* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Development of a technology of dehydration of glycerol
Survey
Document related concepts
Transcript
Workshop on Glycerol Marketing Marketing, Uses and Chemistry Development of a technology of dehydration of glycerol to acrolein, from catalyst to reactor p and process Franck Dumeignil a Unité de Catalyse et de Chimie du Solide - UMR CNRS 8181 Université Lille Nord de France 59655 Villeneuve d’Ascq Cedex – France http://uccs.univ-lille1.fr Introduction: The glycerol problem RO OR RO Triacylglycerol (TAG) oil crop + 3 CH3OH Cat. O 3 R OCH3 + HO O OH HO Biodiesel + Glycerol vegetable oil A l i Acrolein Facts: • EU aims 7% biodiesel by 2015 • 10 kg glycerol for 90 kg biodiesel 10³ me etric tons 8000 6000 European Biodiesel Board EU US 4000 2000 0 Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 2 Introduction: Acrolein synthesis and application Current production process O Cat. + O2 + H2 O Gas‐phase oxidation of propene (500.000 t/year worldwide) Applications O Acrolein + CH3SH Methanethiol HN2 H3C +O2 cat. Acrolein S O + HCN + Na2CO3 H3C S COOH DL-methionine O H3C S H N O N O H Hydantoin COOH +NaOH COO Na Acrylic acid n Sodium polyacrylate Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 3 Introduction: Gasphase dehydration Target: g Acrolein from biomass derived g glycerol y OH HO OH Cat. O + 2 H2O Reaction requires acid catalyst Zeolites β-zeolite β lit MCM-22 H-MFI ZSM 11 ZSM-11 Supported Inorganic acids Various Metal-oxides H3PO4/α-Al / Al2O3 Nb2O5 H4SiW12O40/SiO2 WO3 H3PW12O40/SiO2 S 4(P2O7)2 Sm Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 4 Introduction: Catalytic properties - acidity Critical p parameter: Acid strenght g Catalyst amount (g) Group-3 (-8.2 ≤H0 ≤ -3) HZSM-5 (Zeolite) Nb2O5-400 400 15 wt% WO3/ZrO2 5 wt% H3PO4/ a -Al2O3 5 wt% H3PW12O40/aAl2O3 Group-4 (H0 ≤ -8.2) 5 wt% SO42-/ZrO2 SiO2–Al Al2O3 Nb2O5-350 TOS=1-2h C S (%) (mol%) TOS=9-10h Carbon C S deposits (%) (mol%) (mg/gCat) 0.38 0 57 0.57 0.71 0.63 0.75 80 100 100 81 69 36 37 48 55 68 23 88 100 50 25 52 51 65 59 70 54 108 82 16 23 0.71 0 20 0.20 0.57 100 100 96 2 23 33 100 100 75 20 40 47 189 431 117 Strong acid catalysts show increased coke formation S-H. Chai, H-P. Wang, Y. Liang, B-Q. Xu, Green Chem., 2007, 9, 1130-1136 Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 5 Results: STA on SBA-15 SBA 15 Conditions of the catalytic tests: Active phase amount 20 wt.% Catalyst mass 0.3 g Reaction temperature 275°C Glycerol flow 1.5 mL/h Glycerol concentration 10 wt.% Helium flow 30 mL/min. Advantage Disadvantage Quick deactivation High Selectivity in Acrolein Solution Tuning of the acidic force Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 6 Tuning of the acidic force I SBA 15 SBA-15 Grafting with Zr(OiPr)4 in EtOH Washing & Calcination Catalyst H4SiW12O40 Strong interaction (Al, Zr): strong distortion of Keggin-unit > important i t t decrease d in i acidity idit Weak interaction (Si): low distortion of Keggin-unit > low impact on acidity Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 7 Tuning of the acidic force II TPD NH3 ZrO2 decreases acidic force Total acidity [mmol NH3/g cat.] Weak [%] Medium [%] Strong [%] a Bare SBA-15 0.004 10 90 0 b ZrO2 /SBA-15 0.178 38 29 33 c STA / SBA-15 0.339 5 63 32 d STA /ZrO2/SBA-15 0.442 19 45 36 sample l ∆T Tdesorp: Weak 100-300 °C; Medium 300-450 °C; strong > 450 °C ZrO2 increases number of acid sites Lewis acidity Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 8 Results: STA on ZrO2 grafted SBA SBA-15 15 Conditions of the catalytic tests: Active phase amount 20 wt.