Download Lecture 9

Document related concepts

Spitzer Space Telescope wikipedia , lookup

Corona Borealis wikipedia , lookup

Supernova wikipedia , lookup

Serpens wikipedia , lookup

Star of Bethlehem wikipedia , lookup

Rare Earth hypothesis wikipedia , lookup

International Ultraviolet Explorer wikipedia , lookup

Observational astronomy wikipedia , lookup

Hipparcos wikipedia , lookup

Nebular hypothesis wikipedia , lookup

Ursa Major wikipedia , lookup

History of Solar System formation and evolution hypotheses wikipedia , lookup

Cygnus (constellation) wikipedia , lookup

Formation and evolution of the Solar System wikipedia , lookup

Stellar classification wikipedia , lookup

Aquarius (constellation) wikipedia , lookup

Lyra wikipedia , lookup

Perseus (constellation) wikipedia , lookup

P-nuclei wikipedia , lookup

CoRoT wikipedia , lookup

Planetary habitability wikipedia , lookup

Dyson sphere wikipedia , lookup

H II region wikipedia , lookup

Stellar kinematics wikipedia , lookup

Star wikipedia , lookup

Future of an expanding universe wikipedia , lookup

Corvus (constellation) wikipedia , lookup

Astronomical spectroscopy wikipedia , lookup

Ursa Minor wikipedia , lookup

Hayashi track wikipedia , lookup

Timeline of astronomy wikipedia , lookup

Standard solar model wikipedia , lookup

Star formation wikipedia , lookup

Stellar evolution wikipedia , lookup

Transcript
PHYS420:Astrophysics&
Cosmology
Dr RichardH.Cyburt
AssistantProfessorofPhysics
Myoffice:402cintheScienceBuilding
Myphone:(304)384-6006
Myemail:[email protected]
Mywebpage:www.concord.edu/rcyburt
Inpersonoremailisthebestwaytogetaholdofme.
MyOfficeHours
TR5:30-17:00am
W4:00-6:00pm
Meetingsmayalsobearrangedatothertimes,byappointment
DouglasAdams
Hitchhiker’sGuidetotheGalaxy
StellarEvolution
Whenhydrogenfusionstartsattheendoftheprotostar stage,astar
isbornonthe`zero-agemainsequence’.
Ashydrogenisbeingconvertedintoheliuminthecoreofastar,its
structurechangesslowlyandstellarevolutionbegins.
StellarEvolution
ThestructureoftheSunhas
beenchangingcontinuously
sinceitsettledinonthe
mainsequence.
TheHydrogeninthecoreis
beingconvertedinto
Helium.
StellarEvolution
Starsbegintoevolveoffthezero-agemainsequence
fromday1.
Comparedto4.5Gyr ago,theradiusoftheSunhas
increasedby6%andtheluminosityby40%.
4.5Gyrago
Today
StellarEvolution
InthecaseoftheSun(orany1M☉ star)thegradualincreasein
radiusandluminositywillcontinueforanother5billionyears.
Whilehydrogenfusionisthedominantenergysource,thereisa
usefulthermostatoperating.IftheSuncontractedandheatedup,
thefusionrateswouldincreaseandcausetheSuntore-expand.
StellarEvolution
Astheheliumcoregrows,itcompresses.Helium
doesn’tfusetoheavierelementsfortworeasons.
(1)with2p+pernucleus,theelectricrepulsion
forceishigherthanwasthecaseforH-fusion.This
meansthatheliumfusionrequiresahigher
temperaturethanhydrogenfusion-- 100millionK
(2)He4+He4 =Be8.Thisreactiondoesn’trelease
energy,itrequiresinputenergy.ThisparticularBe
