* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Lingua inglese
Survey
Document related concepts
Transcript
Dipartimento di Scienze economiche e metodi matematici Corso di Laurea Triennale in Scienze statistiche Lingua inglese a.a. 2012-2013 prof.ssa Paola Gaudio A Selection from Online Statistics Education: An Interactive Multimedia Course of Study Developed by Rice University (Lead Developer), University of Houston Clear Lake, and Tufts University Table of contents What are Statistics Video01 Importance of Statistics Video02 Descriptive Statistics Video03 Inferential Statistics Video04 Variables Video05 Levels of Measurement Video06 Distributions Video07 Graphing Qualitative Data Video08 Stem and Leaf Displays Video09 Histograms Video10 What is Central Tendency Video11 Measures of Central Tendency Video12 Measures of Variability Video13 Introduction to Normal Distributions Video14 http://onlinestatbook.com/2/index.html What Are Statistics by Mikki Hebl Learning Objectives 1. Describe the range of applications of statistics 2. Identify situations in which statistics can be misleading 3. Define "Statistics" Statistics include numerical facts and figures. For instance: • The largest earthquake measured 9.2 on the Richter scale. • Men are at least 10 times more likely than women to commit murder. • One in every 8 South Africans is HIV positive. • By the year 2020, there will be 15 people aged 65 and over for every new baby born. The study of statistics involves math and relies upon calculations of numbers. But it also relies heavily on how the numbers are chosen and how the statistics are interpreted. For example, consider the following three scenarios and the interpretations based upon the presented statistics. You will find that the numbers may be right, but the interpretation may be wrong. Try to identify a major flaw with each interpretation before we describe it. 1) A new advertisement for Ben and Jerry's ice cream introduced in late May of last year resulted in a 30% increase in ice cream sales for the following three months. Thus, the advertisement was effective. A major flaw is that ice cream consumption generally increases in the months of June, July, and August regardless of advertisements. This effect is called a history effect and leads people to interpret outcomes as the result of one variable when another variable (in this case, one having to do with the passage of time) is actually responsible. 2) The more churches in a city, the more crime there is. Thus, churches lead to crime. 10 A major flaw is that both increased churches and increased crime rates can be explained by larger populations. In bigger cities, there are both more churches and more crime. This problem, which we will discuss in more detail in Chapter 11, refers to the third-variable problem. Namely, a third variable can cause both situations; however, people erroneously believe that there is a causal relationship between the two primary variables rather than recognize that a third variable can cause both. 3) 75% more interracial marriages are occurring this year than 25 years ago. Thus, our society accepts interracial marriages. A major flaw is that we don't have the information that we need. What is the rate at which marriages are occurring? Suppose only 1% of marriages 25 years ago were interracial and so now 1.75% of marriages are interracial (1.75 is 75% higher than 1). But this latter number is hardly evidence suggesting the acceptability of interracial marriages. In addition, the statistic provided does not rule out the possibility that the number of interracial marriages has seen dramatic fluctuations over the years and this year is not the highest. Again, there is simply not enough information to understand fully the impact of the statistics. As a whole, these examples show that statistics are not only facts and figures; they are something more than that. In the broadest sense, "statistics" refers to a range of techniques and procedures for analyzing, interpreting, displaying, and making decisions based on data. 11 Importance of Statistics by Mikki Hebl Learning Objectives 1. Give examples of statistics are encountered in everyday life 2. Give examples of how statistics can lend credibility to an argument Like most people, you probably feel that it is important to "take control of your life." But what does this mean? Partly, it means being able to properly evaluate the data and claims that bombard you every day. If you cannot distinguish good from faulty reasoning, then you are vulnerable to manipulation and to decisions that are not in your best interest. Statistics provides tools that you need in order to react intelligently to information you hear or read. In this sense, statistics is one of the most important things that you can study. To be more specific, here are some claims that we have heard on several occasions. (We are not saying that each one of these claims is true!) • 4 out of 5 dentists recommend Dentine. • Almost 85% of lung cancers in men and 45% in women are tobacco-related. • Condoms are effective 94% of the time. • Native Americans are significantly more likely to be hit crossing the street than are people of other ethnicities. • People tend to be more persuasive when they look others directly in the eye and speak loudly and quickly. • Women make 75 cents to every dollar a man makes when they work the same job. • A surprising new study shows that eating egg whites can increase one's life span. • People predict that it is very unlikely there will ever be another baseball player with a batting average over 400. • There is an 80% chance that in a room full of 30 people that at least two people will share the same birthday. • 79.48% of all statistics are made up on the spot. All of these claims are statistical in character. We suspect that some of them sound familiar; if not, we bet that you have heard other claims like them. Notice how diverse the examples are. They come from psychology, health, law, sports, business, etc. Indeed, data and data interpretation show up in discourse from virtually every facet of contemporary life. 12 Statistics are often presented in an effort to add credibility to an argument or advice. You can see this by paying attention to television advertisements. Many of the numbers thrown about in this way do not represent careful statistical analysis. They can be misleading and push you into decisions that you might find cause to regret. For these reasons, learning about statistics is a long step towards taking control of your life. (It is not, of course, the only step needed for this purpose.) The present electronic textbook is designed to help you learn statistical essentials. It will make you into an intelligent consumer of statistical claims. You can take the first step right away. To be an intelligent consumer of statistics, your first reflex must be to question the statistics that you encounter. The British Prime Minister Benjamin Disraeli is quoted by Mark Twain as having said, "There are three kinds of lies -- lies, damned lies, and statistics." This quote reminds us why it is so important to understand statistics. So let us invite you to reform your statistical habits from now on. No longer will you blindly accept numbers or findings. Instead, you will begin to think about the numbers, their sources, and most importantly, the procedures used to generate them. We have put the emphasis on defending ourselves against fraudulent claims wrapped up as statistics. We close this section on a more positive note. Just as important as detecting the deceptive use of statistics is the appreciation of the proper use of statistics. You must also learn to recognize statistical evidence that supports a stated conclusion. Statistics are all around you, sometimes used well, sometimes not. We must learn how to distinguish the two cases. Now let us get to work! 13 Descriptive Statistics by Mikki Hebl Prerequisites • none Learning Objectives 1. Define "descriptive statistics" 2. Distinguish between descriptive statistics and inferential statistics Descriptive statistics are numbers that are used to summarize and describe data. The word "data" refers to the information that has been collected from an experiment, a survey, an historical record, etc. (By the way, "data" is plural. One piece of information is called a "datum.") If we are analyzing birth certificates, for example, a descriptive statistic might be the percentage of certificates issued in New York State, or the average age of the mother. Any other number we choose to compute also counts as a descriptive statistic for the data from which the statistic is computed. Several descriptive statistics are often used at one time to give a full picture of the data. Descriptive statistics are just descriptive. They do not involve generalizing beyond the data at hand. Generalizing from our data to another set of cases is the business of inferential statistics, which you'll be studying in another section. Here we focus on (mere) descriptive statistics. Some descriptive statistics are shown in Table 1. The table shows the average salaries for various occupations in the United States in 1999. 