Download Development of a technology of dehydration of glycerol

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Advertising campaign wikipedia , lookup

Marketing wikipedia , lookup

History of marketing wikipedia , lookup

Marketing plan wikipedia , lookup

Marketing mix modeling wikipedia , lookup

Networks in marketing wikipedia , lookup

Marketing ethics wikipedia , lookup

Transcript
Workshop on Glycerol Marketing
Marketing,
Uses and Chemistry
Development of a technology of dehydration
of glycerol to acrolein, from catalyst to reactor
p
and process
Franck Dumeignil
a
Unité de Catalyse et de Chimie du Solide - UMR CNRS 8181
Université Lille Nord de France
59655 Villeneuve d’Ascq Cedex – France
http://uccs.univ-lille1.fr
Introduction: The glycerol problem
RO
OR
RO
Triacylglycerol
(TAG)
oil crop
+ 3 CH3OH
Cat.
O
3
R
OCH3 +
HO
O
OH
HO
Biodiesel + Glycerol
vegetable oil
A l i
Acrolein
Facts:
• EU aims 7% biodiesel by 2015
• 10 kg glycerol for 90 kg biodiesel
10³ me
etric tons
8000
6000
European Biodiesel Board
EU
US
4000
2000
0
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
2
Introduction: Acrolein synthesis and application
Current production process
O
Cat.
+ O2
+ H2 O
Gas‐phase oxidation of propene (500.000 t/year worldwide)
Applications
O
Acrolein
+ CH3SH
Methanethiol
HN2
H3C
+O2
cat.
Acrolein
S
O
+ HCN
+ Na2CO3
H3C
S
COOH
DL-methionine
O
H3C
S
H
N
O
N
O
H
Hydantoin
COOH
+NaOH
COO
Na
Acrylic acid
n
Sodium polyacrylate
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
3
Introduction: Gasphase dehydration
Target:
g Acrolein from biomass derived g
glycerol
y
OH
HO
OH
Cat.
O
+ 2 H2O
Reaction requires
acid catalyst
Zeolites
β-zeolite
β
lit
MCM-22
H-MFI
ZSM 11
ZSM-11
Supported
Inorganic acids
Various
Metal-oxides
H3PO4/α-Al
/ Al2O3
Nb2O5
H4SiW12O40/SiO2
WO3
H3PW12O40/SiO2
S 4(P2O7)2
Sm
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
4
Introduction: Catalytic properties - acidity
Critical p
parameter: Acid strenght
g
Catalyst
amount
(g)
Group-3 (-8.2 ≤H0 ≤ -3)
HZSM-5 (Zeolite)
Nb2O5-400
400
15 wt% WO3/ZrO2
5 wt% H3PO4/ a -Al2O3
5 wt% H3PW12O40/aAl2O3
Group-4 (H0 ≤ -8.2)
5 wt% SO42-/ZrO2
SiO2–Al
Al2O3
Nb2O5-350
TOS=1-2h
C
S
(%) (mol%)
TOS=9-10h Carbon
C
S
deposits
(%) (mol%) (mg/gCat)
0.38
0 57
0.57
0.71
0.63
0.75
80
100
100
81
69
36
37
48
55
68
23
88
100
50
25
52
51
65
59
70
54
108
82
16
23
0.71
0 20
0.20
0.57
100
100
96
2
23
33
100
100
75
20
40
47
189
431
117
Strong acid catalysts
show increased coke
formation
S-H. Chai, H-P. Wang, Y. Liang, B-Q. Xu, Green Chem., 2007, 9, 1130-1136
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
5
Results: STA on SBA-15
SBA 15
Conditions of the catalytic tests:
Active phase amount
20 wt.%
Catalyst mass
0.3 g
Reaction temperature
275°C
Glycerol flow
1.5 mL/h
Glycerol concentration
10 wt.%
Helium flow
30 mL/min.
Advantage
Disadvantage
Quick deactivation
High Selectivity in Acrolein
Solution
Tuning of the acidic force
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
6
Tuning of the acidic force I
SBA 15
SBA-15
Grafting with
Zr(OiPr)4
in EtOH
Washing &
Calcination
Catalyst
H4SiW12O40
Strong interaction (Al, Zr):
strong distortion of Keggin-unit
> important
i
t t decrease
d
in
i acidity
idit
Weak interaction (Si):
low distortion of Keggin-unit
> low impact on acidity
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
7
Tuning of the acidic force II
TPD
NH3
ZrO2 decreases
acidic force
Total
acidity
[mmol
NH3/g cat.]
Weak
[%]
Medium
[%]
Strong
[%]
a Bare SBA-15
0.004
10
90
0
b ZrO2 /SBA-15
0.178
38
29
33
c STA / SBA-15
0.339
5
63
32
d STA /ZrO2/SBA-15
0.442
19