% Zirconia amount 20 wt.% Calcination temperature 650°C Catalyst mass 0.3 g Reaction temperature 275°C Glycerol flow 1.5 mL/h Glycerol concentration 10 wt.% Helium flow 30 mL/min. Advantage Disadvantage Increased long-term performance ? ? Increased formation of Acetol ? ? ? Slow „activation“ Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 9 Critical parameter: Acid type Reaction mechanisms: ! a OH OH HO OH + glycerol O OH2 HO OH B Bronsted-site t d it O + -H3O OH HO OH -H2O -H2O OH O acrolein Bronsted-site b HO M OH HO OH glycerol O M H + O M OH H O OH OH M Lewis-site + OH OH M M pseudoBronsted-site Increased formation of Acetol -H2O O HO acetol M O M „Activation period“ Lewis-site A. Alhanash et al., Appl. Catal A, 378 (2010) 11–18 Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 10 Critical parameter: Acid type Influence of different ZrO2 amounts: Constant amount of 20wt.% H4SiW12O40 (SBA-15 support) Increasing c eas g ZrO O2 a amount: ou t • less acrolein formation giving rise to • increasing acetol TOS: 0-5 h Confirms the mechanism over Lewis-acid L i id sites it Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 11 Conclusion - Catalyst • Supported Heteropoly acids are highly selective in Glycerol dehydration ¾ Deactivation D ti ti ascribed ib d tto coke k d deposition iti limits li it llong-term t performance f and d necessitates regeneration Decreasing the acidity is supposed to reduce the formation of coke ¾ Acidity can be tuned via the support due to electronic interactions with HPA Increased long-term performance for zirconia supported HPA Deactivation still observed Æ Regeneration possible ? Increased formation of Acetol and significant „activation activation period period“ due to Lewis-acid character of ZrO2 Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 12 Significant decrease i selectivity in l ti it tto acrolein Air flow (30 mL/min) 6h @ 275°C 275 C alteration of the HPA ? 20w wt.% H4S SiW12O40 on 20 0wt.% ZrO O2/SBA-1 15 20wt.% H4SiW12O40 on S SBA-15 Regeneration of spent catalysts I Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 13 Regeneration of spent catalysts II Loss of cryst. cryst H2O TGA H2O Loss of constitutional water and thermal decomposition: H4SiW12O40 SiW12O38 + 2 H2O SiW12O38 Loss of const. H2O and decomposition p SiO2 + 12 WO3 H4SiW12O40 on ZrO2/SBA-15 H4SiW12O40 on SBA-15 SBA 15 Strong interaction (Al, Zr): > important increase in thermal stabilityy Weak interaction (Si): > no impact on thermal stability Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 14 20w wt.% H4S SiW12O40 on 20 0wt.% ZrO O2/SBA-1 15 20wt.% H4SiW12O40 on S SBA-15 Regeneration of spent catalysts III Selectivity to acrolein l i slightly li htl increased (66% vs. 50%) „wet“ air flow (30 mL/min) 6h @ 275°C 275 C 77% N2 18 % O2 5 % H2O Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 15 Periodic regeneration of spent catalysts I Allows periodic switching between Glycerol and Air flow Conditions of the catalytic tests: Catalyst mass 0.2 g Reaction temperature 275°C Glycerol flow 1.5 mL/h Glycerol concentration 10 wt.% Helium flow 30 mL/min. Air flow 30 mL/min (dry) Cycle time 10 min. Gly 10 min. Air Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 16 20 0wt.% H4SiW12O40 on 20wt.% Z 2 ZrO2/SBA A-15 20wt.