14 Table 1. Average salaries for various occupations in 1999. $112,760 pediatricians $106,130 dentists $100,090 podiatrists $76,140 physicists $53,410 architects, $49,720 school, clinical, and counseling psychologists $47,910 flight attendants $39,560 elementary school teachers $38,710 police officers $18,980 floral designers Descriptive statistics like these offer insight into American society. It is interesting to note, for example, that we pay the people who educate our children and who protect our citizens a great deal less than we pay people who take care of our feet or our teeth. For more descriptive statistics, consider Table 2. It shows the number of unmarried men per 100 unmarried women in U.S. Metro Areas in 1990. From this table we see that men outnumber women most in Jacksonville, NC, and women outnumber men most in Sarasota, FL. You can see that descriptive statistics can be useful if we are looking for an opposite-sex partner! (These data come from the Information Please Almanac.) Table 2. Number of unmarried men per 100 unmarried women in U.S. Metro Areas in 1990. Cities with mostly men 1. Jacksonville, NC Men per 100 Women 224 Cities with mostly women 1. Sarasota, FL Men per 100 Women 66 15 2. Killeen-Temple, TX 123 2. Bradenton, FL 68 3. Fayetteville, NC 118 3. Altoona, PA 69 4. Brazoria, TX 117 4. Springfield, IL 70 5. Lawton, OK 116 5. Jacksonville, TN 70 6. State College, PA 113 6. Gadsden, AL 70 7. ClarksvilleHopkinsville, TNKY 113 7. Wheeling, WV 70 8. Anchorage, Alaska 112 8. Charleston, WV 71 9. SalinasSeasideMonterey, CA 112 9. St. Joseph, MO 71 10. BryanCollege Station, TX 111 10. Lynchburg, VA 71 NOTE: Unmarried includes never-married, widowed, and divorced persons, 15 years or older. These descriptive statistics may make us ponder why the numbers are so disparate in these cities. One potential explanation, for instance, as to why there are more women in Florida than men may involve the fact that elderly individuals tend to move down to the Sarasota region and that women tend to outlive men. Thus, more women might live in Sarasota than men. However, in the absence of proper data, this is only speculation. You probably know that descriptive statistics are central to the world of sports. Every sporting event produces numerous statistics such as the shooting percentage of players on a basketball team. For the Olympic marathon (a foot race of 26.2 miles), we possess data that cover more than a century of competition. (The 16 first modern Olympics took place in 1896.) The following table shows the winning times for both men and women (the latter have only been allowed to compete since 1984). Table 3. Winning Olympic marathon times. Women Year Winner Country Time 1984 Joan Benoit USA 2:24:52 1988 Rosa Mota POR 2:25:40 1992 Valentina Yegorova UT 2:32:41 1996 Fatuma Roba ETH 2:26:05 2000 Naoko Takahashi JPN 2:23:14 2004 Mizuki Noguchi JPN 2:26:20 Country Time Men Year Winner 1896 Spiridon Louis GRE 2:58:50 1900 Michel Theato FRA 2:59:45 1904 Thomas Hicks USA 3:28:53 1906 Billy Sherring CAN 2:51:23 1908 Johnny Hayes USA 2:55:18 1912 Kenneth McArthur S. Afr. 2:36:54 1920 Hannes Kolehmainen FIN 2:32:35 1924 Albin Stenroos FIN 2:41:22 1928 Boughra El Ouafi FRA 2:32:57 1932 Juan Carlos Zabala ARG 2:31:36 1936 Sohn Kee-Chung JPN 2:29:19 17 1948 Delfo Cabrera ARG 2:34:51 1952 Emil Ztopek CZE 2:23:03 1956 Alain Mimoun FRA 2:25:00 1960 Abebe Bikila ETH 2:15:16 1964 Abebe Bikila ETH 2:12:11 1968 Mamo Wolde ETH 2:20:26 1972 Frank Shorter USA 2:12:19 1976 Waldemar Cierpinski E.Ger 2:09:55 1980 Waldemar Cierpinski E.Ger 2:11:03 1984 Carlos Lopes POR 2:09:21 1988 Gelindo Bordin ITA 2:10:32 1992 Hwang Young-Cho S. Kor 2:13:23 1996 Josia Thugwane S. Afr. 2:12:36 2000 Gezahenge Abera ETH 2:10.10 2004 Stefano Baldini ITA 2:10:55 There are many descriptive statistics that we can compute from the data in the table. To gain insight into the improvement in speed over the years, let us divide the men's times into two pieces, namely, the first 13 races (up to 1952) and the second 13 (starting from 1956). The mean winning time for the first 13 races is 2 hours, 44 minutes, and 22 seconds (written 2:44:22). The mean winning time for the second 13 races is 2:13:18. This is quite a difference (over half an hour). Does this prove that the fastest men are running faster? Or is the difference just due to chance, no more than what often emerges from chance differences in performance from year to year? We can't answer this question with descriptive statistics alone. All we can affirm is that the two means are "suggestive." Examining Table 3 leads to many other questions. We note that Takahashi (the lead female runner in 2000) would have beaten the male runner in 1956 and all male runners in the first 12 marathons. This fact leads us to ask whether the gender 18 gap will close or remain constant. When we look at the times within each gender, we also wonder how far they will decrease (if at all) in the next century of the Olympics. Might we one day witness a sub-2 hour marathon? The study of statistics can help you make reasonable guesses about the answers to these questions. 19 Inferential Statistics by Mikki Hebl Prerequisites • Chapter 1: Descriptive Statistics Learning Objectives 1. Distinguish between a sample and a population 2. Define inferential statistics 3. Identify biased samples 4. Distinguish between simple random sampling and stratified sampling 5. Distinguish between random sampling and random assignment Populations and samples In statistics, we often rely on a sample --- that is, a small subset of a larger set of data --- to draw inferences about the larger set. The larger set is known as the population from which the sample is drawn. Example #1: You have been hired by the National Election Commission to examine how the American people feel about the fairness of the voting procedures in the U.S. Who will you ask? It is not practical to ask every single American how he or she feels about the fairness of the voting procedures. Instead, we query a relatively small number of Americans, and draw inferences about the entire country from their responses. The Americans actually queried constitute our sample of the larger population of all Americans. The mathematical procedures whereby we convert information about the sample into intelligent guesses about the population fall under the rubric of inferential statistics. A sample is typically a small subset of the population. In the case of voting attitudes, we would sample a few thousand Americans drawn from the hundreds of millions that make up the country. In choosing a sample, it is therefore crucial that it not over-represent one kind of citizen at the expense of others. For example, something would be wrong with our sample if it happened to be made up entirely of Florida residents. If the sample held only Floridians, it could not be used to infer 20 the attitudes of other Americans. The same problem would arise if the sample were comprised only of Republicans. Inferential statistics are based on the assumption that sampling is random. We trust a random sample to represent different segments of society in close to the appropriate proportions (provided the sample is large enough; see below). Example #2: We are interested in examining how many math classes have been taken on average by current graduating seniors at American colleges and universities during their four years in school. Whereas our population in the last example included all US citizens, now it involves just the graduating seniors throughout the country. This is still a large set since there are thousands of colleges and universities, each enrolling many students. (New York University, for example, enrolls 48,000 students.) It would be prohibitively costly to examine the transcript of every college senior. We therefore take a sample of college seniors and then make inferences to the entire population based on what we find. To make the sample, we might first choose some public and private colleges and universities across the United States. Then we might sample 50 students from each of these institutions. Suppose that the average number of math classes taken by the people in our sample were 3.2. Then we might speculate that 3.2 approximates the number we would find if we had the resources to examine every senior in the entire population. But we must be careful about the possibility that our sample is non-representative of the population. Perhaps we chose an overabundance of math majors, or chose too many technical institutions that have heavy math requirements. Such bad sampling makes our sample unrepresentative of the population of all seniors. To solidify your understanding of sampling bias, consider the following example. Try to identify the population and the sample, and then reflect on whether the sample is likely to yield the information desired. 