45
36
sample
l
∆T
Tdesorp: Weak 100-300 °C; Medium 300-450 °C; strong
> 450 °C
ZrO2 increases
number of acid
sites
Lewis acidity
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
8
Results: STA on ZrO2 grafted SBA
SBA-15
15
Conditions of the catalytic tests:
Active phase amount
20 wt.%
Zirconia amount
20 wt.%
Calcination temperature
650°C
Catalyst mass
0.3 g
Reaction temperature
275°C
Glycerol flow
1.5 mL/h
Glycerol concentration
10 wt.%
Helium flow
30 mL/min.
Advantage
Disadvantage
Increased long-term performance
? ?
Increased formation of Acetol
?
?
?
Slow „activation“
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
9
Critical parameter: Acid type
Reaction mechanisms:
!
a
OH
OH
HO
OH
+
glycerol
O
OH2
HO
OH
B
Bronsted-site
t d it
O
+
-H3O
OH
HO
OH
-H2O
-H2O
OH
O
acrolein
Bronsted-site
b
HO
M
OH
HO
OH
glycerol
O
M
H
+
O
M
OH
H
O
OH
OH
M
Lewis-site
+
OH
OH
M
M
pseudoBronsted-site
Increased formation
of Acetol
-H2O
O
HO
acetol
M
O
M
„Activation period“
Lewis-site
A. Alhanash et al., Appl. Catal A, 378 (2010) 11–18
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
10
Critical parameter: Acid type
Influence of different ZrO2 amounts:
Constant amount of 20wt.% H4SiW12O40 (SBA-15 support)
Increasing
c eas g ZrO
O2 a
amount:
ou t
• less acrolein formation
giving rise to
• increasing acetol
TOS: 0-5 h
Confirms the mechanism
over Lewis-acid
L i
id sites
it
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
11
Conclusion - Catalyst
• Supported Heteropoly acids are highly selective in Glycerol dehydration
¾ Deactivation
D
ti ti ascribed
ib d tto coke
k d
deposition
iti limits
li it llong-term
t
performance
f
and
d
necessitates regeneration
Decreasing the acidity is supposed
to reduce the formation of coke
¾ Acidity can be tuned via the support due to electronic interactions with HPA
Increased long-term performance
for zirconia supported HPA
Deactivation still observed
Æ Regeneration possible ?
Increased formation of Acetol and
significant „activation
activation period
period“ due
to Lewis-acid character of ZrO2
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
12
Significant decrease
i selectivity
in
l ti it tto
acrolein
Air flow
(30 mL/min)
6h @
275°C
275
C
alteration
of the HPA ?
20w
wt.% H4S
SiW12O40 on
20
0wt.% ZrO
O2/SBA-1
15
20wt.% H4SiW12O40
on S
SBA-15
Regeneration of spent catalysts I
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
13
Regeneration of spent catalysts II
Loss of
cryst.
cryst H2O
TGA
H2O
Loss of constitutional water
and thermal decomposition:
H4SiW12O40
SiW12O38 + 2 H2O
SiW12O38
Loss of const. H2O
and decomposition
p
SiO2 + 12 WO3
H4SiW12O40 on ZrO2/SBA-15
H4SiW12O40 on SBA-15
SBA 15
Strong interaction (Al, Zr):
> important increase in thermal
stabilityy
Weak interaction (Si):
> no impact on thermal stability
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
14
20w
wt.% H4S
SiW12O40 on
20
0wt.% ZrO
O2/SBA-1
15
20wt.% H4SiW12O40
on S
SBA-15
Regeneration of spent catalysts III
Selectivity to
acrolein
l i slightly
li htl
increased
(66% vs. 50%)
„wet“ air flow
(30 mL/min)
6h @
275°C
275
C
77% N2
18 % O2
5 % H2O
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
15
Periodic regeneration of spent catalysts I
Allows periodic switching
between Glycerol and Air flow
Conditions of the catalytic tests:
Catalyst mass
0.2 g
Reaction temperature
275°C
Glycerol flow
1.5 mL/h
Glycerol concentration
10 wt.%
Helium flow
30 mL/min.
Air flow
30 mL/min (dry)
Cycle time
10 min. Gly
10 min. Air
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
16
20
0wt.% H4SiW12O40 on
20wt.% Z
2
ZrO2/SBA
A-15
