Download Lecture Notes 05

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Woodward effect wikipedia , lookup

Thomas Young (scientist) wikipedia , lookup

Introduction to gauge theory wikipedia , lookup

Coherence (physics) wikipedia , lookup

Four-vector wikipedia , lookup

Probability amplitude wikipedia , lookup

Bohr–Einstein debates wikipedia , lookup

Density of states wikipedia , lookup

Diffraction wikipedia , lookup

Chien-Shiung Wu wikipedia , lookup

Quantum vacuum thruster wikipedia , lookup

Time in physics wikipedia , lookup

Wave–particle duality wikipedia , lookup

Wave packet wikipedia , lookup

Photon polarization wikipedia , lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Transcript
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
LECTURE NOTES 5
ELECTROMAGNETIC WAVES IN VACUUM


THE WAVE EQUATION(S) FOR E AND B
In regions of free space (i.e. the vacuum), where no electric charges, no electric currents and
no matter of any kind are present, Maxwell’s equations (in differential form) are:
  
1)  E  r , t   0
 
  
B r ,t 
3)   E  r , t   
t
  
2)  B  r , t   0
Set of coupled
first-order
partial
differential
equations
 
 
  
E  r , t  1 E  r , t 
 2
4)   B  r , t   o o
t
c
t
2
 c  1  o o 
We can de-couple Maxwell’s equations e.g. by applying the curl operator to equations 3) and 4):


  
  1 E 
  
  B 
  B   2
  E  


 c t 
 t 
  0 
 0 
 1   

  
   E   2 E  
 B
   B   2 B  2
 E
t
c t



 1   B 
  1 E 
2
2
  E    2
  B  2  


t  c t 
c t  t 


 1 2 E
 1 2 B
2
2
  B 2 2
  E 2 2
c t
c t














These are three-dimensional de-coupled wave equations for E and B - note that they have
exactly the same structure – both are linear, homogeneous, 2nd order differential equations.
Remember that each of the above equations is explicitly dependent on space and time,
  
  
i.e. E  E  r , t  and B  B  r , t  :
or:
 
2


E
r,t 
1

2 E  r , t   2
c
t 2
 
2


B
r,t 
1

2 B  r , t   2
c
t 2
 
2
 
1  E r ,t 
 E r ,t   2
0
c
t 2
 
2
 
1  B r ,t 
 B r ,t   2
0
c
t 2
2
2
Thus, Maxwell’s equations implies that empty space – the vacuum {which is not empty, at
the microscopic scale} – supports the propagation of {macroscopic} electromagnetic waves,
which propagate at the speed of light {in vacuum}: c  1  o o  3 108 m s .
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
1
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
EM waves have associated with them a frequency f and wavelength , related to each other
via c  f  . At the microscopic level, EM waves consist of large numbers of {massless} real

photons, each carrying energy E  hf  hc  , linear momentum p  h   hf c  E c and

angular momentum  z  1 where h = Planck’s constant = 6.626 1034 Joule-sec and   h 2 .
EM waves can have any frequency/any wavelength – the continuum of EM waves over the
frequency region 0  f   (c.p.s. or Hertz {aka Hz}), or equivalently, over the wavelength
region 0     (m) is known as the electromagnetic spectrum, which has been divided up
(for convenience) into eight bands as shown in the figure below (kindly provided by Prof. Louis
E. Keiner, of Coastal Carolina University, Conway, SC):
2
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
Monochromatic EM Plane Waves:
Monochromatic EM plane waves propagating in free space/the vacuum are sinusoidal EM
plane waves consisting of a single frequency f , wavelength   c f , angular frequency
  2 f and wavenumber k  2  . They propagate with speed c  f    k .
In the visible region of the EM spectrum {~380 nm (violet) ≤ λ ≤ ~ 780 nm (red)}, EM light
waves (consisting of real photons) of a given frequency / wavelength are perceived by the human
eye as having a specific, single color. Hence we call such single-frequency, sinusoidal EM
waves mono-chromatic.
EM waves that propagate e.g. in the  ẑ direction but which additionally have no explicit x- or
y-dependence are known as plane waves, because for a given time, t the wave front(s) of the EM
wave lie in a plane which is  to the ẑ -axis, as shown in the figure below:
x̂
ŷ
ẑ
The planar wavefront
associated with a plane
EM wave propagating in
the kˆ   zˆ direction lies
in the x-y plane.
constant everywhere in
(x,y) on this plane.
Note that there also exist spherical EM waves – e.g. emitted from a point source, such as an
atom, a small antenna or a pinhole aperture – the wavefronts associated with these EM waves are
spherical, and thus do not lie in a plane  to the direction of propagation of the EM wave:
Portion of a spherical wavefront
associated with a spherical wave
n.b. If the point source is infinitely far away from observer, then a spherical wave → plane wave.
In this limit, the radius of curvature RC → ∞). i.e. a spherical surface becomes planar as RC → ∞.
A criterion for a {good} approximation of spherical wave as a plane wave is:   RC
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
3
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede


Monochromatic traveling EM plane waves can be represented by complex E and B fields:




E  z , t   E o ei kz t 
B  z , t   Bo ei kz t 
Propagating in the
Propagating in the
kˆ   zˆ direction
kˆ   zˆ direction
n.b. complex vectors:

E o  E o xˆ  E o ei xˆ  Eo ei xˆ
e.g.
n.b. complex vectors:

Bo  Bo yˆ  Bo ei yˆ  Bo ei yˆ
e.g.
n.b. The real, physical instantaneous time-domain EM fields are related to their corresponding
complex time-domain fields via:
 
 
E  r , t   Re E  r , t 
 
 
B  r , t   Re B  r , t 


Note that Maxwell’s equations for free space impose additional constraints on E o and Bo .


→ Not just any E o and/or Bo is acceptable / allowed !!!


 
Since:  E  0
 
 Re  E  0


 
 B  0
 
 Re  B  0
 
 



These two relations can only be satisfied   r , t  if  E  0   r , t  and  B  0   r , t  .
and:
 
 


  xˆ 
yˆ  zˆ
x
y
z
In Cartesian coordinates:
 
Thus:  E  0
 
and
 
 
 B  0 become:
 
 
 

   i kz t 

   i kz t 
ˆ
ˆ
ˆ
ˆ
ˆ






0
0
x
y
z
E
e
and
x
y
zˆ  Bo e

 o

y
z 
y
z 
 x
 x


Now suppose we do allow: E o   Eox xˆ  Eoy yˆ  Eoz zˆ  ei  Eo ei


polarization in xˆ  yˆ  zˆ  3 D 


Bo   Box xˆ  Boy yˆ  Boz zˆ  ei  Bo ei






polarization in xˆ  yˆ  zˆ  3 D 
Then:
4
 

 
yˆ  zˆ  Eox xˆ  Eoy yˆ  Eoz zˆ  ei ei kz t   0
 xˆ 
y
z 
 x
 

 
yˆ  zˆ  Box xˆ  Boy yˆ  Boz zˆ  ei ei kz t   0
 xˆ 
y
z 
 x
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
 

 
yˆ  zˆ  Eox xˆ  Eoy yˆ  Eoz zˆ  ei kz t  ei  0
 xˆ 
y
z 
 x
 

 
yˆ  zˆ  Box xˆ  Boy yˆ  Boz zˆ  ei kz t  ei  0
 xˆ 
y
z 
 x
Or:
Now:
Eox, Eoy, Eoz = Amplitudes (constants) of the electric field components in x, y, z
directions respectively.
Box, Boy, Boz = Amplitudes (constants) of the magnetic field components in x, y, z
directions respectively.
We see that:
And:

ˆ i kz t  ei  0 ← has no explicit x-dependence
xˆ  Eox xe
x

ˆ i kz t  ei  0 ← has no explicit y-dependence
yˆ  Eoy ye
y

ˆ i kz t  ei  0 ← has no explicit x-dependence
xˆ  Box xe
x

ˆ i kz t  ei  0 ← has no explicit y-dependence
yˆ  Boy ye
y
And:
However:
Thus:
 az
e   ae az

z

ˆ i kz t  ei  ikEoz ei kz t  ei  0  true iff Eoz  0 !!!
zˆ  Eoz ze
z

ˆ i kz t  ei  ik oz ei kz t  ei  0  true iff Boz  0 !!!
zˆ  Boz ze
z

Thus, Maxwell’s equations additionally tell us/impose the restriction that an


electromagnetic plane wave cannot have any component of E or B  to (or anti-  to)
the propagation direction (in this case here, the kˆ   zˆ -direction)

Another way of stating this is that an EM plane wave cannot have any longitudinal




components of E and B (i.e. components of E and B lying along the propagation
direction).