21 Example #3: A substitute teacher wants to know how students in the class did on their last test. The teacher asks the 10 students sitting in the front row to state their latest test score. He concludes from their report that the class did extremely well. What is the sample? What is the population? Can you identify any problems with choosing the sample in the way that the teacher did? In Example #3, the population consists of all students in the class. The sample is made up of just the 10 students sitting in the front row. The sample is not likely to be representative of the population. Those who sit in the front row tend to be more interested in the class and tend to perform higher on tests. Hence, the sample may perform at a higher level than the population. Example #4: A coach is interested in how many cartwheels the average college freshmen at his university can do. Eight volunteers from the freshman class step forward. After observing their performance, the coach concludes that college freshmen can do an average of 16 cartwheels in a row without stopping. In Example #4, the population is the class of all freshmen at the coach's university. The sample is composed of the 8 volunteers. The sample is poorly chosen because volunteers are more likely to be able to do cartwheels than the average freshman; people who can't do cartwheels probably did not volunteer! In the example, we are also not told of the gender of the volunteers. Were they all women, for example? That might affect the outcome, contributing to the non-representative nature of the sample (if the school is co-ed). Simple Random Sampling Researchers adopt a variety of sampling strategies. The most straightforward is simple random sampling. Such sampling requires every member of the population to have an equal chance of being selected into the sample. In addition, the selection of one member must be independent of the selection of every other member. That is, picking one member from the population must not increase or decrease the probability of picking any other member (relative to the others). In this sense, we can say that simple random sampling chooses a sample by pure chance. To check 22 your understanding of simple random sampling, consider the following example. What is the population? What is the sample? Was the sample picked by simple random sampling? Is it biased? Example #5: A research scientist is interested in studying the experiences of twins raised together versus those raised apart. She obtains a list of twins from the National Twin Registry, and selects two subsets of individuals for her study. First, she chooses all those in the registry whose last name begins with Z. Then she turns to all those whose last name begins with B. Because there are so many names that start with B, however, our researcher decides to incorporate only every other name into her sample. Finally, she mails out a survey and compares characteristics of twins raised apart versus together. In Example #5, the population consists of all twins recorded in the National Twin Registry. It is important that the researcher only make statistical generalizations to the twins on this list, not to all twins in the nation or world. That is, the National Twin Registry may not be representative of all twins. Even if inferences are limited to the Registry, a number of problems affect the sampling procedure we described. For instance, choosing only twins whose last names begin with Z does not give every individual an equal chance of being selected into the sample. Moreover, such a procedure risks over-representing ethnic groups with many surnames that begin with Z. There are other reasons why choosing just the Z's may bias the sample. Perhaps such people are more patient than average because they often find themselves at the end of the line! The same problem occurs with choosing twins whose last name begins with B. An additional problem for the B's is that the “every-other-one” procedure disallowed adjacent names on the B part of the list from being both selected. Just this defect alone means the sample was not formed through simple random sampling. Sample size matters Recall that the definition of a random sample is a sample in which every member of the population has an equal chance of being selected. This means that the sampling procedure rather than the results of the procedure define what it means for a sample to be random. Random samples, especially if the sample size is small, 23 are not necessarily representative of the entire population. For example, if a random sample of 20 subjects were taken from a population with an equal number of males and females, there would be a nontrivial probability (0.06) that 70% or more of the sample would be female. (To see how to obtain this probability, see the section on the binomial distribution.) Such a sample would not be representative, although it would be drawn randomly. Only a large sample size makes it likely that our sample is close to representative of the population. For this reason, inferential statistics take into account the sample size when generalizing results from samples to populations. In later chapters, you'll see what kinds of mathematical techniques ensure this sensitivity to sample size. More complex sampling Sometimes it is not feasible to build a sample using simple random sampling. To see the problem, consider the fact that both Dallas and Houston are competing to be hosts of the 2012 Olympics. Imagine that you are hired to assess whether most Texans prefer Houston to Dallas as the host, or the reverse. Given the impracticality of obtaining the opinion of every single Texan, you must construct a sample of the Texas population. But now notice how difficult it would be to proceed by simple random sampling. For example, how will you contact those individuals who don’t vote and don’t have a phone? Even among people you find in the telephone book, how can you identify those who have just relocated to California (and had no reason to inform you of their move)? What do you do about the fact that since the beginning of the study, an additional 4,212 people took up residence in the state of Texas? As you can see, it is sometimes very difficult to develop a truly random procedure. For this reason, other kinds of sampling techniques have been devised. We now discuss two of them. Random assignment In experimental research, populations are often hypothetical. For example, in an experiment comparing the effectiveness of a new anti-depressant drug with a placebo, there is no actual population of individuals taking the drug. In this case, a specified population of people with some degree of depression is defined and a random sample is taken from this population. The sample is then randomly divided into two groups; one group is assigned to the treatment condition (drug) and the other group is assigned to the control condition (placebo). This random division of 24 the sample into two groups is called random assignment. Random assignment is critical for the validity of an experiment. For example, consider the bias that could be introduced if the first 20 subjects to show up at the experiment were assigned to the experimental group and the second 20 subjects were assigned to the control group. It is possible that subjects who show up late tend to be more depressed than those who show up early, thus making the experimental group less depressed than the control group even before the treatment was administered. In experimental research of this kind, failure to assign subjects randomly to groups is generally more serious than having a non-random sample. Failure to randomize (the former error) invalidates the experimental findings. A non-random sample (the latter error) simply restricts the generalizability of the results. Stratified Sampling Since simple random sampling often does not ensure a representative sample, a sampling method called stratified random sampling is sometimes used to make the sample more representative of the population. This method can be used if the population has a number of distinct "strata" or groups. In stratified sampling, you first identify members of your sample who belong to each group. Then you randomly sample from each of those subgroups in such a way that the sizes of the subgroups in the sample are proportional to their sizes in the population. Let's take an example: Suppose you were interested in views of capital punishment at an urban university. You have the time and resources to interview 200 students. The student body is diverse with respect to age; many older people work during the day and enroll in night courses (average age is 39), while younger students generally enroll in day classes (average age of 19). It is possible that night students have different views about capital punishment than day students. If 70% of the students were day students, it makes sense to ensure that 70% of the sample consisted of day students. Thus, your sample of 200 students would consist of 140 day students and 60 night students. The proportion of day students in the sample and in the population (the entire university) would be the same. Inferences to the entire population of students at the university would therefore be more secure. 25 Variables by Heidi Ziemer Prerequisites • none Learning Objectives 1. Define and distinguish between independent and dependent variables 2. Define and distinguish between discrete and continuous variables 3. Define and distinguish between qualitative and quantitative variables Independent and dependent variables Variables are properties or characteristics of some event, object, or person that can take on different values or amounts (as opposed to constants such as π that do not vary). When conducting research, experimenters often manipulate variables. For example, an experimenter might compare the effectiveness of four types of antidepressants. In this case, the variable is "type of antidepressant." When a variable is manipulated by an experimenter, it is called an independent variable. The experiment seeks to determine the effect of the independent variable on relief from depression. In this example, relief from depression is called a dependent variable. In general, the independent variable is manipulated by the experimenter and its effects on the dependent variable are measured. Example #1: Can blueberries slow down aging? A study indicates that antioxidants found in blueberries may slow down the process of aging. In this study, 19-month-old rats (equivalent to 60-year-old humans) were fed either their standard diet or a diet supplemented by either blueberry, strawberry, or spinach powder. After eight weeks, the rats were given memory and motor skills tests. Although all supplemented rats showed improvement, those supplemented with blueberry powder showed the most notable improvement. 