20wt.%
% H4SiW122O40
on SBA-15
Periodic regeneration of spent catalysts II
N lloss iin selectivity
No
l ti it
No thermal degradation due
to short cycles
Low selectivity to acrolein
„„Activation p
period“
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
17
Concept: Two
Two-Zone-Fluidized-Bed-Reactor
Zone Fluidized Bed Reactor
Reaction conditions
Feed:
Gl cerol
Glycerol
Vector gas
4.8
4
8 mL/h (20wt.%)
(20 t %)
5.5 L/h (275°C; N2)
Fluidizing gas:
90 NL/h (275°C; N2 or
air))
Temperature:
275 °C
Catalyst:
20wt.%
0 t % H4S
SiW12O40 o
on CARiACT
C
C (221
(
µm)
µ )
5 g catalyst + 76 g inert (silica)
• Permanent regeneration of the catalyst
• Isothermicity
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
18
Results: Two
Two-Zone-Fluidized-Bed-Reactor
Zone Fluidized Bed Reactor
• Deactivation under N2 flow
• Increasing conversion under air flow:
- accompanied with increasing temperature
- presence of CO2 detected by Mass
Mass-Spec.
Spec
• Regeneration confirmed by back-switch to N2
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
19
Conclusion - Regeneration
• Supported Heteropoly acids are highly selective in Glycerol dehydration
¾ Deactivation
D
ti ti ascribed
ib d tto coke
k d
deposition
iti limits
li it llong-term
t
performance
f
and
d
necessitates regeneration
Silicotungstic acid on ZrO2/SBA-15
Silicotungstic acid on silica
Long-term performance
Rapid deactivation
Increased thermal stability
facilitates the regeneration
Low thermal stability
(decomposition in hot-spots)
Increased formation of Acetol and
significant „activation period“ due
to Lewis-acid character of ZrO2
No activation period
Short cycles
Long cycles
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
20
Acknowledgements
g
((1))
Special thanks to my colleagues and industrial
partners who actively participated to these
projects:
Prof. Sébastien Paul (UCCS)
Prof. Nouria Fatah (UCCS)
j
y
((UCCS))
Dr. Benjamin
Katryniok
Dr. Mickaël Capron (UCCS)
Dr. Virginie Bellière-Baca (Rhodia)
Dr. Patrick Rey (Adisseo)
Dr. S. Pariente (Rhodia)
Mr Roger D
Mr.
D. Melendez (UCCS)
…
We g
gratefully
y acknowledge
g Adisseo
for their financial supports
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
21
Acknowledgements
g
((2))
Thank you very much for your kind attention!
Process for obtaining acrolein by catalytic dehydration of glycerol or glycerine
S. Pariente, V. Bellière-Baca, S. Paul, N. Fatah
WO 2012/05166A1 (2012)
Method for Preparing Acrolein from Glycerol or Glycerines
S. Paul, B. Katryniok, F. Dumeignil, M. Capron
WO 2011/08325 (2011)
Regeneration of silica-supported silicotungstic acid used as a catalyst for the dehydration of glycerol
B. Katryniok, S. Paul, M. Capron, V. Bellière-Baca, P. Rey, F. Dumeignil
Ch S Ch
ChemSusChem.
5 (2012)
(2012), 1298
1298-1306.
1306
Synthesis and characterization of zirconia grafted SBA-15 nanocomposites
B. Katryniok, S. Paul, M. Capron, S. Royer, C. Lancelot, L. Jalowiecki-Duhamel, V. Bellière-Baca, P. Rey, F. Dumeignil
J. Mater. Chem. 21 (2011), 8159-8168.
Long-Life Catalyst for Glycerol Dehydration to Acrolein
B. Katryniok, S. Paul, M. Capron, C. Lancelot, P. Rey, V. Bellière-Baca, F. Dumeignil
GreenChem. 12 (2010), 1922-1925.
Glycerol Dehydration to Acrolein in the context of Glycerol new usages
B. Katryniok, S. Paul, V. Bellière-Baca, P. Rey, F. Dumeignil
GreenChem. 12 (2010) 2079-2098.
Towards the sustainable production of acrolein by glycerol dehydration
B. Katryniok, S. Paul, M. Capron, F. Dumeignil
ChemSusChem. 2 (2009), 719-730.
Workshop on Glycerol Marketing, Uses and Chemistry, Milano, 18/19 October 2012
22