Thus, Maxwell’s equations additionally tell us that an EM plane wave is a purely
transverse wave (at least while it is propagating in free space) – i.e. the components of


E and B must be  to propagation direction.


The plane of polarization of an EM plane wave is defined (by convention) to be parallel to E .
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
5
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
Furthermore: Maxwell’s equations impose yet another restriction on the allowed form of


E and B for an EM wave:


 
  1 E
B
 E  
 B  2
and/or:
c t
t


 B 
 1 E 
 
 


 Re   E  Re  
 Re   B  Re  2
 t 
 c t 








 

B
  E  
t



Can only be satisfied   r , t  iff:
and/or:

  1 E
  B  2
c t
Thus:
0

 0


   E z E y 
 Ex E y
ˆ
  E  
x


 z  x
z 
 y







  B  


0 
0

 0
B y

 E y E x 
B x
B z
 yˆ   x  y  zˆ   t xˆ  t yˆ  t ẑ







0

0

0
0
0





 B x B y 
 B y B x 
B z B y 
1 E x
1 E y
1 E z
xˆ  


 yˆ   x  y  zˆ  c 2 t xˆ  c 2 t yˆ  c 2 t ẑ
y
z
x
z 












0
0 

i kz t  i
e
With: E  E x xˆ  E y yˆ  E z zˆ   Eox xˆ  Eoy yˆ  Eoz zˆ  e 



0
0 

i kz t  i
B  B x xˆ  B y yˆ  B z zˆ   Box xˆ  Boy yˆ  Boz zˆ  e 
e



i kz t  i
E
e
Thus:   E x xˆ  E y yˆ   Eox xˆ  Eoy yˆ  e 

B  B x xˆ  B y yˆ   Box xˆ  Boy yˆ  ei kz t  ei


6
 
E
B
E
B
  E   y xˆ  x yˆ   x xˆ  y yˆ
z
z
t
t



B
B
1 E
1 E y
yˆ
  B   y xˆ  x yˆ  2 x xˆ  2
c t
c t
z
z
Can only be satisfied /
can only be true iff the
xˆ and yˆ relations are
separately / independently

satisfied   r , t  !
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
UIUC Physics 436 EM Fields & Sources II
i.e.
 
E y
B
xˆ   x xˆ
  E : 
z
t
B y
E
 x yˆ  
yˆ
z
t

B y
1
xˆ  2
  B : 
c
z
B
1
 x yˆ  2
c
z
From (1):
ikE oy  i Box
From (2):
ikE ox  i Boy
From (3):
ikBoy  
From (4):
ikBox  
 
   E :
(1)
(2)

  B :
(3)
(4)
E y
z
E x

z
B x
t
B y

t

Lect. Notes 5
Prof. Steven Errede
 ikEoy  i Box
(1)
 ikEox  i Boy
(2)
B
E x
1 E
1
xˆ   y  2 x  ikBoy   2 i Eox (3)
c
t
z c t
E y
B x 1 E y
1
 2
yˆ 
 ikBox   2 i Eoy (4)
c
t
z c t
1
i Eox
c2
1
i Eoy
c2
 
Now: c  f    2 f  
 2

Fall Semester, 2015
 
 Eoy     Box or:
k
 
 Eox     Boy or:
k
1  
 Boy   2   Eox
c k
1  
 Box   2   Eoy
c k
  
 
 k
and:
1
Box   Eoy
c
1
Boy   Eox
c
1
Boy   Eox
c
1
Box   Eoy
c
k
Box     Eoy
 
k
Boy     Eox
 
 
 k  2  
1 k


c
Maxwell’s equations also
have some redundancy
encrypted into them!
1
So we really / actually only have two independent relations: Box   Eoy
c
But:
xˆ  yˆ  zˆ
Very Useful Table: yˆ  zˆ  xˆ
ẑ  xˆ  yˆ
ẑ  yˆ   xˆ
1
and Boy   Eox
c
ẑ  xˆ   yˆ
yˆ  xˆ   zˆ
ẑ  yˆ   xˆ
xˆ  zˆ   yˆ


1 ˆ

 We can write the above two relations succinctly/compactly with one relation: Bo  c k  E o
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
7
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede


Physically, the mathematical relation Bo  1c kˆ  E o tells us that for a monochromatic EM plane


wave propagating in free space, E and B are:
a.) in phase with each other.
b.) mutually perpendicular to each other .and. each is perpendicular to the
 
propagation direction:   B  kˆ ( kˆ   zˆ = propagation direction)




The E and B fields associated with this monochromatic plane EM wave are purely transverse
{ n.b. this is as also required by relativity at the microscopic level – for the extreme relativistic
particles – the (massless) real photons traveling at the speed of light c that make up the
macroscopic monochromatic plane EM wave.}


The purely real/physical amplitudes of E and B are {also} related to each other by: Bo  1c Eo
2
2
with Bo  Box  Boy
2
2
and Eo  Eox  Eoy
Griffiths Example 9.2:
A monochromatic (single-frequency) plane EM wave that is plane polarized/linearly polarized in
the  x̂ direction, propagating in the kˆ   zˆ direction in free space, has:

E  E xˆ  definition of linearly polarized EM wave, polarized in the  x̂ direction.


 B  1c kˆ  E  1c  zˆ  Exˆ   1c E  zˆ  xˆ   1c Eyˆ

 yˆ
 1

1
ˆ
BcE
Bo  1c Eo
With: B  c k  E ,
and:



i kz t 
i kz t  i
i kz t  
xˆ  Eo e 
e xˆ  Eo e 
xˆ
Then: E  z , t   E o e 

i kz t 
i kz t  i
i kz t  
B  z , t   B e 
yˆ  B e 
e yˆ  B e 
yˆ
o
o
o
ei  cos   i sin 
The physical instantaneous electric and magnetic fields are given by the following expressions:
imaginary
real
 
 
 




E  z, t   Re E  z, t   Re  Eo cos  kz  t    xˆ  i Eo sin  kz  t    xˆ 



E  z, t   Eo cos  kz  t    xˆ


imaginary
real
 
 
 




B  z, t   Re B  z , t   Re  Bo cos  kz  t    yˆ  i Bo sin  kz  t    yˆ 



B  z , t   Bo cos  kz  t    yˆ  1c Eo cos  kz  t    yˆ

8

The physical
instantaneous


E and B fields
are in-phase
with each other
for a linearly
polarized EM
plane wave
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
UIUC Physics 436 EM Fields & Sources II
 


Note that: E  B  zˆ  E  zˆ, B  zˆ


Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
( ẑ = direction of propagation of EM wave)
Instantaneous Poynting’s vector for a linearly polarized EM plane wave propagating in free space:

S  z, t  

S  z, t  

S  z, t  
1
o
1
o


E  z, t   B  z, t  
1
o

 



Re E  z, t   Re B  z , t 
Eo Bo cos 2  kz  t    xˆ  yˆ 

 zˆ
1
o
Eo Bo cos 2  kz  t    zˆ
 Watts 

2 
 m 
 EM power flows in the direction of propagation of the EM plane wave (here, kˆ   zˆ direction)
Generalization for Propagation of Monochromatic
Plane EM Waves in an Arbitrary Direction
Obviously, there is nothing special / profound with regard to plane EM waves propagating in
a specific direction in free space / the vacuum. They can propagate in any direction. We can
easily generalize the mathematical description for monochromatic plane EM waves traveling in
an arbitrary direction as follows:

Introduce the notion / concept of a wave vector (or propagation vector) k which points in the
 

direction of propagation, whose magnitude k  k . Then the scalar product k r is the
appropriate 3-D generalization of kz:




k  kzˆ with k  k and: r  xxˆ  yyˆ  zzˆ with r  r  x 2  y 2  z 2
1-D: If:
 
