Absence
ofavisiblecolony(firstfivepanels)indicatesalethalinteraction;smallcolonies
(lastpanel)indicateaninteractioncausingpoorgrowth.
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
Figure3:Selectedtruncatableessentialgenes.(A)Tolerancescoresfor10PTCsin
CWC24areshownbygraycircles;redandgreenbarsindicateHMMcallsof
‘deleterious’and‘tolerated’,respectively.TheRINGfingerandCCCHZnfdomainsof
Cwc24arehighlighted.(B)Analysisofdeleteriousandtoleratedtruncationsof
CWC24inyeasttetrads,displayedasinfigure2.Deletionsofthelast88and94
codonsofCWC24aretolerated(middleandrightpanels),whiledeletionofthelast
119codonsisnot(leftpanel).(C)TolerancescoresforeightPTCsinSEC5areshown
bygraycircles;redandgreenbarsindicateHMMcallsof‘deleterious’and
bioRxiv preprint first posted online Jun. 8, 2017; doi: http://dx.doi.org/10.1101/147637. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
‘tolerated’,respectively.ThePfam-annotated“SEC5domain”ishighlighted.(D)
AnalysisofdeleteriousandtoleratedtruncationsofSEC5inyeasttetrads.Deletion
ofthelast615codonsofSEC5istolerated(rightpanel),whiledeletionofthelast
707codonsisnot(leftpanel).
Tables:
Expectededit
Unedited
Mismatch
Indel
ho-G582Stop
98.51%
0.08%
1.40%
0.00%
his2-E308Stop
99.83%
0.07%
0.10%
0.00%
mnd1-V219Stop 99.35%
0.53%
0.12%
0.00%
spo11-F381Stop 95.56%
4.24%
0.19%
0.00%
spo13-P252Stop 99.67%
0.20%
0.13%
0.00%
ste3-P469Stop
99.75%
0.12%
0.13%
0.00%
can1-G121Stop
99.81%
0.06%
0.13%
0.00%
can1-G70Stop
99.80%
0.03%
0.17%
0.00%
Table1:Assessingtheefficiencyofedit-directingplasmids.Outcomesofdirected
mutationsateightlociinnej1∆cells,asdeterminedbypaired-endIlluminareadsof
PCRsofgenomicDNAateachlocus.