isotopeisveryunstable.
StellarEvolution
AstheHeliumcorecontracts,itreleasesgravitational
potentialenergyandheatsup.
Hydrogenfusioncontinuesinashellaroundthe
heliumcore.
Onceasignificantheliumcoreisbuilt,thestarhas
twoenergysources.
Curiously,asthefuelisbeingusedupinthecoreofa
star,itsluminosityisincreasing
EvolutiontoRedGiant
Asthecontractingheliumcore
growsandthetotalenergy
generatedbyGPEandthe
hydrogenfusionshellincreases.
Lgoesup!
AsLgoesupthestaralso
expands.
ElectronDegeneracy
Electronsareparticlescalled`fermions’(ratherthan`bosons’)that
obeyalawofnaturecalledthePauliExclusionPrinciple.
Thislawsaysthatyoucanonlyhavetwoelectronsperunit6-D
phase-spacevolume inagas.
ElectronDegeneracy
Whenyouhavetwoe- perphase-spacecellinagasthegas
issaidtobedegenerate andithasreachedadensity
maximum-- youcan’tpackitanytighter.
Suchagasissupportedagainstgravitationalcollapseby
electrondegeneracypressure.
Thisiswhatsupportstheheliumcoreofaredgiantstarasit
approachesthetipoftheRGB.
HeliumFlash
Heliumcoreissupportedagainstgravitybyelectrondegeneracy
Whendensityandtemperaturearehighenoughforthe`triple-alpha’
(3He->C)reaction.
Electron-degenerategasesdonotexpandwithincreasing
temperaturesotheonsetofheliumfusionisarunawaythermonuclearreaction.
Asthetemperaturegoesup,increasein`phasespace’lifts
degeneracyandstarsettlesintoHeliumfusiononthehorizontal
branch
RedGiants
HydrostaticequilibriumislostandthetendencyoftheSunto
expandwinsalittlebitatatime.TheSunisbecomingaRedGiant.
Willeventuallyreach:
L->2000L☉
R->0.5AU
Tsurface->3500k
RedGiant
100Ro 108years
L
3Ro,1010years
Temperature
SunasaRedGiant
WhentheSunbecomesaRedGiantMercuryandVenuswillbe
vaporized,theEarthburnedtoacrisp.LongbeforetheSunreaches
thetipoftheRGB(redgiantbranch)theoceanswillbeboiledaway
andmostlifewillbegone.
Themost`Earthlike’environmentatthispointwillbeTitan,amoon
ofSaturn.
RGBEvolution
AstheSunapproachesthetipoftheRGB
CentralTCentralDensity
Sun15x106k102 grams/cm2
RedGiant100x106k105 grams/cm2
Forstarsaround1M☉,withtheseconditionsinthecoreastrange
quantummechanicalpropertyofe- dominatesthepressure.
Heliumfusion/flash
Theheliuminthecorecanstarttofusewhenthedensityand
temperaturearehighenoughforthe`triple-alpha’reaction:
He4 +He4 ->Be8
Be8 +He4 ->C12
TheBerylliumfallsapartin10-12 secondssoyouneednotonlyhigh
enoughTtoovercometheelectricforces,youalsoneedveryhigh
density.
HeliumFlash
TheTempandDensitygethighenoughforthetriple-alphareaction
asastarapproachesthetipoftheRGB.
Becausethecoreissupportedbyelectrondegeneracy(withno
temperaturedependence)whenthetriple-alphastarts,thereisno
correspondingexpansionofthecore.Sothetemperatureskyrockets
andthefusionrategrowstremendouslyinthe`heliumflash’.
HeliumFlash
Thebigincreaseinthecoretemperatureadds
momentumphasespaceandwithinacoupleof
hoursoftheonsetoftheheliumflash,theelectrons
gasisnolongerdegenerateandthecoresettles
downinto`normal’heliumfusion.
Thereislittleoutwardsignoftheheliumflash,but