Then: k r  kzˆ  xxˆ  yyˆ  zzˆ   kz
 
3-D:
If:
Then:


k  k x xˆ  k y yˆ  k z zˆ with k  k x2  k y2  k z2 and:
 
k r  k x x  k y y  k z z
with
 

r  xxˆ  yyˆ  zzˆ

r  x2  y2  z 2
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
9
UIUC Physics 436 EM Fields & Sources II
Now:
Fall Semester, 2015
Prof. Steven Errede
k x  k cos  x
k y  k cos  y
where cos  x , cos  y , cos  z = direction cosines w.r.t.
k z  k cos  z
(with respect to) the xˆ , yˆ , zˆ -axes respectively
cos  x  kˆ xˆ  sin  cos 
cos   kˆ yˆ  sin  sin 
Direction
Cosines:
Lect. Notes 5
in spherical-polar coordinates
y
cos  z  kˆ zˆ  cos 
cos 2  x  cos 2  y  cos 2  z
Note:
 sin 2  cos 2   sin 2  sin 2   cos 2 
 sin 2   cos 2   1
 
 
If e.g. k  r then: k r  kr . We explicitly demonstrate this in spherical polar coordinates:
k x  k cos  x  k sin  cos 
 
For k  r :
k y  k cos  y  k sin  sin 
x  r cos  x  r sin  cos 
y  r cos  y  r sin  sin 
and:
k z  k cos  z  k cos 
Then:
z  r cos  z  r cos 

 k r   k x  k y  k z  kx cos 
x
y
z
x
 ky cos  y  kz cos  z
 kr cos 2  x  kr cos 2  y  kr cos 2  z
 kr sin 2  cos 2   kr sin 2  sin 2   kr cos 2 

 kr sin 2  cos 2   sin 2  sin 2   cos 2    kr sin 2   cos 2   sin 2    cos 2 
 kr sin 2   cos 2    kr
 
 
Thus, most generally, we can write the E  r , t  and B  r , t  -fields as:
 
 
i  k  r t 
E  r , t   E o e
nˆ
where: n̂  polarization vector n̂  kˆ
 
 

i  k  r t 
ˆ
ˆ


ˆ
ˆ
B  r , t   Bo e
kn
i.e. nk  0 because E is transverse
 
 
 
 
i  k  r  t 
i  k  r  t 
B  r , t   1c kˆ  E  r , t   1c E o e
kˆ  nˆ  Bo e
kˆ  nˆ




 
 
 
We must have: B  r , t   E  r , t   kˆ i.e. E  B  0
10



and E kˆ  0

and B kˆ  0
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.

UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
The Direction of Propagation of a Monochromatic Plane EM Wave: k̂
The Real/Physical (Instantaneous) EM Fields are:
 
 
 
E  r , t   Re E  r , t   Eo cos k r  t   nˆ





where: n̂  polarization vector  E
 
 
 
 
B  r , t   Re B  r , t   Bo cos k r  t  

 Bo  1c Eo 


  kˆ  nˆ 
in free space
Instantaneous Energy, Linear & Angular Momentum in EM Plane Waves (Free Space)
Instantaneous Energy Density Associated with an EM Plane Wave (Free Space):
1
1 2  




u EM  r , t     o E 2  r , t  
B  r , t    uelect  r , t   umag  r , t 
o
2

1
1 2 
1



2 
B r ,t   oE2 r ,t 
where: uelect  r , t    o E  r , t  and umag  r , t  
2
2 o
2
1 2
1
E and 2   o o for EM waves propagating in vacuum/free space
2
c
c
But:
B2 
Thus:
 o o 2   1
1





uEM  r , t     o E 2  r , t  
E  r , t     o E 2  r , t    o E 2  r , t     o E 2  r , t 
 2
2 
o

Or:
 


uEM  r , t    o E 2  r , t    o Eo2 cos 2 k r  t  


 Joules 


3
 m 
n.b. for EM plane waves propagating in the vacuum:


umag  r , t   uelect  r , t 


and/or: umag  r , t  uelect  r , t   1
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
11
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
Instantaneous Poynting’s Vector Associated with an EM Plane Wave (Free Space):
 
 
 
S r,t   E r,t  H r ,t  
1
o
 
 
E r ,t  B r ,t  

 



Re
E
z
,
t

Re
B


 z, t 
o
1
 Watts 

2 
 m 
For a linearly polarized monochromatic plane EM plane wave propagating in the vacuum, e.g.:
 
 
E  r , t   Eo cos  kz  t    xˆ
and: B  r , t   Bo cos  kz  t    yˆ
 
Then: S  r , t  
o
 
Thus: S  r , t  
o c
1
1
Eo Bo cos 2  kz  t    zˆ
but:
Bo  1c Eo for EM plane waves in vacuum.
c
Eo2 cos 2  kz  t    zˆ ← multiply RHS by 1   
c
 
 1  2
1
E cos 2  kz  t    zˆ but: 2   o o
Hence: S  r , t   c 
2  o
c
 o c 
  o o
 
Thus: S  r , t   c 
 o

But:
 2
 Eo cos 2  kz  t    zˆ  c o Eo2 cos 2  kz  t    zˆ




u EM  r , t    o E 2  r , t    o Eo2 cos 2  kz  t   
 


 S  r , t   cu EM  r , t  zˆ Here, the propagation velocity of EM field energy: vE  czˆ
 
 
 Poynting’s Vector = Energy Density * (Energy) Propagation Velocity: S  r , t   uEM  r , t  vE
Instantaneous Linear Momentum Density Associated with an EM Plane Wave (Free Space):
 

1  

kg 
EM  r , t    o o S  r , t   2 S  r , t   2

c
 m -sec 
For linearly polarized monochromatic plane EM waves propagating in the vacuum:

1
1
EM  2 c  o Eo2 cos 2  kz  t    zˆ   o Eo2 cos 2  kz  t    zˆ


c 
c
 uEM
But:


u EM  r , t    o E 2  r , t    o Eo2 cos 2  kz  t   

 

1  
1


kg 
EM  r , t    o o S  r , t   2 S  r , t   uEM  r , t  zˆ  2

c
c
 m -sec 
12
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
Instantaneous Angular Momentum Density Associated with an EM Plane Wave (Free Space):
But:


 

kg 
 EM  r , t   r EM  r , t  

 m-sec 
 

1  
1


kg 
EM  r , t    o o S  r , t   2 S  r , t   uEM  r , t  zˆ  2

c
c
 m -sec 
 for an EM plane wave propagating in the  ẑ direction:

1   
1



kg 
 EM  r , t   2 r  S  r , t   uEM  r , t  r  zˆ  

c
c
 m-sec 
n.b. depends on the choice of origin
The instantaneous EM power flowing into/out of volume v with bounding surface S enclosing
volume v (containing EM fields in the volume v) is:

 
U EM  t 
uEM  r , t 

PEM  t  

d    S  r , t da
v
S
t
t
(Watts)
n.b. closed surface S enclosing volume v.
The instantaneous EM power crossing an (imaginary) surface (e.g. a 2-D plane – a window!) is:
 

PEM  t     S  r , t da
S

The instantaneous total EM energy contained in volume v is: U EM  t   v uEM  r , t  d (Joules)
The instantaneous total EM linear momentum contained in the volume v is:



pEM  t    EM  r , t  d
v
 kg-m 


 sec 
The instantaneous total EM angular momentum contained in the volume v is:



LEM  t     EM  r , t  d
v
 kg-m 2 


 sec 
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
13
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
3-D Vector Impedance Associated with an EM Plane Wave (Free Space):
 
 
 
Z r ,t   E r,t  1 H r ,t 


(Ohms) = Ohm’s law for EM fields! (n.b. a vector quantity)
Analog of: Ohm’s law for AC circuits:
Z t   V t  I t 
(n.b. a scalar quantity)
2
*
Complex form of Ohm’s Law: Z  t   V  t  I  t   V  t   I  t  I  t 
 
What {precisely} is the mathematical meaning of a “generic” reciprocal vector 1 A  r , t  ???
 