% % H4SiW122O40 on SBA-15 Periodic regeneration of spent catalysts II N lloss iin selectivity No l ti it No thermal degradation due to short cycles Low selectivity to acrolein „„Activation p period“ Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 17 Concept: Two Two-Zone-Fluidized-Bed-Reactor Zone Fluidized Bed Reactor Reaction conditions Feed: Gl cerol Glycerol Vector gas 4.8 4 8 mL/h (20wt.%) (20 t %) 5.5 L/h (275°C; N2) Fluidizing gas: 90 NL/h (275°C; N2 or air)) Temperature: 275 °C Catalyst: 20wt.% 0 t % H4S SiW12O40 o on CARiACT C C (221 ( µm) µ ) 5 g catalyst + 76 g inert (silica) • Permanent regeneration of the catalyst • Isothermicity Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 18 Results: Two Two-Zone-Fluidized-Bed-Reactor Zone Fluidized Bed Reactor • Deactivation under N2 flow • Increasing conversion under air flow: - accompanied with increasing temperature - presence of CO2 detected by Mass Mass-Spec. Spec • Regeneration confirmed by back-switch to N2 Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 19 Conclusion - Regeneration • Supported Heteropoly acids are highly selective in Glycerol dehydration ¾ Deactivation D ti ti ascribed ib d tto coke k d deposition iti limits li it llong-term t performance f and d necessitates regeneration Silicotungstic acid on ZrO2/SBA-15 Silicotungstic acid on silica Long-term performance Rapid deactivation Increased thermal stability facilitates the regeneration Low thermal stability (decomposition in hot-spots) Increased formation of Acetol and significant „activation period“ due to Lewis-acid character of ZrO2 No activation period Short cycles Long cycles Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 20 Acknowledgements g ((1)) Special thanks to my colleagues and industrial partners who actively participated to these projects: Prof. Sébastien Paul (UCCS) Prof. Nouria Fatah (UCCS) j y ((UCCS)) Dr. Benjamin Katryniok Dr. Mickaël Capron (UCCS) Dr. Virginie Bellière-Baca (Rhodia) Dr. Patrick Rey (Adisseo) Dr. S. Pariente (Rhodia) Mr Roger D Mr. D. Melendez (UCCS) … We g gratefully y acknowledge g Adisseo for their financial supports Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 21 Acknowledgements g ((2)) Thank you very much for your kind attention! Process for obtaining acrolein by catalytic dehydration of glycerol or glycerine S. Pariente, V. Bellière-Baca, S. Paul, N. Fatah WO 2012/05166A1 (2012) Method for Preparing Acrolein from Glycerol or Glycerines S. Paul, B. Katryniok, F. Dumeignil, M. Capron WO 2011/08325 (2011) Regeneration of silica-supported silicotungstic acid used as a catalyst for the dehydration of glycerol B. Katryniok, S. Paul, M. Capron, V. Bellière-Baca, P. Rey, F. Dumeignil Ch S Ch ChemSusChem. 5 (2012) (2012), 1298 1298-1306. 1306 Synthesis and characterization of zirconia grafted SBA-15 nanocomposites B. Katryniok, S. Paul, M. Capron, S. Royer, C. Lancelot, L. Jalowiecki-Duhamel, V. Bellière-Baca, P. Rey, F. Dumeignil J. Mater. Chem. 21 (2011), 8159-8168. Long-Life Catalyst for Glycerol Dehydration to Acrolein B. Katryniok, S. Paul, M. Capron, C. Lancelot, P. Rey, V. Bellière-Baca, F. Dumeignil GreenChem. 12 (2010), 1922-1925. Glycerol Dehydration to Acrolein in the context of Glycerol new usages B. Katryniok, S. Paul, V. Bellière-Baca, P. Rey, F. Dumeignil GreenChem. 12 (2010) 2079-2098. Towards the sustainable production of acrolein by glycerol dehydration B. Katryniok, S. Paul, M. Capron, F. Dumeignil ChemSusChem. 2 (2009), 719-730. Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012 22