therearrangment ofthecorestopsthetripupthe
RGBandthestarsettlesontothehorizontalbranch.
HorizontalBranch
Horizontalbranch
RGB
HorizontalBranch
Starsonthehorizontalbranchhavesimilaritiestomainsequencestars
Heliumfusioninthecore
Hydrogenfusioninashell
TheSecondAscentGiantBranch
Horizontal-branchstars(likemain-sequencestars)begintouseup
theirfuelinthecore.
Inthiscase,thestarisbuildingupaCarbon core.Forstarsnear1Mo
thetemperaturenever getshighenoughforCarbonfusion.
Thecorebeginstocontract,releasinggravitationalpotentialenergy
andincreasingthefusionratesintheHeandHfusionshells.Does
thissoundfamiliar?
AsymptoticGiantBranch
CarbonCore
Heliumfusionshell
HydrogenFusionshell
AsymptoticGiantBranch
ThisislikethetransitionfromthemainsequencetotheRedGiant
Branch.
StarsevolveofftheHBupandrightintheHR-Diagramonatrack
parallelandabovetheRGB.Now,theenergygenerationismuch
moreerratic.Thetriple-alphaprocessratescaleswithT30(!).AGB
starsundergo`Shellflashes’.
Asymptoticbranch
Horizontalbranch
Temperature
PlanetaryNebulaStage
ThetripuptheAGB(or`secondascentgiantbranch’)gets
terminatedwhenthestar’souterenvelopebecomesdetachedand
beginstodriftoffintospace.(!!)
Theformerenvelopeshinesinthelightofemissionlines.
Astheenvelopeexpandsandbecomestransparenttheveryhotcore
oftheAGBstarcanbeseenatitscenter.
PlanetaryNebulae
Theouterenvelopeexpandingoutasashellappearsasa
ringinthesky.
PlanetaryNebulae
TheemissionissimilartothatfromHIIregions.Ultravioletphotons
fromthehotformerAGB-starcoreionizeatomsintheshell.On
recombination,photonsproduced.
PlanetaryNebulaeShells
Theejectionmechanismfortheshellisacombinationofwindsfrom
thecore,photonpressure,perhapstheshellflashesandthelarge
radiusofthestar.
Theshellexpandsintospaceatrelativelylowspeed(20km/sec).
Approximately50%oftheAGBstarmassisejected.
PlanetaryNebulaeShell
Theshellexpandsandisvisibleforabout30,000yearsgrowingtoa
sizeofmorethanalightyear.
TheshellisenhancedintheabundanceofHe,Carbon,Oxygen
(becauseofconvectionduringtheAGBphase).Thisisoneofthe
meansbywhich`GalacticChemicalEvolution’proceeds.
Thereareabout30,000PNintheGalaxyatanytime.
PlanetaryNebulaeCentral`Star’
TheobjectinthecenterofthenebulaistheformercoreoftheAGBstar.
(1)Itishot!T>150,000kinitially
(2)Supportedbye- degeneracy
(3)Mass~0.6M☉
(4)Radius~6000km(Earth)
(5)Density~109 kg/m3
Athimbleofmaterialatthisdensitywouldweightabout5tonsonEarth.
PlanetaryNebulaeCentral`Star’
Thecentral`star’isn’tastarbecauseithasnoenergysource.Thisis
awhitedwarf.
Supportedagainstgravitybye- degeneracy.
Lotsofresidualheat,noenergysource,awhitedwarfislikeahot
ember.Asitradiatesenergyintospace,thewhitedwarfcoolsoff.
ThereisanupperlimittothemassofaWDsetbye-degeneracy.
1.4M☉ istheChandrasekar Limit.
WhiteDwarf
• Energysource:none
• Equilibrium:
e- degeneracyvsgravity
•Size:6000km(Earth)
WhiteDwarfs
WDsappearintheHR-Diagramintheupperleftand
VERYrapidlyevolvedownwardandtotheright.
Luminosity
Whitedwarf
coolingcurve
Temperature
WhiteDwarfs