 
The magnitude of the reciprocal vector 1 A  r , t   1 A  r , t  is invariant (i.e. cannot
change) for arbitrary rotations & translations of the coordinate system. The direction that the
 
reciprocal vector 1 A  r , t  points in space {at time t} is also invariant for arbitrary rotations &
translations of the coordinate system.
Note further that inverse unit vectors {such as 1 xˆ , 1 yˆ , 1 zˆ } are meaningless!
 



For a purely real “generic” vector A  r , t   Ax  r , t  xˆ  Ay  r , t  yˆ  Az  r , t  zˆ {e.g. expressed
in rectangular/Cartesian coordinates}, the mathematical definition of a purely real reciprocal
 
vector 1 A  r , t  , satisfying all of the above requirements is:
1
1

    
Aˆ  r , t 
Ar ,t  Ar ,t 
where:
 



ˆ
ˆ
ˆ
ˆA  r , t   A  r , t   Ax  r , t  x  Ay r , t  y  Az  r , t  z


Ar ,t 
Ar ,t 
Hence, we also see that:
 




Ax  r , t  xˆ  Ay  r , t  yˆ  Az  r , t  zˆ
Aˆ  r , t 
Ar ,t 
1
    
   2 
  2
Ar ,t  Ar ,t 
Ar ,t 
Ar ,t 
Using
rectangular
/ Cartesian
coordinates
Using
rectangular
/ Cartesian
coordinates
 
Note: For the more general case of complex reciprocal vectors 1 A  r , t  these relations become:
1
1
 
 
Aˆ *  r , t  where: Aˆ *  r , t  
    
Ar ,t  Ar ,t 
 



A*  r , t  A x*  r , t  xˆ  A *y  r , t  yˆ  A z*  r , t  zˆ

 
 
Ar ,t 
Ar ,t 
Hence, we also see that:
 



 
Aˆ *  r , t  A*  r , t  A x*  r , t  xˆ  A *y  r , t  yˆ  A z*  r , t  zˆ
1
 

    
  2
  2
A  r , t  A  r , t 
Ar ,t 
Ar ,t 
14
Using
rectangular
/ Cartesian
coordinates
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
Using
rectangular
/ Cartesian
coordinates
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
Thus, e.g. for a linearly polarized monochromatic EM plane wave propagating in the vacuum in
the kˆ   zˆ direction, with instantaneous/physical purely real time-domain EM fields of:
 
 
E  r , t   Eo cos  kz  t    xˆ and: B  r , t   Bo cos  kz  t    yˆ
 
and: H  r , t  
1
o
 
B r,t  
1
o
Bo cos  kz  t    yˆ 
1
o c
1
with: Bo  Eo
c
Eo cos  kz  t    yˆ
 
The vector impedance Z  r , t  associated with a monochromatic plane EM plane wave
propagating in the kˆ   zˆ direction in free space is:

 
 
 
Z r ,t   E r ,t  1 H r,t 



 S  r ,t 

 
 
  
 

ˆ
E r ,t  H r ,t  E r ,t  H r ,t 
S r,t 


   2
 
  2
H r ,t 
H r,t 
H r,t 
c o Eo2 cos 2  kz  t    zˆ
 
1
o c
2
Eo2 cos 2  kz  t   
 o2 c3 o zˆ  o c  c 2    o o  zˆ
 1 
1
zˆ 
 o c  
    o o  zˆ  o c zˆ  o




 o o
o o
 

Thus, in free space: Z  r , t   Z o zˆ   oo zˆ (Ohms)
where: Z o 
o
o
o
zˆ  Z o zˆ
o
Note the cancellations!!!
Here, Z has no spatial
and/or temporal
dependence – for a
monochromatic EM
plane wave propagating
in free space!
is known as the {scalar!} characteristic impedance of free space.
 
The vector impedance Z  r , t  associated with an EM field is a physical property of the
medium that the EM field is propagating – which in this case {here} – is the vacuum.
Microscopically, the quantum numbers of the {QED} vacuum – free space {which, at the
microscopic level is not empty!} – must all be associated with scalar-type quantities – spin = 0,
even parity (+) for both space inversion operation P and charge conjugation C, i.e. the quantum
numbers of the {QED} vacuum are J PC  0 .
Note further that all of the physical macroscopic (mean-field) parameters of the vacuum must
be invariant {i.e. unchanged} under arbitrary rotations, translations and Lorentz boosts - from
one reference frame to any other. This means that all macroscopic physical parameters of the
vacuum intrinsically must have no spatial and/or temporal dependence – they are constants:
 o  8.85 1012 Farads m = electric permittivity of free space
o  4 107 Henrys m = magnetic permeablity of free space
c  1  o o  3 108 m s = speed of EM waves propagating in in free space
Zo 
o
o
 376.82  = characteristic impedance of EM waves propagating in free space
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
15
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
 
The vectorial nature of Z  r , t  is simply associated with the direction of propagation of the
 
EM wave – here, in this case {i.e. the vacuum} the kˆ   zˆ direction, so: Z  r , t   Z o zˆ  oo zˆ .
For EM waves propagating in the vacuum, it can’t physically matter which direction they are
 
propagating in – any direction k̂ will give Z  r , t   Z kˆ  o kˆ !
o
o
Note also from the above derivations, that we also have a relation between the vector
 
 
impedance Z  r , t  and Poynting’s vector S  r , t  associated with a propagating EM wave:

 
 
 
Z r ,t   E r,t  1 H r ,t 


 S  r ,t 


 

 


E  r , t   Hˆ  r , t  E  r , t   H  r , t 



 
  2
H r,t 
H r ,t 
 
S r,t 
  2
H r,t 
For the complex time-domain representation of EM fields – at least those associated with
monochromatic (i.e. single-frequency) EM waves, then in general we have:
 
 
 
 
E  r , t ;    E  r ;    e it and: H  r , t ;    H  r ;    e  it , and thus the complex vector
impedance is:
 
 
 
 
 
 
 
E  r , t ;    Hˆ *  r , t ;   E  r , t ;    H *  r , t ;  

Z  r , t;    E  r , t;    1 H  r , t;   
 Ohms 
 
2
 
H  r , t;  
H  r , t;  


 
 
 
E  r ;    e  it  H *  r ;    e  it
  
 

H  r ;    e  it  H *  r ;    e  it
 S  r ; 



 
 * 
 
 * 
E  r ;   H  r ;  E  r ;   H  r ; 
  


 
2
 

H  r ;   H *  r ;  
H  r ; 
 
S  r ;    
 2  Z  r ;  
H ;
 
 
where S  r ,   and Z  r ;   are the complex frequency-domain Poynting’s vector and vector
impedance, respectively. Note that – at least for monochromatic/single-frequency EM waves –
 
 
that: Z  r , t ;    Z  r ;   , i.e. the complex vector impedance associated with monochromatic
EM waves has no time dependence! It is a manifestly frequency-domain quantity!
For monochromatic EM plane waves propagating in free space/the vacuum in the kˆ   zˆ
direction, the complex vector impedance is a purely real quantity:
 
 

Z  r , t ;    Z  r ;    Z o zˆ   oo zˆ  376.82  zˆ
 
Physically, the real part of the complex vector impedance e Z  r ;   is associated with


propagating EM waves/propagating EM wave energy, whereas the imaginary part of the
 
complex vector impedance m Z  r ;   is associated with non-propagating EM wave energy


– i.e. EM wave energy that simply sloshes back and forth locally, 2× per cycle of oscillation!
16
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
Time-Averaged Quantities Associated with EM Waves:
Frequently, we are not interested in knowing the instantaneous power P(t), energy / energy density,
Poynting’s vector, linear and angular momentum, etc.- e.g. simply because experimental measurements
of these quantities are very often only averages over many extremely fast cycles of oscillation…
1
(e.g. period of oscillation of a light wave:  light  1 flight  15
 1015 sec cycle  1 femto-sec )
10 cps
  We want/need time-averaged expressions for each of these quantities (e.g. in order to
compare directly with experimental data) e.g. for monochromatic plane EM light waves:
2
If we have e.g. a “generic” instantaneous physical quantity of the form: Q  t   Qo cos t 
The time-average of Q  t  is defined as: Q  t   Q 
1

t 
t 0
Q  t  dt 
Qo


t 
t 0
cos 2 t  dt
Q(t) = Qocos (t)
2
Qo
1
Q  Q  t   Qo
2
t
The time average of the cos 2 t  function:
1