1. What is the independent variable? (dietary supplement: none, blueberry, strawberry, and spinach) 26 2. What are the dependent variables? (memory test and motor skills test) Example #2: Does beta-carotene protect against cancer? Beta-carotene supplements have been thought to protect against cancer. However, a study published in the Journal of the National Cancer Institute suggests this is false. The study was conducted with 39,000 women aged 45 and up. These women were randomly assigned to receive a beta-carotene supplement or a placebo, and their health was studied over their lifetime. Cancer rates for women taking the beta-carotene supplement did not differ systematically from the cancer rates of those women taking the placebo. 1. What is the independent variable? (supplements: beta-carotene or placebo) 2. What is the dependent variable? (occurrence of cancer) Example #3: How bright is right? An automobile manufacturer wants to know how bright brake lights should be in order to minimize the time required for the driver of a following car to realize that the car in front is stopping and to hit the brakes. 1. What is the independent variable? (brightness of brake lights) 2. What is the dependent variable? (time to hit brakes) Levels of an Independent Variable If an experiment compares an experimental treatment with a control treatment, then the independent variable (type of treatment) has two levels: experimental and control. If an experiment were comparing five types of diets, then the independent variable (type of diet) would have 5 levels. In general, the number of levels of an independent variable is the number of experimental conditions. 27 Qualitative and Quantitative Variables An important distinction between variables is between qualitative variables and quantitative variables. Qualitative variables are those that express a qualitative attribute such as hair color, eye color, religion, favorite movie, gender, and so on. The values of a qualitative variable do not imply a numerical ordering. Values of the variable “religion” differ qualitatively; no ordering of religions is implied. Qualitative variables are sometimes referred to as categorical variables. Quantitative variables are those variables that are measured in terms of numbers. Some examples of quantitative variables are height, weight, and shoe size. In the study on the effect of diet discussed previously, the independent variable was type of supplement: none, strawberry, blueberry, and spinach. The variable "type of supplement" is a qualitative variable; there is nothing quantitative about it. In contrast, the dependent variable "memory test" is a quantitative variable since memory performance was measured on a quantitative scale (number correct). Discrete and Continuous Variables Variables such as number of children in a household are called discrete variables since the possible scores are discrete points on the scale. For example, a household could have three children or six children, but not 4.53 children. Other variables such as "time to respond to a question" are continuous variables since the scale is continuous and not made up of discrete steps. The response time could be 1.64 seconds, or it could be 1.64237123922121 seconds. Of course, the practicalities of measurement preclude most measured variables from being truly continuous. 28 Levels of Measurement by Dan Osherson and David M. Lane Prerequisites • Chapter 1: Variables Learning Objectives 1. 2. 3. 4. Define and distinguish among nominal, ordinal, interval, and ratio scales Identify a scale type Discuss the type of scale used in psychological measurement Give examples of errors that can be made by failing to understand the proper use of measurement scales Types of Scales Before we can conduct a statistical analysis, we need to measure our dependent variable. Exactly how the measurement is carried out depends on the type of variable involved in the analysis. Different types are measured differently. To measure the time taken to respond to a stimulus, you might use a stop watch. Stop watches are of no use, of course, when it comes to measuring someone's attitude towards a political candidate. A rating scale is more appropriate in this case (with labels like "very favorable," "somewhat favorable," etc.). For a dependent variable such as "favorite color," you can simply note the color-word (like "red") that the subject offers. Although procedures for measurement differ in many ways, they can be classified using a few fundamental categories. In a given category, all of the procedures share some properties that are important for you to know about. The categories are called "scale types," or just "scales," and are described in this section. Nominal scales When measuring using a nominal scale, one simply names or categorizes responses. Gender, handedness, favorite color, and religion are examples of variables measured on a nominal scale. The essential point about nominal scales is that they do not imply any ordering among the responses. For example, when classifying people according to their favorite color, there is no sense in which 34 green is placed "ahead of" blue. Responses are merely categorized. Nominal scales embody the lowest level of measurement. Ordinal scales A researcher wishing to measure consumers' satisfaction with their microwave ovens might ask them to specify their feelings as either "very dissatisfied," "somewhat dissatisfied," "somewhat satisfied," or "very satisfied." The items in this scale are ordered, ranging from least to most satisfied. This is what distinguishes ordinal from nominal scales. Unlike nominal scales, ordinal scales allow comparisons of the degree to which two subjects possess the dependent variable. For example, our satisfaction ordering makes it meaningful to assert that one person is more satisfied than another with their microwave ovens. Such an assertion reflects the first person's use of a verbal label that comes later in the list than the label chosen by the second person. On the other hand, ordinal scales fail to capture important information that will be present in the other scales we examine. In particular, the difference between two levels of an ordinal scale cannot be assumed to be the same as the difference between two other levels. In our satisfaction scale, for example, the difference between the responses "very dissatisfied" and "somewhat dissatisfied" is probably not equivalent to the difference between "somewhat dissatisfied" and "somewhat satisfied." Nothing in our measurement procedure allows us to determine whether the two differences reflect the same difference in psychological satisfaction. Statisticians express this point by saying that the differences between adjacent scale values do not necessarily represent equal intervals on the underlying scale giving rise to the measurements. (In our case, the underlying scale is the true feeling of satisfaction, which we are trying to measure.) What if the researcher had measured satisfaction by asking consumers to indicate their level of satisfaction by choosing a number from one to four? Would the difference between the responses of one and two necessarily reflect the same difference in satisfaction as the difference between the responses two and three? The answer is No. Changing the response format to numbers does not change the meaning of the scale. We still are in no position to assert that the mental step from 1 to 2 (for example) is the same as the mental step from 3 to 4. 35 Interval scales Interval scales are numerical scales in which intervals have the same interpretation throughout. As an example, consider the Fahrenheit scale of temperature. The difference between 30 degrees and 40 degrees represents the same temperature difference as the difference between 80 degrees and 90 degrees. This is because each 10-degree interval has the same physical meaning (in terms of the kinetic energy of molecules). Interval scales are not perfect, however. In particular, they do not have a true zero point even if one of the scaled values happens to carry the name "zero." The Fahrenheit scale illustrates the issue. Zero degrees Fahrenheit does not represent the complete absence of temperature (the absence of any molecular kinetic energy). In reality, the label "zero" is applied to its temperature for quite accidental reasons connected to the history of temperature measurement. Since an interval scale has no true zero point, it does not make sense to compute ratios of temperatures. For example, there is no sense in which the ratio of 40 to 20 degrees Fahrenheit is the same as the ratio of 100 to 50 degrees; no interesting physical property is preserved across the two ratios. After all, if the "zero" label were applied at the temperature that Fahrenheit happens to label as 10 degrees, the two ratios would instead be 30 to 10 and 90 to 40, no longer the same! For this reason, it does not make sense to say that 80 degrees is "twice as hot" as 40 degrees. Such a claim would depend on an arbitrary decision about where to "start" the temperature scale, namely, what temperature to call zero (whereas the claim is intended to make a more fundamental assertion about the underlying physical reality). Ratio scales The ratio scale of measurement is the most informative scale. It is an interval scale with the additional property that its