Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Muscle
Three basic types:
Skeletal = striated = voluntary
Smooth = non-striated = involuntary = visceral
Cardiac
What does muscle do?
Mainly, generate tension. Depending on arrangement, this can
a. Flex or extend a limb
b. Constrict the diameter of an opening or a tube
c. Change the dimensions or shape of a sheet
They are mechanical devices, and can do work.
Therefore, they require energy.
No real mechanical device is 100% efficient, so not all the energy
they use is converted to work. Some is dissipated as heat.
Heat generation by muscles is why body temperature rises during
exercise. Sweating dissipates the heat through evaporation, keeping
body temperature in a safe range. Shivering is an important
mechanism for generating extra heat when body temperature falls.
Skeletal Muscle Basics
Some vocabulary:
Cell membrane = sarcolemma
Endoplasmic reticulum = sarcoplasmic reticulum
Cytoplasm = sarcoplasm
Muscle cell = muscle fiber
Muscle fiber contains myofibrils
Myofibrils consist of thick and thin filaments (bundles of myosin
and actin, respectively)
The repeating unit is called a sarcomere. In a resting muscle,
sarcomere length is about 2 microns (0.002 mm).
Source of energy for muscle is ATP, so there are lots of mitochondria
in myofibrils.
Contraction of Skeletal Muscle
It was once believed that thick and or thin filaments shortened
when muscle cells contract. In fact, neither changes length. They
slide across each other, reducing sarcomere length.
Excitation-Contraction Coupling
Sarcolemma has projections (T-tubules) that dip deeply into muscle
fibers and make close contact with sarcoplasmic reticulum.
Action potentials are transmitted via T-tubules to all of sarcoplasmic
reticulum. This triggers release of Ca ions into sarcoplasm, which
triggers “sliding” of filaments. When action potential is over, Ca is
taken back into sarcoplasmic reticulum, muscle relaxes.
Muscle Mechanics
1. Develop tension without shortening = isometric (constant
dimension)
Pushing against a wall = isometric contraction
2. Shorten with nearly no change in tension over the distance
shortened = isotonic (constant force)
Lifting a pencil = isotonic contraction
3. Tension increases during shortening = auxotonic
Stretching a spring = auxotonic contraction
4. Tension decreases during shortening = meiotonic
Playing a piano = meiotonic contractions
Virtually every mechanical act we perform is some combination of
these.
Isometric Length-Tension Relation
This illustrates what happens if you hold a muscle at various fixed
lengths, give it a brief stimulus at each length and record the
response to each stimulus ( = active tension) and the total tension
( = active tension + passive tension resulting from elastic properties
of the connective tissue).
Notice that active tension increases, reaches a maximum at around
the resting length, then decreases and eventually falls to zero.
Who cares?
The now-obsolete theory that muscles contract because actin and/or
myosin filaments shorten can’t be reconciled with this lengthtension relation, and this is why it was abandoned. The sliding
filament theory fits it perfectly.
Notice how the tension simply reflects the extent of overlap
between crossbridge-forming areas of the thick and thin filaments.
Force-Velocity Relations
Now let’s look at what happens to the velocity with which muscles
contract as the load varies.
Not surprisingly, velocity is greatest with small loads. As the load
increases, velocity decreases and the contraction finally becomes
isometric.
Since no work (= force x distance) is done under isometric
conditions, the work output falls to zero with very high loads, and
the power output (= work/velocity) does as well. The power output
reaches a maximum at around the resting length of a muscle, at
about one-third of the maximum load.
Twitches and Sustained Contractions
If a muscle is given a single, brief stimulus, it responds with a single,
brief contraction (= twitch). If more stimuli are applied at not-toofrequent intervals, they elicit more twitches.
If we increase the frequency of the stimuli, we eventually reach a
point at which the muscle can’t fully relax between stimuli. This is
incomplete tetany.
If we continue to increase the stimulus frequency, we eventually
reach a frequency at which the muscle can’t relax at all between
stimuli. This is called tetany; the lowest frequency that causes it is
called the tetanic frequency.
The tetanic frequency in humans is around 60/second. Since
wall current is at 60 cycles/second, if you grab a live wire, you
can’t let go, and you die. The rest of the world uses 50 cycle
current, greatly reducing the risk of electrocution.
Why the heck do we use 60 cycle current?
In the early days of electricity, congress commissioned an
engineering society to recommend the best frequency for wall
current. The engineer who studied the question mistakenly
believed that lights would appear to flicker at frequencies below 60
cycles/second. He recommended 60 cycle current for that reason.
In fact, you won’t see flicker at frequencies as low as 30 cycles per
second (that’s the frame rate of movies – no flickering at all).
The moral of the story is that basing public policy on science results
in policies that are no better than the science on which they’re
based.