0
But:

cos 2 t  dt 
  2 f 
1


0
1  t sin 2t 

  2
4 
and:
cos 2 t  dt 
t 

t 0
1 
sin 2
  1  sin 2 
 0  

  0   

2 
2 
 2
  2 
f  1     2     2  sin    sin  2   0
1
1
1
     Q  t   Q  Qo
2
2   2
The time-averaged quantities associated with an EM plane wave propagating in free space are:

uEM  r , t  
 
S r,t  
Poynting’s Vector:


Linear Momentum Density: EM  r , t  


Angular Momentum Density:  EM  r , t  
EM Energy Density:

uEM  r , t  Total EM Energy:
U EM  t   U EM  t 


S EM  r , t  EM Power:
PEM  t   PEM  t 




EM  r , t  Linear Momentum: pEM  t   pEM  t 




 EM  r , t  Angular Momentum: LEM  t   LEM  t 
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
17
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
For a monochromatic EM plane wave propagating in free space / vacuum in the kˆ   zˆ direction:
1

Joules 
uEM  r , t    o Eo2 

3
2
 m 
 
1

Watts 
S  r , t   c o Eo2 zˆ  c uEM  r , t  zˆ 
2 
2
 m 

1
1  
1


kg 
EM  r , t    o Eo2 zˆ  2 S  r , t   uEM  r , t  zˆ  2

c
c
2c
 m -sec 
1   
1

 


kg 
 EM  r , t   r  EM  r , t   2 r  S  r , t   u EM  r , t   rˆ  zˆ  

c
c
 m-sec 
Time –
averaged
quantities for
EM plane
wave
propagating
in the  ẑ
direction




We define the intensity I associated with an EM wave as the time average of the magnitude of
Poynting’s vector:
 
1



2
 Watts 
Intensity of an EM wave: I  r   S  r , t   S  r , t   c uEM  r , t   c o Eo 
2 
2
 m 
The intensity of an EM wave is also known as the irradiance of the EM wave – it is the so-called
radiant power incident per unit area on a surface.
 



When working with time-averaged quantities such as uEM  r , t  , S  r , t  , EM  r , t  ,


 EM  r , t  , etc. it is convenient/useful to define the so-called root-mean-square (  RMS)


values of the E and B electric and magnetic field amplitudes (using the mathematical definition
of RMS from probability and statistics):
For a monochromatic (i.e. single frequency, sinusoidally-varying) EM wave (only):

1 
Erms 
E
2

1 
Brms 
B
2
Where:

Eorms 
1
Eo  0.707 Eo
2
1
Bo  0.707 Bo
2

Eo = peak (i.e. max) value of the E -field = amplitude of the

Bo = peak (i.e. max) value of the B -field = amplitude of the

Borms 

E -field.

B -field.

E  z, t 
Eorms
18
Eo
1

Eo
2
Eo
Eorms 
1
Eo  0.707 Eo
2
z or t
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
Thus we see that:




 1   1   1  
 1   1   1  
Erms  Erms  
E 
E   E  E and Brms  Brms  
B
B   B B
 2  2  2
 2  2  2
i.e. that:
Then:
For monochromatic
EM plane
waves
(only):
2
Erms

1 2 1 2
1
1
1 2
1 2
2
2
E  E peak  Eo2rms  Eo2 and Brms
 B 2  B peak
 Borms  Bo
2
2
2
2
2
2
1
1 1
1
 1
RMS Joules 
uEM  t     o Eo2    o Eo2   o Eo2rms 

2
2 2
2
 4
m3



1 
1
rms

Srms  t   S  t   c uEM  t  zˆ  c uEM
 t  zˆ  RMS Watts

2
2
2
m



1 
1
1 
1 rms
kg 
rms
S t  
uEM  t  zˆ  2 Srms  t   uEM
 t  zˆ  RMS
EM  t  
2

2
c
c
2c
2c
 m -sec 
 rms
 RMS kg 
1 
1  
1 rms
 

 EM  t   r  EM  t   r  rms
 uEM
 t   r  zˆ   m-sec 
EM  t   2 r  S rms  t 
c
c
2





1
1
1
rms

I rms  S rms  t   S rms  t   I 
S  t   c uEM
 t   c o Eo2rms  RMS Watts

2
2
2
2
m


rms
uEM
t  


Real world example: Here in the U.S., 120 Vac/60 Hz “wall power” refers to the RMS AC voltage!
The peak voltage (i.e. the voltage amplitude) is: V peak  2Vrms  2 120  169.7  170.0 Volts.
n.b. For EM waves ≠ sinusoidal waves, the root-mean-square (RMS) must be defined properly /
or triangle
wave
mathematically – e.g. the RMS value of square
amplitudes (from Fourier analysis these consist of linear combinations of infinite # of harmonics)
1
1
 rms 

 rms 

(See/refer to probability & statistics reference books!!)
2
2
The Relationship(s) Between the Complex Time-Domain Poynting’s Vector
and the Complex Vector Impedance/Admittance of an EM Plane Wave:
Complex Time-Domain Poynting’s Vector:
 
 
 
S  r , t ;    E  r , t ;    H  r , t ;   Watts m 2 
Complex Vector Impedance of an EM Plane Wave:


 
 
 
 
 
Z  r , t ;    E  r , t ;    H 1  r , t ;    E  r , t ;    H *  r , t ;  
2
 
H  r , t ;    Ohms 
Complex Vector Admittance = Reciprocal of Complex Vector Impedance:


 
 
 
 
 
 
Y  r , t ;    Z 1  r , t ;    E 1  r , t ;    H  r , t ;    E *  r , t ;    H  r , t ;  
2
 
E  r , t ;    Siemens 
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
19
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
If we start with Poynting’s vector, we show that it is linearly related to vector admittance and/or

reciprocal vector impedance {we suppress (here) the argument  r , t ;   for notation clarity}:
 
   ( E  E ) 
   1 
  
  

S  E  H    H  (EE) 
E
H  ( E  E )Y  ( E  E ) Z 1 Watts m 2 


E
 Y

  
2
Note that the units of E Volts m  , hence: ( E  E ) Z 1 Volts m  Ohms  Watts m 2 !!!


We can also obtain the alternate relations:
 
    ( H  H )
    1
  
   1
S  E  H  E    (H H ) 
E
H  ( H  H ) Z  ( H  H )Y Watts m 2 


H
Z

  
2
Note that the units of H  Amps m  , hence: ( H  H ) Z  Amp m   Ohms  Watts m 2 !!!


Note that the above complex relations are the vector analogs of the complex scalar power and
Ohm’s law relations associated with AC circuits {suppressing the arguments  t ;   for
notational clarity}:
Complex time-domain AC power:
P  V  I Volts  Amps  Watts 
Complex Ohm’s Law:
2
Z  V I  (V  I * ) I Volts Amps  Ohms 
Complex Scalar Admittance = Reciprocal of Complex Scalar Impedance:
2
Y  1 Z  I V  I V * V  Amps Volts  Siemens  Ohms 1 
Starting with complex time-domain AC power, we show that it is linearly related to scalar
admittance and/or reciprocal scalar impedance:
(V V ) 
I
P  V  I 
 I  (V  V )  (V  V )Y  (V V ) Z Watts 
V
V
Note that the units of V Volts  , hence: (V V ) Z Volts 2 Ohms  Watts !!!
We can also obtain the alternate relations:
( I  I )
V
P  V  I  V 
 ( I  I )  ( I  I ) Z  ( I  I ) Y Watts 
I
I
Note that the units of I  Amps  , hence: ( I  I ) Z
20
 Amp
2
 Ohms  Watts !!!
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
 RMS Newtons 
Radiation Pressure:  rad 

m2


When an EM wave impinges (i.e. is incident) on a perfect absorber (e.g. a totally black object
with absorbance {aka absorption coefficient} A = 1, as “seen” at the frequency of the EM wave),
all of the EM energy (by definition) is absorbed {ultimately winding up as heat…}.
By conservation of energy, linear momentum & angular momentum the object being
irradiated by the incident EM wave acquires energy, linear momentum & angular momentum
from the incident EM wave.
The EM Radiation Pressure acting on a perfect absorber for a normally incident EM wave is
defined as:
 net
FEM
 t   RMS Newtons 
Time-Averaged
Force
perfect
 Rad

EM  absorber  A 1 


A
 Unit Area
m2


However, the time-averaged EM force is defined as:


 net
d pEM  t 
pEM  t 
FEM  t  

=
dt
t
 the EM Radiation Pressure at normal incidence is: 
time rate of change of the timeaveraged linear momentum
Rad
EM

perfect
absorber
 A1 

pEM  t 
t
1  RMS Newtons 

A 
m2

In a time interval t    1 f , the time-averaged magnitude of the EM linear momentum

transfer pEM  t  at normal incidence to a perfect absorber of EM radiation is:


pEM  t   EM  t  V
EM Linear momentum density
Volume of EM wave associated with time interval t
The volume associated with an EM wave propagating in free space over a time interval t is:
V  A   ct  where ct = distance traveled by the EM wave in the time interval t .