zero position indicates the absence of the quantity being measured. You can think of a ratio scale as the three earlier scales rolled up in one. Like a nominal scale, it provides a name or category for each object (the numbers serve as labels). Like an ordinal scale, the objects are ordered (in terms of the ordering of the numbers). Like an interval scale, the same difference at two places on the scale has the same meaning. And in addition, the same ratio at two places on the scale also carries the same meaning. The Fahrenheit scale for temperature has an arbitrary zero point and is therefore not a ratio scale. However, zero on the Kelvin scale is absolute zero. This 36 makes the Kelvin scale a ratio scale. For example, if one temperature is twice as high as another as measured on the Kelvin scale, then it has twice the kinetic energy of the other temperature. Another example of a ratio scale is the amount of money you have in your pocket right now (25 cents, 55 cents, etc.). Money is measured on a ratio scale because, in addition to having the properties of an interval scale, it has a true zero point: if you have zero money, this implies the absence of money. Since money has a true zero point, it makes sense to say that someone with 50 cents has twice as much money as someone with 25 cents (or that Bill Gates has a million times more money than you do). What level of measurement is used for psychological variables? Rating scales are used frequently in psychological research. For example, experimental subjects may be asked to rate their level of pain, how much they like a consumer product, their attitudes about capital punishment, their confidence in an answer to a test question. Typically these ratings are made on a 5-point or a 7-point scale. These scales are ordinal scales since there is no assurance that a given difference represents the same thing across the range of the scale. For example, there is no way to be sure that a treatment that reduces pain from a rated pain level of 3 to a rated pain level of 2 represents the same level of relief as a treatment that reduces pain from a rated pain level of 7 to a rated pain level of 6. In memory experiments, the dependent variable is often the number of items correctly recalled. What scale of measurement is this? You could reasonably argue that it is a ratio scale. First, there is a true zero point; some subjects may get no items correct at all. Moreover, a difference of one represents a difference of one item recalled across the entire scale. It is certainly valid to say that someone who recalled 12 items recalled twice as many items as someone who recalled only 6 items. But number-of-items recalled is a more complicated case than it appears at first. Consider the following example in which subjects are asked to remember as many items as possible from a list of 10. Assume that (a) there are 5 easy items and 5 difficult items, (b) half of the subjects are able to recall all the easy items and different numbers of difficult items, while (c) the other half of the subjects are unable to recall any of the difficult items but they do remember different numbers of easy items. Some sample data are shown below. 37 Subject Easy Items Difficult Items Score A 0 0 1 1 0 0 0 0 0 0 2 B 1 0 1 1 0 0 0 0 0 0 3 C 1 1 1 1 1 1 1 0 0 0 7 D 1 1 1 1 1 0 1 1 0 1 8 Let's compare (i) the difference between Subject A's score of 2 and Subject B's score of 3 and (ii) the difference between Subject C's score of 7 and Subject D's score of 8. The former difference is a difference of one easy item; the latter difference is a difference of one difficult item. Do these two differences necessarily signify the same difference in memory? We are inclined to respond "No" to this question since only a little more memory may be needed to retain the additional easy item whereas a lot more memory may be needed to retain the additional hard item. The general point is that it is often inappropriate to consider psychological measurement scales as either interval or ratio. Consequences of level of measurement Why are we so interested in the type of scale that measures a dependent variable? The crux of the matter is the relationship between the variable's level of measurement and the statistics that can be meaningfully computed with that variable. For example, consider a hypothetical study in which 5 children are asked to choose their favorite color from blue, red, yellow, green, and purple. The researcher codes the results as follows: Color Code Blue Red Yellow Green Purple 1 2 3 4 5 This means that if a child said her favorite color was "Red," then the choice was coded as "2," if the child said her favorite color was "Purple," then the response was coded as 5, and so forth. Consider the following hypothetical data: 38 Subject Color Code 1 2 3 4 5 Blue Blue Green Green Purple 1 1 4 4 5 Each code is a number, so nothing prevents us from computing the average code assigned to the children. The average happens to be 3, but you can see that it would be senseless to conclude that the average favorite color is yellow (the color with a code of 3). Such nonsense arises because favorite color is a nominal scale, and taking the average of its numerical labels is like counting the number of letters in the name of a snake to see how long the beast is. Does it make sense to compute the mean of numbers measured on an ordinal scale? This is a difficult question, one that statisticians have debated for decades. The prevailing (but by no means unanimous) opinion of statisticians is that for almost all practical situations, the mean of an ordinally-measured variable is a meaningful statistic. However, there are extreme situations in which computing the mean of an ordinally-measured variable can be very misleading. 39 Distributions by David M. Lane and Heidi Ziemer Prerequisites • Chapter 1: Variables Learning Objectives 1. Define "distribution" 2. Interpret a frequency distribution 3. Distinguish between a frequency distribution and a probability distribution 4. Construct a grouped frequency distribution for a continuous variable 5. Identify the skew of a distribution 6. Identify bimodal, leptokurtic, and platykurtic distributions Distributions of Discrete Variables I recently purchased a bag of Plain M&M's. The M&M's were in six different colors. A quick count showed that there were 55 M&M's: 17 brown, 18 red, 7 yellow, 7 green, 2 blue, and 4 orange. These counts are shown below in Table 1. Table 1. Frequencies in the Bag of M&M's Color Frequency Brown Red Yellow Green Blue Orange 17 18 7 7 2 4 This table is called a frequency table and it describes the distribution of M&M color frequencies. Not surprisingly, this kind of distribution is called a frequency distribution. Often a frequency distribution is shown graphically as in Figure 1. 40 20 Frequency 15 10 5 0 Brown Red Yellow Green Blue Orange Figure 1. Distribution of 55 M&M's. The distribution shown in Figure 1 concerns just my one bag of M&M's. You might be wondering about the distribution of colors for all M&M's. The manufacturer of M&M's provides some information about this matter, but they do not tell us exactly how many M&M's of each color they have ever produced. Instead, they report proportions rather than frequencies. Figure 2 shows these proportions. Since every M&M is one of the six familiar colors, the six proportions shown in the figure add to one. We call Figure 2 a probability distribution because if you choose an M&M at random, the probability of getting, say, a brown M&M is equal to the proportion of M&M's that are brown (0.30). 41 0-1000 Proportion 0.30 0.20 0.10 0 Brown Red Yellow Green Blue Orange Figure 2. Distribution of all M&M's. 400 Frequency Notice that the distributions in Figures 1 and 2 are not identical. Figure 1 portrays the distribution 300 in a sample of 55 M&M's. Figure 2 shows the proportions for all M&M's. Chance factors involving the machines used by the manufacturer introduce random variation into the different bags produced. Some bags will have a 200of colors that is close to Figure 2; others will be further away. distribution Continuous Variables 100"color of M&M" used in this example is a discrete variable, and its The variable distribution is also called discrete. Let us now extend the concept of a distribution to continuous variables. 0 The data shown in Table 2 are225 the times it took one425 of us475 (DL) the 25 75 125 175 275 325 375 525to move 575 625 mouse over a small target in a series of 20 trials. The times are sorted from shortest to longest. The variable "time to respond" is a continuous variable. With time measured accurately (to many decimal places), no two response times would be expected to be the same. Measuring time in milliseconds (thousandths of a second) is often precise enough to approximate a continuous variable in Psychology. As you can see in Table 2, measuring DL's responses this way produced times no two of which were the same. As a result, a frequency distribution would be Level Count uninformative: it would consist of the 20 times in the experiment, each with a frequency of 1. 1.75 23 2.25 6 2.75 3 3.25 5 3.75 23 4.25 29 42 Table 2. Response Times 568 577 581 640 641 645 657 673 696 703 720 728 729 777 808 824 825 865 875 1007 The solution to this problem is to create a grouped frequency distribution. In a grouped frequency distribution, scores falling within various ranges are tabulated. Table 3 shows a grouped frequency distribution for these 20 times. Table 3. Grouped frequency distribution Range Frequency 500-600 600-700 700-800 800-900 900-1000 1000-1100 3 6 5 5 0 1 Grouped frequency distributions can be portrayed graphically. Figure 3 shows a graphical representation of the frequency distribution in Table 3. This kind of graph is called a histogram. Chapter 2 contains an entire section devoted to histograms. 