How do we control the duration of a muscle contraction?
The duration of a muscle contraction is controlled by the duration
of a tetanic stimulus applied to it. Varying duration of tetany =
varying duration of contraction.
How do we control contraction strength?
We accomplish this by varying the number of muscle cells that are
contracting. The larger the number, the stronger the contraction.
This brings us to motor units.
Motor Units
A muscle cell is innervated by one motor neuron, but a motor
neuron can innervate up to 500 muscle cells.
A motor neuron and all the muscle cells it innervates = motor unit.
An action potential in a motor neuron results in ACh release from
axon terminals on every muscle cell it innervates, so they all
contract and relax simultaneously.
The strength of a muscle contraction is controlled by the number of
motor units activated during the contraction.
Some muscles, the quadriceps, for instance, have very large motor
units. Thus, gradations of contraction by the quadriceps are coarse.
If the motor unit size is around 500 muscle cells, it can contract cells
in multiples of 500 – no intermediate gradations are possible.
That’s why you can’t play the piano very well with your heels.
Muscle Metabolism
Muscle uses a lot of energy, in the form of ATP. Muscle mitochondria
use oxygen for ATP synthesis, at least during aerobic contractions. This
applies to conditions in which the muscle is generating up to about 2/3
of its maximum power. Beyond that point, muscles don’t receive
oxygen fast enough to generate all their ATP aerobically.
When muscles generate more than 2/3 of their maximum power, they
use anaerobic pathways (glycolysis) in addition to aerobic pathways to
generate ATP. This provides ATP from glucose stored in muscle as
glycogen. One end product of anaerobic glycolysis is lactic acid. Lactic
acid accumulation is a major factor in muscle fatigue. That’s why
anaerobic exercise can only go on for short periods. Resting the
muscle allows lactic acid to be metabolized to carbon dioxide. Panting
is a mechanism for increasing oxygen uptake and carbon dioxide
elimination. We pant after anaerobic exercise for that reason.
Types of Skeletal Muscle Fibers
It’s a bit of a simplification to say that there are two main kinds of
skeletal muscle fibers: red and white. The difference is a result of one
type (red) having large amounts of a red protein, myoglobin, in the
sarcoplasm. Red fibers come in two types, fast and slow twitch.
Myoglobin is a close relative of hemoglobin (the protein that gives
blood its color). Like hemoglobin, it binds oxygen reversibly. So, red
muscle has a reservoir of oxygen in it. For that reason, it fatigues
slowly. Muscles that remain contracted for long durations (postural
muscles, for instance) are mainly slow twitch red muscle fibers.
Having lots of myoglobin leaves less room for actin and myosin. For
that reason, red muscle twitch velocities are slower than white.
White muscle fatigues easily but can generate great power for short
periods.
White Muscle and Red Muscle
Different species of animals have different proportions of red and
white muscle, and their lives reflect that.
Cats are primarily white muscle animals. They are capable of great
speed, but only for short distances. Hence, they hunt by stealth.
Dogs are primarily fast twitch red muscle animals. They have great
stamina, and hunt by running the prey to exhaustion.
Different muscles in the same animal have different proportions of
red and white fibers. The turkey on your Thanksgiving table has red
muscle legs, the dark meat. It has white muscle on the breast (flight
muscles), the white meat.
The flight muscles of birds generate enough power to keep the bird
aloft. Why don’t they quickly fatigue, dropping the bird like a rock?
Watch a bird in flight and you’ll see the answer.
Muscle Atrophy and Hypertrophy
Use and disuse -> hypertrophy and atrophy, respectively.
This is the basis for training and body building.
Marathon runners promote hypertrophy of red muscle. Sprinters
promote hypertrophy of white muscle.
Aerobic exercise also promotes growth of the vasculature in
muscles, resulting in greater rate of supply of oxygen and removal
of carbon dioxide. VERY important in heart muscle (more about
that later).
Immobilization (in a cast, for instance) results in very rapid,
dramatic disuse atrophy and loss of muscle tone.
Smooth Muscle
Occurs in viscera, blood vessels, diaphragm. Not subject to voluntary
control via somatic branch of peripheral nervous system. Lacks
striations because myofibrils aren’t aligned the way they are in
skeletal muscle cells.
Contractions are slower than in skeletal muscle, and range of
lengths is greater.
Smooth muscle cells, unlike skeletal muscle cells, transmit action
potentials from cell to cell. Thus, stimulating one cell in a smooth
muscle tissue results in contraction propagating in all directions
from the cell that was stimulated.
Rate of action potential propagation in smooth muscle cells is slow,
so the contractions originating in a single cell propagate as waves
of contraction and relaxation.
Smooth muscle contraction and its rate and direction of
propagation are usually modulated by neural influences,
sometimes by circulating chemical messengers (hormones) as well.