Rad
EM

perfect
absorber
 A1 

pEM  t 
t


EM  t  V 1
EM  t  A c t

1
 c EM  t 


A
t
A
t A
Thus, we see that for a monochromatic EM plane wave propagating in free space normally
incident on a perfect absorber (A = 1):

1
perfect
 Rad
 o Eo2  uEM  I c
EM  absorber  A 1  c EM  t  
2
 RMS Newtons 


m2


© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
21
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
For a perfect reflector (e.g. a perfect mirror, with reflection coefficient R = 1{A = 0}), note that:

pEM  t 
perfect
reflector

 2  pEM  t 
perfect
absorber

 initial  final
 final
 initial
Since pEM  pEM
 pEM and pEM
  pEM
for an EM wave reflecting off of a perfect

 initial  final  initial  initial
 initial
reflector, then pEM  pEM  pEM  pEM  pEM  2 pEM
i.e. an EM wave that reflects off of (i.e. “bounces” off of) a perfect reflector delivers twice
(2×) the momentum kick (i.e. impulse) to the perfect reflector than the same EM wave that is
absorbed by a perfect absorber! Thus at normal incidence:
 
Rad perfect
Rad perfect
  EM  reflector  R 1  2 EM  absorber  A1  2 I c
 RMS Newtons 


m2


Note that for a partially reflecting surface, with reflection coefficient R < 1, since R + A = 1,
the radiation pressure associated with an EM wave propagating in free space and reflecting off of
a partially reflecting surface at normal incidence is given by:
 c
partial
Rad perfect
Rad perfect
I
 Rad
EM  reflector  R  A 1  A   EM  absorber  A1  2 R   EM  absorber  R 1   A  2 R 
 RMS Newtons 


m2


Since A = 1 – R, we can equivalently re-write this relation as:
 c   1  R  2R   I c   1  R   I c 
partial
I
 Rad
EM  reflector  R  A 1   A  2 R 
 RMS Newtons 


m2


If the EM wave is not at normal incidence on the absorbing/reflecting surface, but instead
makes a finite angle  with respect to the unit normal of the surface, these relations need to be


modified, due to the cosine  factor S nˆ  S cos   I cos  associated with the flux of EM




energy/momentum EM  t  nˆ  EM  t  cos    o o S  t  cos   c12 S  t  cos   c12 I cos 
crossing the surface area A at a finite angle  :
 c  cos
 RMS Newtons 


m2


 c  cos
 RMS Newtons 


m2


perfect
I
 Rad
EM  absorber  A 1 
perfect
I
 Rad
EM  reflector  R 1  2
 c  cos  1  R   I c  cos
partial
I
 Rad
EM  reflector  R  A 1   A  2 R 
22
 RMS Newtons 


m2


© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede


Maxwell’s equations (and relativity) for the macroscopic E and B fields associated with an


EM plane wave propagating in free space mandate / require that E  B  propagation direction

(here, kˆ   zˆ ) v prop  czˆ , as shown in the figure below:
Compare this
microscopic picture
to that of a classical
/ macroscopic EM
plane wave,
polarized in the
x-hat direction:
Macroscopic EM plane waves propagating in free space are purely transverse waves, i.e.




E  B , and both of the E and B fields are also  to the propagation direction of the EM plane
 
 

wave, e.g. v prop  czˆ . Thus: E  v prop  czˆ and: B  v prop  czˆ .


The behavior of the macroscopic E and B fields associated with e.g. a monochromatic EM
plane wave propagating in free space, at the microscopic scale is simply the sum over (i.e. linear


superposition of) the E and B -field contributions from {large numbers of} individual real
photons making up the EM field.


Each real photon has associated with it, its own E and B field – e.g. a linearly polarized real
photon, polarized in  x̂ direction:
x̂

E  Eo cos  kz  t    xˆ (  x̂ = polarization direction)
Photon
Real Photon Momentum:

ẑ
p  h zˆ


 
Photon Poynting’s vector: S  1o E  B   zˆ
ŷ

B  Bo cos  kz  t    yˆ


 1

1
B  kˆ  E where the unit wavevector kˆ   zˆ {here} and Bo  Eo in vacuum.
c
c
0

Real photon energy: E  hf  p c  p c (Total Relativistic Energy2 = E2  p2 c 2  m2 c 4 )
Real photon momentum (deBroglie relation):
p  h
 and c  f 
m c 2  0 for real photon
c = speed of light (in vacuum) = 3 × 108 m/sec
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
23
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
Question: How many real visible-light photons per second are emitted e.g. from a EM power =
10 mW laser? (mW = milli-Watt = 103 Watt)
Answer: The rate at which visible-light photons from a 10 mW laser depends on the color
(i.e. the wavelength λ, frequency f, and/or photon energy Eγ) of the laser beam! Eγ = hf = hc/.
When we say a 10 mW power laser, what precisely does this mean/refer to?
It refers to the time-averaged EM power:
Plaser  t   10 mW  RMS   10  103 Watts  RMS   0.010 Watts  RMS 
Let’s assume that the laser beam points in the  ẑ direction.
Also assume that the diameter of the laser beam is D = 1 mm = 0.001 m (typical).
Further assume (for simplicity’s sake): Power flux density = intensity profile I(x,y) is uniform in
x and y over the diameter of the laser beam (not true in real life – laser beams have ~ Gaussian
2
2
intensity profiles in x and y (i.e. I     I o e   2 ); note that there also exist e.g. diffraction
{beam-spreading} effects that should/need to be taken into account…)

I  x, y   S  x, y , t 
In t = 1 second, the time-averaged energy associated with the 10 (RMS) mW laser beam is:
Elaser  t   Plaser  t  t
Elaser  t   0.010  RMS  Watts 1 sec
Elaser  t   0.010
Elaser  t 
24
 RMS  Joules 1 sec
sec
 0.010  RMS  Joules = Time-averaged energy of laser beam
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
The {instantaneous} energy of the laser beam crosses an imaginary planar surface that is  to
the laser beam.
If the laser has red light, e.g. λred = 750 nm (n.b. 1 nm = 1 nano-meter = 109 meters)
or if the laser has blue light, e.g. λblue = 400 nm
Since f = c/λ the corresponding photon frequencies associated with red and blue laser light are:
c
3  108 m / s

f red
  
 4.0 1014 cycles/sec (= Hertz, or Hz)
9
red 750 10 m

fblue

c

blue

3  108 m / s
 7.5  1014 cycles/sec (= Hertz, or Hz)
9
400  10 m
The energy associated with a single, real photon is: E  hf   hc   , where h = Planck’s
constant: h = 6.626 x 1034 Joule-sec and c = 3 x 108 m/sec (speed of light in vacuum).
Thus, the corresponding photon energies associated with red and blue laser light are:




Ered  hf red
 hc red
 hc blue
and: Eblue  hf blue
since f = c/λ

Ered  hf red
 6.626 1034 Joule / sec  4.0 1014 / sec  2.6504 1019 Joules (red light)