43 Shapes of Distributions Distributions have different shapes; they don't all look like the normal distribution in Figure 4. For example, the normal probability density is higher in the middle compared to its two tails. Other distributions need not have this feature. There is even variation among the distributions that we call "normal." For example, some normal distributions are more spread out than the one shown in Figure 4 (their tails begin to hit the X-axis further from the middle of the curve --for example, at 10 and 90 if drawn in place of Figure 4). Others are less spread out (their tails might approach the X-axis at 30 and 70). More information on the normal distribution can be found in a later chapter completely devoted to them. The distribution shown in Figure 4 is symmetric; if you folded it in the middle, the two sides would match perfectly. Figure 5 shows the discrete distribution of scores on a psychology test. This distribution is not symmetric: the tail in the positive direction extends further than the tail in the negative direction. A distribution with the longer tail extending in the positive direction is said to have a positive skew. It is also described as "skewed to the right." 150 Frequency 120 90 60 30 0 45 55 65 75 85 95 105 115 125 135 145 155 165 Figure 5. A distribution with a positive skew. Figure 6 shows the salaries of major league baseball players in 1974 (in thousands of dollars). This distribution has an extreme positive skew. 46 400 Frequency 300 200 100 0 25 75 125 175 225 275 325 375 425 475 525 575 625 Figure 6. A distribution with a very large positive skew. A continuous distribution with a positive skew is shown in Figure 7. Figure 7. A continuous distribution with a positive skew. 47 Although less common, some distributions have a negative skew. Figure 8 shows the scores on a 20-point problem on a statistics exam. Since the tail of the distribution extends to the left, this distribution is skewed to the left. 20 Frequency 15 10 5 0 7.5 9.5 11.5 13.5 15.5 17.5 19.5 Figure 8. A distribution with negative skew. This histogram shows the frequencies of various scores on a 20-point question on a statistics test. 48 A continuous distribution with a negative skew is shown in Figure 9. Figure 9. A continuous distribution with a negative skew. The distributions shown so far all have one distinct high point or peak. The distribution in Figure 10 has two distinct peaks. A distribution with two peaks is called a bimodal distribution. 30 25 Frequency 20 15 10 5 0 1.75 2.25 2.75 3.25 3.75 4.25 4.75 49 13.5 6 15.5 13 17.5 15 19.5 19 Figure 10. Frequencies of times between eruptions of the Old Faithful geyser. Notice the two distinct peaks: one at 1.75 and the other at 4.25. Distributions also differ from each other in terms of how large or "fat" their tails are. Figure 11 shows two distributions that differ in this respect. The upper distribution has relatively more scores in its tails; its shape is called leptokurtic. The lower distribution has relatively fewer scores in its tails; its shape is called platykurtic. 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 50 Figure 11. Distributions differing in kurtosis. The top distribution has long tails. It is called "leptokurtic." The bottom distribution has short tails. It is called "platykurtic." 51 by David M. Lane Prerequisites • Chapter 1: Variables Learning Objectives 1. Create a frequency table 2. Determine when pie charts are valuable and when they are not 3. Create and interpret bar charts 4. Identify common graphical mistakes When Apple Computer introduced the iMac computer in August 1998, the company wanted to learn whether the iMac was expanding Apple’s market share. Was the iMac just attracting previous Macintosh owners? Or was it purchased by newcomers to the computer market and by previous Windows users who were switching over? To find out, 500 iMac customers were interviewed. Each customer was categorized as a previous Macintosh owners, a previous Windows owner, or a new computer purchaser. This section examines graphical methods for displaying the results of the interviews. We’ll learn some general lessons about how to graph data that fall into a small number of categories. A later section will consider how to graph numerical data in which each observation is represented by a number in some range. The key point about the qualitative data that occupy us in the present section is that they do not come with a pre-established ordering (the way numbers are ordered). For example, there is no natural sense in which the category of previous Windows users comes before or after the category of previous Macintosh users. This situation may be contrasted with quantitative data, such as a person’s weight. People of one weight are naturally ordered with respect to people of a different weight. Frequency Tables All of the graphical methods shown in this section are derived from frequency tables. Table 1 shows a frequency table for the results of the iMac study; it shows the frequencies of the various response categories. It also shows the relative 65 frequencies, which are the proportion of responses in each category. For example, the relative frequency for "none" of 0.17 = 85/500. Table 1. Frequency Table for the iMac Data. Previous Ownership Frequency Relative Frequency None 85 0.17 Windows 60 0.12 Macintosh 355 0.71 Total 500 1.00 Pie Charts The pie chart in Figure 1 shows the results of the iMac study. In a pie chart, each category is represented by a slice of the pie. The area of the slice is proportional to the percentage of responses in the category. This is simply the relative frequency multiplied by 100. Although most iMac purchasers were Macintosh owners, Apple was encouraged by the 12% of purchasers who were former Windows users, and by the 17% of purchasers who were buying a computer for the first time. None 17% 12% Macintosh Windows 71% Figure 1. Pie chart of iMac purchases illustrating frequencies of previous computer ownership. 66 Pie charts are effective for displaying the relative frequencies of a small number of categories. They are not recommended, however, when you have a large number of categories. Pie charts can also be confusing when they are used to compare the outcomes of two different surveys or experiments. In an influential book on the use of graphs, Edward Tufte asserted "The only worse design than a pie chart is several of them." Here is another important point about pie charts. If they are based on a small number of observations, it can be misleading to label the pie slices with percentages. For example, if just 5 people had been interviewed by Apple Computers, and 3 were former Windows users, it would be misleading to display a pie chart with the Windows slice showing 60%. With so few people interviewed, such a large percentage of Windows users might easily have occurred since chance can cause large errors with small samples. In this case, it is better to alert the user of the pie chart to the actual numbers involved. The slices should therefore be labeled with the actual frequencies observed (e.g., 3) instead of with percentages. Bar charts Bar charts can also be used to represent frequencies of different categories. A bar chart of the iMac purchases is shown in Figure 2. Frequencies are shown on the Yaxis and the type of computer previously owned is shown on the X-axis. Typically, the Y-axis shows the number of observations in each category rather than the percentage of observations in each category as is typical in pie charts. 67 None Windows Macintosh 400 Number of Buyers 300 200 100 0 None Windows Macintosh Previous Computer Figure 2. Bar chart of iMac purchases as a function of previous computer ownership. Comparing Distributions Often we need to compare the results of different surveys, or of different conditions within the same overall survey. In this case, we are comparing the "distributions" of responses between the surveys or conditions. Bar charts are often excellent for illustrating differences between two distributions. Figure 3 shows the number of people playing card games at the Yahoo web site on a Sunday and on a Wednesday in the spring of 2001. We see that there were more players overall on Wednesday compared to Sunday. The number of people playing Pinochle was nonetheless the same on these two days. In contrast, there were about twice as many people playing hearts on Wednesday as on Sunday. Facts like these emerge clearly from a well-designed bar chart. 68 Canasta Pinochle Euchre Spades 3189 3628 6471 7208 3099 3629 5492 6785 Poker Blackjack Bridge Gin Cribbage Hearts Canasta Pinochle Euchre Spades 0 2000 Wednesday 4000 6000 8000 Sunday Figure 3. A bar chart of the number of people playing different card games on Sunday and Wednesday. The bars in Figure 3 are oriented horizontally rather than vertically. The horizontal format is useful when you have many categories because there is more room for the category labels. We’ll have more to say about bar charts when we consider numerical quantities later in the section Bar Charts. Some graphical mistakes to avoid Don’t get fancy! People sometimes add features to graphs that don’t help to convey their information. For example, 3-dimensional bar charts such as the one shown in Figure 4 are usually not as effective as their two-dimensional counterparts. 