Atleast15%ofthestellarmassinthesolarneighborhoodisinthe
formofWDs.Theyareverycommon,thoughhardtosee.
WhiteDwarfCosmochronology
TheWDsinthesolarneighborhoodhaveaninterestingstorytotell:
ThisdropoffinWDs
atlowLandTis
because
ofthefiniteageof
the
Galaxy
#ofWD
high
Luminosity(orTemp)
low
WhiteDwarfsintheGalaxy
Wethinkthatallstarswithinitialmain-sequencemassless
thanaround6M☉ becomewhitedwarfs.
WhenwelookatthenumberofWDsatdifferentluminosity
(ortemperature)therearesomeinterestingbumpsand
wigglesANDadramaticdropoff attheLuminositythat
correspondstoacoolingageof11Gyr.
Evolutionofa1solarmassstar
1. Protostar
2. mainsequence
3. RGB
4. HorizontalBranch
5. AGB
6. PlanetaryNebula
7. WhiteDwarf
PN
AGB
Heflash
HB
RGB
ZAMS
WDcooling
Hot------Temperature------
cool
Evolutionof1Mo Star
Protostar
Grav. contraction
5x107 years
Main Sequence
Core H fusion
10x109 years
Red Giant
Core contraction
and shell H fusion
Horizontal Branch Core He fusion
and shell H fusion
AGB
Core contr + He
fusion + H fusion
White dwarf
none
5x108 years
5x107 years
1x106 years
A very long time
Evolutionof1M☉ Star
Thetimespentinaparticularevolutionaryphaseisrelatedtothe
numberofstarsofthattypeweseeintheskyofthattype.(although
youhavetobecareful)
WhentheSunisanAGBstar,itsenvelopewillextendouttotheorbit
ofMars,theH-fusionshellwillreachtheorbitoftheformerEarth.
1M☉ main-sequencestarbecomesa0.6M☉WDmademostlyofC
withalittleH,He.
Evolutionof4M☉ Stars
Forstarslessthan6M☉ theselastslidesdescribetheevolution
prettywell.Therearesomedifferencesinthedetailsthatdependon
theinitialmain-sequencemass.
Forstarsthatstartwith4M☉,itgetshotenoughinthecoresto(1)
avoidtheheliumflashand(2)tostartcarbonfusion.
TheWDremnantcontainsNe,MgandSiandtheamountof
enrichedmaterialreturnedtotheISMislarger.
ObservingStellarEvolutioninStar
Clusters
ThefollowingseriesofH–R
diagrams showshowstarsof
thesameage,butdifferent
masses,appearasthecluster
asawholeages.
After10millionyears,themost
massivestarshavealreadyleft
themainsequence,whilemany
oftheleastmassivehavenot
evenreachedityet.
ObservingStellarEvolutioninStar
Clusters
After100millionyears,adistinct
main-sequenceturnoff beginsto
develop.Thisshowsthehighestmassstarsthatarestillonthe
mainsequence.
After1billionyears,themainsequenceturnoff ismuchclearer.
ObservingStellarEvolutioninStar
Clusters
After10billionyears,a
numberoffeaturesare
evident:
Thered-giant,subgiant,
asymptoticgiant,and
horizontal branchesareall
clearlypopulated.
Whitedwarfs,indicatingthatsolar-mass
starsareintheirlastphases,alsoappear.
ObservingStellarEvolutioninStar
Clusters
Thisdoublecluster,handchiPersei,must
bequiteyoung – itsH–Rdiagramisthatofa
newborncluster.Itsagecannotbemore
thanabout10millionyears.
ObservingStellarEvolutioninStar
Clusters
TheHyadescluster,shownhere,isalsoratheryoung;itsmainsequenceturnoffindicatesanageofabout600millionyears.
ObservingStellarEvolutioninStar
Clusters
Thisglobularcluster,47Tucanae,isabout10–12billion
yearsold,mucholder thanthepreviousexamples.