Eblue  hfblue
 6.626  1034 Joule / sec  7.5 1014 / sec  4.9695  1019 Joules (blue light)
In a time interval of t  1 sec, the time-averaged energy Elaser  t   N  t  E where
N  t  is the {time-averaged} number of photons crossing a  area in the time interval t .
Thus, the number of red (blue) photons emitted from a red (blue) laser in a t  1 sec time interval is:
# red photons:
Nred  t  
# blue photons: Nblue  t  
Elaser  t 
red
E
Elaser  t 

blue

0.010 Joules
 3.7730  1016
19
2.6504  10 Joules/photon

0.010 Joules
 2.0123 1016
19
4.9695 10 Joules/photon
Thus, the {time-averaged} rate of emission of red (blue) photons from a red (blue) laser is:
red
R
blue
R
t 
t 


Nred  t 
t
Nblue  t 
t
 3.7730 1016 red photons/sec
 2.0123  1016 blue photons/sec
Note: In a time interval of t  1 sec, photons (of any color /   / f  / E ) will travel a distance
of d  ct  3 108 m/s  1 s  3 108 meters
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
25
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
If the flux of photons is assumed (for simplicity) to be uniform across the D = 1 mm diameter
laser beam, then the time-averaged flux of photons (#/m2/sec) is:
F
F
red
blue
t 
t 


Rred  t 
laser

A
Rblue  t 
laser

A

 sec  4.8039 10  red  
m / sec
m
3.7730 1016 

 103

 2
22
2


 sec  2.562 10  blue  
m / sec
m
2.0123  1016 
 103

 2
2
22
2
2


If each photon has E Joules of energy, then power associated with red (blue) laser beam:
Pred  t 
Alaser

 Sred  t   Ered  F 
red
t 

m 2 /sec

m 2 /sec
 2.6504 1019 Joules  4.8039  1022 red 

 1.2732 104 Watts m 2
Pblue  t 
laser

A

 Sblue  t   Eblue  F 
blue
t 
 4.9695  1019 Joules  2.56211022 blue 

 1.2732 104 Watts m 2
Thus we see that:
Pred  t 
Alaser

Pblue  t 
Alaser


 Sred  t   Sblue  t   1.2732  104 Watts/m 2 ←10 mW laser
n.b. This is precisely why you shouldn’t look into a laser beam {with your one remaining eye}!!!
Time-averaged linear momentum density:


1 
1
red  t    o o Sred  t   2 Sred  t   ured  t  zˆ  1.4147  1013 kg/m 2 -sec
c
c
 blue
 blue
1  blue
1 blue
  t    o o S  t   2 S  t   u  t  zˆ  1.4147  1013 kg/m 2 -se c
c
c
Thus:


red  blue  1.4147 1013 kg/m 2 -sec
Momentum density, Poyntings vector, energy density are
independent of frequency / wavelength / photon energy
The time-averaged linear momentum contained in t  1 second’s worth of laser beam:


Time averaged linear momentum: p  t  = momentum density   t  x volume V
Volume V  Alaser   ct 
m 
3
Distance light travels in t sec.
26
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
Red light momentum:
2


 0.001   kg-m 
pred  t   red  t  ctA  1.4147 1013  3 108 1   
 

 2   sec 
 3.3333 1011 kg-m sec
Blue light momentum:
2


 0.001   kg-m 
pblue  t   blue  t  ctA  1.4147 1013  3 108 1   
 

 2   sec 
 3.3333  1011 kg-m sec


pred  t   pblue  t   3.3333  1011 kg-m sec
Thus:
{“TRICK”}:
For an EM plane wave, the time-averaged energy density uEM  t  = time-averaged momentum

density EM  t   c (Since photon energy, E  p c ). Thus:

 kg 
8
5
3
ured  t   red  t  c  1.4147  1013  2
  3 10  m/s   4.2441 10  Joules/m 
 m /sec 

 kg 
8
5
3
ublue  t   blue  t  c  1.4147 1013  2
  3  10  m/s   4.244110  Joules/m 
m
/sec


2
kg-m
Joule
kg
Joule 


2
2
s
m
m/s 2
The time-averaged energy contained in t = 1 second’s worth of laser beam is:
The time-averaged energy U   t  = time-averaged energy density u  t   volume V
V  Alaser   ct 

red
U
t 
2
 u
red
Joules
0.001 
8
3
 t   A ct  4.244110  3     
  3  10 1 m 
 m 
 2 
 0.010 Joules  10 mJ
5
2
 Joules 
 0.001 
8
3
U blue  t   ublue  t   A ct  4.2441105 
   
  3 10 1 m 
3
 m 
 2 
 0.010 Joules  10 mJ
The time-averaged power in the laser beam:
Time-averaged Power (Watts) =
d U t 
dt
red
Plaser
t  
 Joules sec 
U laser  t 
t
blue
 10mW  laser
t 
t = 1 sec
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
27
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
Note: Plaser (laser power) is measured by the total time-averaged energy U  t  deposited in
(a very accurately) known time interval t using an absolutely calibrated photodiode (e.g. by NIST).
A typical time interval t = 10 secs → t   (oscillation period) = 1 f !!
 red  1 f  2.500 1015 sec  2.500 femto-sec  2.500 fs
red
 blue  1 f  1.333 1015 sec  1.333 femto-sec  1.333 fs
blue
1 peak
Plaser  t 
2
Consider (the time-averaged) energy density associated with this 10 mW laser:
 Joules 
uEM  t   4.2441 105 

3
 m 
1
1 peak
Now: uEM  t   uelect  t   umag  t    o Eo2  uEM
t 
2
2

1 
1
And because: B  t   E  t  for EM plane waves propagating in free space / vacuum ( 2   o o )
c
c
→ The laser power measured is time-averaged power, i.e. Plaser  t  
We showed that:
uelect  t   umag  t 
uelect  t  
1 1
2
  o Eo 
2 2

Bo2 
1 2
Eo   o o Eo2
2
c
1  1 2  1   o o 2  1  1

Bo   
Eo     o Eo2 

2  2o  2  2 o

 2  2

E  z , t   Eo cos  kz  t    xˆ
Now: Eo = amplitude of the macroscopic electric field:

Bo = amplitude of the macroscopic magnetic field: B  z , t   Bo cos  kz  t    yˆ
umag  t  


Define the RMS (Root-Mean-Square) amplitudes of the E and B fields:
1
1
Eo  Eo2rms  Eo2
2
2
1
1
1

Bo  Bo2rms  Bo2  2 Eo2 in free space / vacuum
2
2c
2
Eorms 
Borms
Then:
28
uelect  t  
1 1
1
2
2
3
  o Eo    o Eorms (Joules/m )
2 2
 2
umag  t  
1  1 2
1 2
1
Bo  
Borms   o Eo2rms in free space / vacuum

2  2 o  2 o
2
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
UIUC Physics 436 EM Fields & Sources II
So if:
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
uEM  t   uelect  t   umag  t   2 uelect  t  in free space / vacuum
 2 o Eo2rms  4.2441105 Joules/m3
Then: Eo2rms 
1
uEM  t  where  o  8.85 1012 Farads/m = electric permittivity of free space
o
1
 4.2441105 Joules/m  2
U EM  t   

Thus: E
 (Volts/m)
12
o
 8.85 10 Farads/m 
3
Eolaser
rms  3.0970  10  3097 RMS Volts/m (n.b. same for red vs. blue laser light!)
laser
orms
1
laser
 2 Eolaser
Then: Eolaser  E peak
rms  4380 Volts/m
1
 Eolaser
 10.3232  106 RMS Tesla   10.3232 102 RMS Gauss 
Then: Bolaser
rms
c rms
Note: 1 Tesla {SI/MKS units} = 104 Gauss {CGS units}
Thus:
1
Bolaser  Eolaser  2 Bolaser
 14.5970 106 Tesla   14.5970 102 Gauss 
rms
c
Now earlier (above) we calculated the (time-averaged) number of photons present in the
{red and blue} laser beams that were emitted in a time interval of t = 1 sec.
# red photons emitted in t = 1 sec:
Nred  t   3.7730  1016 red photons
# blue photons emitted in t = 1 sec:
Nblue  t   2.0123 1016 blue photons
The volume associated with a D = 1 mm diameter laser beam turned on for t = 1 sec is:
2
2
D
 0.001 
8
3
V  A ct     ct   
 3 10 1  235.6194 m
2
2
 