69 '!!" &#!" &!!" %#!" %!!" $#!" $!!" #!" !" ()*+" ,-*.)/0" 123-*4)05" Figure 4. A three-dimensional version of Figure 2. Here is another way that fanciness can lead to trouble. Instead of plain bars, it is tempting to substitute meaningful images. For example, Figure 5 presents the iMac data using pictures of computers. The heights of the pictures accurately represent the number of buyers, yet Figure 5 is misleading because the viewer's attention will be captured by areas. The areas can exaggerate the size differences between the groups. In terms of percentages, the ratio of previous Macintosh owners to previous Windows owners is about 6 to 1. But the ratio of the two areas in Figure 5 is about 35 to 1. A biased person wishing to hide the fact that many Windows owners purchased iMacs would be tempted to use Figure 5 instead of Figure 2! Edward Tufte coined the term "lie factor" to refer to the ratio of the size of the effect shown in a graph to the size of the effect shown in the data. He suggests that lie factors greater than 1.05 or less than 0.95 produce unacceptable distortion. 70 400 Number of Buyers 300 200 100 None Windows Macintosh Previous Computer Figure 5. A redrawing of Figure 2 with a lie factor greater than 8. Another distortion in bar charts results from setting the baseline to a value other than zero. The baseline is the bottom of the Y-axis, representing the least number of cases that could have occurred in a category. Normally, but not always, this number should be zero. Figure 6 shows the iMac data with a baseline of 50. Once again, the differences in areas suggests a different story than the true differences in percentages. The number of Windows-switchers seems minuscule compared to its true value of 12%. 71 None Windows Macintosh 400 Number of Buyers 330 260 190 120 50 None Windows Macintosh Previous Computer Figure 6. A redrawing of Figure 2 with a baseline of 50. Finally, we note that it is a serious mistake to use a line graph when the X-axis contains merely qualitative variables. A line graph is essentially a bar graph with the tops of the bars represented by points joined by lines (the rest of the bar is suppressed). Figure 7 inappropriately shows a line graph of the card game data from Yahoo. The drawback to Figure 7 is that it gives the false impression that the games are naturally ordered in a numerical way when, in fact, they are ordered alphabetically. 72 Figure 7. A line graph used inappropriately to depict the number of people playing different card games on Sunday and Wednesday. Summary Pie charts and bar charts can both be effective methods of portraying qualitative data. Bar charts are better when there are more than just a few categories and for comparing two or more distributions. Be careful to avoid creating misleading graphs. 73 Stem and Leaf Displays by David M. Lane Prerequisites • Chapter 1: Distributions Learning Objectives 1. Create and interpret basic stem and leaf displays 2. Create and interpret back-to-back stem and leaf displays 3. Judge whether a stem and leaf display is appropriate for a given data set A stem and leaf display is a graphical method of displaying data. It is particularly useful when your data are not too numerous. In this section, we will explain how to construct and interpret this kind of graph. As usual, we will start with an example. Consider Table 1 that shows the number of touchdown passes (TD passes) thrown by each of the 31 teams in the National Football League in the 2000 season. Table 1. Number of touchdown passes. 37, 33, 33, 32, 29, 28, 28, 23, 22, 22, 22, 21, 21, 21, 20, 20, 19, 19, 18, 18, 18, 18, 16, 15, 14, 14, 14, 12, 12, 9, 6 A stem and leaf display of the data is shown in Figure 1. The left portion of Figure 1 contains the stems. They are the numbers 3, 2, 1, and 0, arranged as a column to the left of the bars. Think of these numbers as 10’s digits. A stem of 3, for example, can be used to represent the 10’s digit in any of the numbers from 30 to 39. The numbers to the right of the bar are leaves, and they represent the 1’s digits. Every leaf in the graph therefore stands for the result of adding the leaf to 10 times its stem. 75 3|2337 2|001112223889 1|2244456888899 0|69 Figure 1. Stem and leaf display of the number of touchdown passes. To make this clear, let us examine Figure 1 more closely. In the top row, the four leaves to the right of stem 3 are 2, 3, 3, and 7. Combined with the stem, these leaves represent the numbers 32, 33, 33, and 37, which are the numbers of TD passes for the first four teams in Table 1. The next row has a stem of 2 and 12 leaves. Together, they represent 12 data points, namely, two occurrences of 20 TD passes, three occurrences of 21 TD passes, three occurrences of 22 TD passes, one occurrence of 23 TD passes, two occurrences of 28 TD passes, and one occurrence of 29 TD passes. We leave it to you to figure out what the third row represents. The fourth row has a stem of 0 and two leaves. It stands for the last two entries in Table 1, namely 9 TD passes and 6 TD passes. (The latter two numbers may be thought of as 09 and 06.) One purpose of a stem and leaf display is to clarify the shape of the distribution. You can see many facts about TD passes more easily in Figure 1 than in Table 1. For example, by looking at the stems and the shape of the plot, you can tell that most of the teams had between 10 and 29 passing TD's, with a few having more and a few having less. The precise numbers of TD passes can be determined by examining the leaves. We can make our figure even more revealing by splitting each stem into two parts. Figure 2 shows how to do this. The top row is reserved for numbers from 35 to 39 and holds only the 37 TD passes made by the first team in Table 1. The second row is reserved for the numbers from 30 to 34 and holds the 32, 33, and 33 TD passes made by the next three teams in the table. You can see for yourself what the other rows represent. 76 3|7 3|233 2|889 2|001112223 1|56888899 1|22444 0|69 Figure 2. Stem and leaf display with the stems split in two. Figure 2 is more revealing than Figure 1 because the latter figure lumps too many values into a single row. Whether you should split stems in a display depends on the exact form of your data. If rows get too long with single stems, you might try splitting them into two or more parts. There is a variation of stem and leaf displays that is useful for comparing distributions. The two distributions are placed back to back along a common column of stems. The result is a “back-to-back stem and leaf display.” Figure 3 shows such a graph. It compares the numbers of TD passes in the 1998 and 2000 seasons. The stems are in the middle, the leaves to the left are for the 1998 data, and the leaves to the right are for the 2000 data. For example, the second-to-last row shows that in 1998 there were teams with 11, 12, and 13 TD passes, and in 2000 there were two teams with 12 and three teams with 14 TD passes. 11 4 3 332 3 8865 2 44331110 2 987776665 1 321 1 7 0 7 233 889 001112223 56888899 22444 69 Figure 3. Back-to-back stem and leaf display. The left side shows the 1998 TD data and the right side shows the 2000 TD data. Figure 3 helps us see that the two seasons were similar, but that only in 1998 did any teams throw more than 40 TD passes. 77 There are two things about the football data that make them easy to graph with stems and leaves. First, the data are limited to whole numbers that can be represented with a one-digit stem and a one-digit leaf. Second, all the numbers are positive. If the data include numbers with three or more digits, or contain decimals, they can be rounded to two-digit accuracy. Negative values are also easily handled. Let us look at another example. Table 2 shows data from the case study Weapons and Aggression. Each value is the mean difference over a series of trials between the times it took an experimental subject to name aggressive words (like “punch”) under two conditions. In one condition, the words were preceded by a non-weapon word such as "bug." In the second condition, the same words were preceded by a weapon word such as "gun" or "knife." The issue addressed by the experiment was whether a preceding weapon word would speed up (or prime) pronunciation of the aggressive word compared to a non-weapon priming word. A positive difference implies greater priming of the aggressive word by the weapon word. Negative differences imply that the priming by the weapon word was less than for a neutral word. Table 2. The effects of priming (thousandths of a second). 43.2, 42.9, 35.6, 25.6, 25.4, 23.6, 20.5, 19.9, 14.4, 12.7, 11.3, 10.2, 10.0, 9.1, 7.5, 5.4, 4.7, 3.8, 2.1, 1.2, -0.2, -6.3, -6.7, -8.8, -10.4, -10.5, -14.9, -14.9, -15.0, -18.5, -27.4 You see that the numbers range from 43.2 to -27.4. The first value indicates that one subject was 43.2 milliseconds faster pronouncing aggressive words when they were preceded by weapon words than when preceded by neutral words. The value -27.4 indicates that another subject was 27.4 milliseconds slower pronouncing aggressive words when they were preceded by weapon words. The data are displayed with stems and leaves in Figure 4. Since stem and leaf displays can only portray two whole digits (one for the stem and one for the leaf) the numbers are first rounded. Thus, the value 43.2 is rounded to 43 and represented with a stem of 4 and a leaf of 3. Similarly, 42.9 is rounded to 43. To represent negative numbers, we simply use negative stems. For example, the bottom row of the figure represents the number –27. The second-to-last row 78 represents the numbers -10, -10, -15, etc. Once again, we have rounded the original values from Table 2. 