* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Young Stars
International Ultraviolet Explorer wikipedia , lookup
Corona Borealis wikipedia , lookup
Auriga (constellation) wikipedia , lookup
Canis Minor wikipedia , lookup
Dyson sphere wikipedia , lookup
History of Solar System formation and evolution hypotheses wikipedia , lookup
Cassiopeia (constellation) wikipedia , lookup
Formation and evolution of the Solar System wikipedia , lookup
Corona Australis wikipedia , lookup
Planetary habitability wikipedia , lookup
Crab Nebula wikipedia , lookup
Nebular hypothesis wikipedia , lookup
Cygnus (constellation) wikipedia , lookup
Perseus (constellation) wikipedia , lookup
Stellar classification wikipedia , lookup
Astronomical spectroscopy wikipedia , lookup
Aquarius (constellation) wikipedia , lookup
Timeline of astronomy wikipedia , lookup
Future of an expanding universe wikipedia , lookup
Type II supernova wikipedia , lookup
Corvus (constellation) wikipedia , lookup
Stellar kinematics wikipedia , lookup
Orion Nebula wikipedia , lookup
The Life History of Stars – Young Stars The Importance of Mass •The entire history of a star depends on its mass and almost nothing else •The more mass a star has, the faster it does everything •The stages of a star differ based on what is happening in the core of the star •The properties of a star vary wildly as it passes through different stages •Qualitatively, stars have similar histories, with one big split: •Low mass stars (< 8 MSun) have quiet deaths •High mass stars (> 8 MSun) go out with a bang Low Mass Stars (< 8 MSun) - Outline •Molecular Cloud Mommy •Protostar Fetus •Main Sequence Adult •Red Giant •Core Helium-Burning Old Woman •Double Shell-Burning •Planetary nebula Cancer •White Dwarf Corpse Which stage takes the largest amount of time? A) Main Sequence B) Red Giant C) Core Helium-Burning D) Double Shell-Burning E) Planetary Nebula •The more massive the star, the faster it does everything •From Main Sequence to Planetary Nebula, each stage goes faster than the previous Molecular Clouds •Huge, cool, relatively dense clouds of gas and dust •Gravity causes them to begin to contract •Clumps begin forming – destined to become stellar systems •Composition: •75% hydrogen (H2), 23% helium (He), < 2% other •Molecular Cloud •Protostar •Main Sequence •Red Giant •Core HeliumBurning •Double ShellBurning •Planetary Nebula •White Dwarf Molecular Clouds – Eagle Nebula Molecular Clouds – Keyhole and Orion Formation of Protostars •Cloud fragments to form multiple stars •Stars usually form in clusters •Often, two or more stars remain in orbit •The stars are a balance of pressure vs. gravity •Heat leaks out – they cool off •Reduced pressure – gravity wins – it contracts •Molecular Cloud •Protostar •Main Sequence •Red Giant •Core HeliumBurning •Double ShellBurning •Planetary Nebula •White Dwarf Negative Heat Capacity What happen as heat leaks out •They cool off •By P = knT, they have less pressure •Gravity defeats pressure •They contract •Energy is converted •Gravitational Energy Kinetic energy •Kinetic energy Heat •Net effect: When you remove heat, a star gets: •Smaller •Hotter (!) H-R diagram: Protostar Double ShellBurning Core HeliumBurning •Molecular Cloud •Protostar •Main Sequence •Red Giant •Core HeliumBurning •Double ShellBurning •Planetary Nebula •White Dwarf Stellar Winds •Stars are still embedded in molecular clouds of gas and dust •Stars begin blowing out gas - winds •Wind blows away the dust – we see star A Star is Born •The interior of the star is getting hotter and hotter •At 10 million K, fusion starts •This creates energy •It replaces the lost heat – the star stops getting dimmer •The surface continues shrinking for a while •Left and a little up on the H-R diagram •It becomes a Main Sequence star •Molecular Cloud •Protostar •Main Sequence •Red Giant •Core HeliumBurning •Double ShellBurning •Planetary Nebula •White Dwarf H-R diagram: To the Main Sequence Double ShellBurning Core HeliumBurning •Molecular Cloud •Protostar •Main Sequence •Red Giant •Core HeliumBurning •Double ShellBurning •Planetary Nebula •White Dwarf Mass Distribution of Stars •Stars Range from about 0.08 – 150 Msun •Lighter than 0.08 – they don’t get hot enough for fusion •Heavier than 150 – they burn so furiously they blow off their outer layers •Light stars much more common than heavy ones •Objects lighter than 0.08 MSun are called Brown brown Dwarf dwarfs Small Star High Mass Stars Eta Carinae About 150 MSun HDE 269810 Peony Nebula Star Life on the Main Sequence •The star is now in a steady state – it is “burning” hydrogen 4H + 2e- He + 2 + energy •It burns at exactly the right rate to replace the energy lost •For the Sun, there is enough fuel in the central part to keep it burning steadily for 10 billion years •All stars are in a balance of pressure vs. gravity •To compensate for larger masses, they have to be bigger R M •They have lower density, which lets heat escape faster 3.5 •They have to burn fuel faster to compensate LM 0.4 •To burn faster, they have to be a little hotter T M Structure of Main Sequence Stars •All burn hydrogen to helium at their cores •Solar mass: Convection on the outside •High mass: Convection on the inside •Low mass: Convection everywhere Announcements Date Today Thursday Friday Monday Read Sec. 12.1, 12.2 Sec. 12.3 Sec. 13.2, 11.3, 13.1, 13.3 Study for Test Lab Tonight •Out-4, In-8 6/15 Evolution on the Main Sequence 4H + 2e- He + 2 + energy •Number of particles decreased: •The neutrinos leave •6 particles 1 particle •Reduced pressure: P = knT •Core shrinks slightly •Temperature rises slightly •Fuel burns a little faster •Star gets a little more luminous •Up slightly on H-R diagram Evolution on the Main Sequence Double ShellBurning Core HeliumBurning •Molecular Cloud •Protostar •Main Sequence •Red Giant •Core HeliumBurning •Double ShellBurning •Planetary Nebula •White Dwarf Lifetime on the Main Sequence •The amount of fuel in a star is proportional to the mass •How fast they burn fuel is proportional to the Luminosity •Massive stars burn fuel much faster L M 3.5 Cl O5 B0 A0 A5 M M t 3.5 M 2.5 G2 L M G5 Age of Universe M7 •Stars lighter than Sun still main sequence Which stars run out of fuel first? A) Massive stars B) Light stars C) Same time D) Insufficient information M 60 18 3 2 1 0.9 0.2 life 360 ky 10 My 400 My 1.1 Gy 10 Gy 15 Gy 500 Gy