The (time-averaged) number density n  t  
red
n
t 

nblue  t  
Nred  t 
V
Nblue  t 
V
N  t 
V
of {red and blue} photons in the laser beam is:
3.7730 1016

 1.6009  1014 red photons/m3
2
2.3562 10

2.0123 1016
 8.5405  1013 blue photons/m3
2
2.3562 10
Then the (time-averaged) energy density uEM  t  of the {red and blue} laser beam is:
Red photon energy:
Ered  hfred  2.6504 1019 Joules
Blue photon energy:
Eblue  hfblue  4.9695 1019 Joules
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
29
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
red
uEM
 t   nred  t  Ered  1.6009 1014 2.6504 1019  4.2442 105  Joules/m3 
blue
uEM
 t   nblue  t  Eblue  8.5405 1013 4.9695 1019  4.2442 105  Joules/m3 
The (time-averaged) energy U EM  t   uEM  t   V of the {red and blue} laser beams is:
red
red
U EM
 t   uEM
 t   V  4.2442 105  2.3562 102  0.010 Joules  10 mJoules
blue
blue
U EM
 t   uEM
 t   V  4.2442 105  2.3562 102  0.010 Joules  10 mJoules
Now here is something quite interesting: Given that Eorms  Eo
2 for a monochromatic EM
plane wave propagating in free space/the vacuum, with time-averaged EM energy density:
 Joules 
uEM  t    o Eo2rms  12  o Eo2 

3
 m 
 Joules 
n  t  = photon number density (#/m3) in laser beam
But: uEM  t   n  t  E 

3
 m 
E  hf  hc  = energy/photon (Joules)
  o Eo2rms  n  t  E
2
Or: Eorms 
n  t 
o
E
This formula explicitly connects the amplitudes of the


macroscopic E and B fields (since Bo  Eo c ) with the


microscopic constituents of the  and B fields (i.e. the photons)!!!
n.b. This formula physically says that the number of {real} photons in the EM wave (each of
photon energy E ) is proportional to Eo2 = the square of the macroscopic electric field amplitude!
We can write this as:
n  t    o Eo2rms E
and note also that: Eorms 
n  t 
o
E
!!!
Thus, we can now see that the {time-averaged} EM energy density:


uEM  r , t    o Eo2rms  n  r , t  E with:

v

u EM  r , t  d  U EM
plays a role analogous to that of the probability density in quantum mechanics:



 2
P  r , t     r , t  |  r , t     r , t 
with:
Since:



n  r , t   uEM  r , t  E  2 o Eo2rms  r  E and:
Then:


P  r , t   n  r , t 

 P  r , t  d  1
v

v

n  r , t  d  N ,


 2
N     r , t  |    r , t      r , t  !!!
 
Thus, we also see that the macroscopic electric field E  r , t  plays a role analogous to that of the

probability density amplitude   r , t  in quantum mechanics!!!
30
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
The (real) photon number density in the laser beam is: n  t  
Then:  o Eo2rms A ct  N  t  E
R  t  
But:
Eo2rms 

1
2 o
F  t  
N  t 
t
R  t 
A c
or: Eo2rms 
N  t 
 o A ct
N  t 
V
Prof. Steven Errede

N  t 
A ct
 # 
 3
m 
E
= the time averaged rate of photons in laser beam (#/sec)
E and
N  t 
A 
t
R  t 
 # 
A  m 2 -s  = flux of photons in the laser beam
1

Joules 
F   t  E  n  r , t  E 

3
c
 m 

 # 
Thus, we see that the {real} photon flux: F   t   c n  r , t   2 
 m -s 
Thus, the intensity {aka irradiance} of the laser beam is:
 Eo2rms 
1
F  t  E and
 oc 
uEM  t    o Eo2rms 

I  S  t  kˆ  c uEM  t    o Eo2rms  F   t  E  c n  t  E
 Watts 

2 
 m 
The {time-averaged} <longitudinal separation distance> between photons is defined as:
d  t  
ct
N  t 
For t = 1 sec: dred  t  
dblue  t  
(m)
3  108 m
 7.85  109 m ~ 8 109 m  8 nm (1 nm = 109 m)
16
3.773 10  ' s
3  108 m
 1.49  108 m ~ 15  109 m  15 nm
16
2.012 10  ' s
Recall that:
red  750 nm and blue  400 nm
Thus:
  d  t  for either red or blue laser light.
The {time-averaged} <transverse separation distance> between photons is defined as:
d   t  
A
N  t 
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
31
UIUC Physics 436 EM Fields & Sources II
Fall Semester, 2015
Lect. Notes 5
Prof. Steven Errede
Thus:
2
d red  t 
 0.001 

 2 

 2.35 1020 m
16
3.773 10

2
d blue  t 
 0.001 


 2 

 4.40 1020 m
16
2.0123  10
We showed above that the time-averaged/mean number density of photons in the laser beam is:


n  r , t   uEM  r , t  E  12  o Eo2 E  photons m3  .
The instantaneous number density of photons in the laser beam is:


n  r , t   uEM  r , t  E   o Eo2 cos 2  kz  t  E  photons m3 
We can normalize the instantaneous photon number density to obtain an instantaneous 3-D
photon probability density, P3-D  z , t  1 m3  . Recall that the laser beam intensity is
uniform/constant in the cross-sectional area A of the laser beam.

The 3-D photon probability density, P3-D  r , t  is:



P3-D  r , t   n  r , t  N  uEM  r , t   N  E    o Eo2 cos 2  kz  t   N  E  1 m3 
 E   U EM  Joules  in time interval of t secs .


Then also note that: U EM  uEM  r , t  Vol   12  o Eo2   A    n  r , t   E  A   .
But note that:
3-D
Thus: P
N




n  r , t  u EM  r , t 


r,t  
U EM
N

 o Eo2
1
2

 o Eo2  A  
cos 2  kz  t  

2
cos 2  kz  t  1 m3 
A  
with:

v

P3-D  r , t  d 
2 A z  ct
z    ct
2
2
kz
t
dz
da




cos 2  kz  t  dz
cos





A
z

0
0
z

A   
A  
 2
1 z    c t
cos 2  kz  t  dz  1

0
z





1
2


We thus see that the instantaneous normalized photon number density P3-D  r , t   n  r , t  N
plays a role analogous to that of the probability density in quantum mechanics



 2

P  r , t     r , t  |   r , t     r , t  , with:  P  r , t  d  1 . Hence, we also see that the
v
32
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
UIUC Physics 436 EM Fields & Sources II
macroscopic electric field amplitude Eo 
Fall Semester, 2015
1
o
Lect. Notes 5
Prof. Steven Errede

n  r , t  E plays a role analogous to the
probability density amplitude in quantum mechanics!

We can calculate the time rate of change of the normalized 3-D photon probability density, P3-D  r , t  :

P3-D  r , t 
t

2 
4
cos 2  kz  t   
sin  kz  t   cos  kz  t 
A   t
A  



We can define a normalized 3-D photon probability current density as: J 3-D  r , t   c  P3-D  r , t  zˆ .
We calculate the divergence of the normalized 3-D photon probability current density:
 

2 


 J3-D  r , t    c  P3-D  r , t  zˆ   c 
 cos 2  kz  t  zˆ 
A  
 c
2 
4k

2
sin  kz  t   cos  kz  t 
 cos  kz  t    c 
A    z
A  

We thus show that the photons in this laser beam obey the continuity equation for photons:

P3-D  r , t    3-D 
  J   r , t   0
t
From above:

 
P3-D  r , t 
4k
4


sin  kz  t   cos  kz  t 
sin  kz  t   cos  kz  t  and:  J3-D  r , t   c 
t
A  
A  
However, in free space, we have:   ck .
Hence:
Thus:

P3-D  r , t 
t

P3-D  r , t 
t

 
4ck

sin  kz  t   cos  kz  t    J3-D  r , t 
A  
 

  J3-D  r , t   0
i.e. microscopically, photons neither disappear, nor are they created in propagating as this laser beam!
© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005-2015. All Rights Reserved.
33