4|33 3|6 2|00456 1|00134 0|1245589 -0|0679 -1|005559 -2|7 Figure 4. Stem and leaf display with negative numbers and rounding. Observe that the figure contains a row headed by "0" and another headed by "-0.” The stem of 0 is for numbers between 0 and 9, whereas the stem of -0 is for numbers between 0 and -9. For example, the fifth row of the table holds the numbers 1, 2, 4, 5, 5, 8, 9 and the sixth row holds 0, -6, -7, and -9. Values that are exactly 0 before rounding should be split as evenly as possible between the "0" and "-0" rows. In Table 2, none of the values are 0 before rounding. The "0" that appears in the "-0" row comes from the original value of -0.2 in the table. Although stem and leaf displays are unwieldy for large data sets, they are often useful for data sets with up to 200 observations. Figure 5 portrays the distribution of populations of 185 US cities in 1998. To be included, a city had to have between 100,000 and 500,000 residents. 79 4|899 4|6 4|4455 4|333 4|01 3|99 3|677777 3|55 3|223 3|111 2|8899 2|666667 2|444455 2|22333 2|000000 1|88888888888899999999999 1|666666777777 1|444444444444555555555555 1|2222222222222222222333333333 1|000000000000000111111111111111111111111111 Figure 5. Stem and leaf display of populations of 185 US cities with populations between 100,000 and 500,000 in 1988. Since a stem and leaf plot shows only two-place accuracy, we had to round the numbers to the nearest 10,000. For example the largest number (493,559) was rounded to 490,000 and then plotted with a stem of 4 and a leaf of 9. The fourth highest number (463,201) was rounded to 460,000 and plotted with a stem of 4 and a leaf of 6. Thus, the stems represent units of 100,000 and the leaves represent units of 10,000. Notice that each stem value is split into five parts: 0-1, 2-3, 4-5, 6-7, and 8-9. Whether your data can be suitably represented by a stem and leaf display depends on whether they can be rounded without loss of important information. Also, their extreme values must fit into two successive digits, as the data in Figure 5 fit into the 10,000 and 100,000 places (for leaves and stems, respectively). Deciding what kind of graph is best suited to displaying your data thus requires good judgment. Statistics is not just recipes! 80 Histograms by David M. Lane Prerequisites • Chapter 1: Distributions • Chapter 2: Graphing Qualitative Data Learning Objectives 1. Create a grouped frequency distribution 2. Create a histogram based on a grouped frequency distribution 3. Determine an appropriate bin width A histogram is a graphical method for displaying the shape of a distribution. It is particularly useful when there are a large number of observations. We begin with an example consisting of the scores of 642 students on a psychology test. The test consists of 197 items each graded as "correct" or "incorrect." The students' scores ranged from 46 to 167. The first step is to create a frequency table. Unfortunately, a simple frequency table would be too big, containing over 100 rows. To simplify the table, we group scores together as shown in Table 1. Table 1. Grouped Frequency Distribution of Psychology Test Scores Interval's Lower Limit Interval's Upper Limit Class Frequency 39.5 49.5 3 49.5 59.5 10 59.5 69.5 53 69.5 79.5 107 79.5 89.5 147 89.5 99.5 130 99.5 109.5 78 109.5 119.5 59 119.5 129.5 36 81 129.5 139.5 11 139.5 149.5 6 149.5 159.5 1 159.5 169.5 1 To create this table, the range of scores was broken into intervals, called class intervals. The first interval is from 39.5 to 49.5, the second from 49.5 to 59.5, etc. Next, the number of scores falling into each interval was counted to obtain the class frequencies. There are three scores in the first interval, 10 in the second, etc. Class intervals of width 10 provide enough detail about the distribution to be revealing without making the graph too "choppy." More information on choosing the widths of class intervals is presented later in this section. Placing the limits of the class intervals midway between two numbers (e.g., 49.5) ensures that every score will fall in an interval rather than on the boundary between intervals. In a histogram, the class frequencies are represented by bars. The height of each bar corresponds to its class frequency. A histogram of these data is shown in Figure 1. Frequency 150 100 50 39.5 49.5 59.5 69.5 79.5 89.5 99.5 109.5 119.5 129.5 139.5 149.5 159.5 169.5 Figure 1. Histogram of scores on a psychology test. 82 What is Central Tendency? by David M. Lane and Heidi Ziemer Prerequisites • Chapter 1: Distributions • Chapter 2: Stem and Leaf Displays Learning Objectives 1. Identify situations in which knowing the center of a distribution would be valuable 2. Give three different ways the center of a distribution can be defined What is "central tendency," and why do we want to know the central tendency of a group of scores? Let us first try to answer these questions intuitively. Then we will proceed to a more formal discussion. Imagine this situation: You are in a class with just four other students, and the five of you took a 5-point pop quiz. Today your instructor is walking around the room, handing back the quizzes. She stops at your desk and hands you your paper. Written in bold black ink on the front is "3/5." How do you react? Are you happy with your score of 3 or disappointed? How do you decide? You might calculate your percentage correct, realize it is 60%, and be appalled. But it is more likely that when deciding how to react to your performance, you will want additional information. What additional information would you like? If you are like most students, you will immediately ask your neighbors, "Whad'ja get?" and then ask the instructor, "How did the class do?" In other words, the additional information you want is how your quiz score compares to other students' scores. You therefore understand the importance of comparing your score to the class distribution of scores. Should your score of 3 turn out to be among the higher scores then you'll be pleased after all. On the other hand, if 3 is among the lower scores in the class, you won't be quite so happy. This idea of comparing individual scores to a distribution of scores is fundamental to statistics. So let's explore it further, using the same example (the pop quiz you took with your four classmates). Three possible outcomes are shown in Table 1. They are labeled "Dataset A," "Dataset B," and "Dataset C." Which of the three datasets would make you happiest? In other words, in comparing your 121 score with your fellow students' scores, in which dataset would your score of 3 be the most impressive? In Dataset A, everyone's score is 3. This puts your score at the exact center of the distribution. You can draw satisfaction from the fact that you did as well as everyone else. But of course it cuts both ways: everyone else did just as well as you. Table 1. Three possible datasets for the 5-point make-up quiz. Student Dataset A Dataset B Dataset C You 3 3 3 John's 3 4 2 Maria's 3 4 2 Shareecia's 3 4 2 Luther's 3 5 1 Now consider the possibility that the scores are described as in Dataset B. This is a depressing outcome even though your score is no different than the one in Dataset A. The problem is that the other four students had higher grades, putting yours below the center of the distribution. Finally, let's look at Dataset C. This is more like it! All of your classmates score lower than you so your score is above the center of the distribution. Now let's change the example in order to develop more insight into the center of a distribution. Figure 1 shows the results of an experiment on memory for chess positions. Subjects were shown a chess position and then asked to reconstruct it on an empty chess board. The number of pieces correctly placed was recorded. This was repeated for two more chess positions. The scores represent the total number of chess pieces correctly placed for the three chess positions. The maximum possible score was 89. 122 8 05 7 156 6 233 5 168 330 4 06 9420 3 622 2 Figure 1. Back-to-back stem and leaf display. The left side shows the memory scores of the non-players. The right side shows the scores of the tournament players. Two groups are compared. On the left are people who don't play chess. On the right are people who play a great deal (tournament players). It is clear that the location of the center of the distribution for the non-players is much lower than the center of the distribution for the tournament players. We're sure you get the idea now about the center of a distribution. It is time to move beyond intuition. We need a formal definition of the center of a distribution. In fact, we'll offer you three definitions! This is not just generosity on our part. There turn out to be (at least) three different ways of thinking about the center of a distribution, all of them useful in various contexts. In the remainder of this section we attempt to communicate the idea behind each concept. In the succeeding sections we will give statistical measures for these concepts of central tendency. Definitions of Center Now we explain the three different ways of defining the center of a distribution. All three are called measures of central tendency. Balance Scale One definition of central tendency is the point at which the distribution is in balance. Figure 2 shows the distribution of the five numbers 2, 3, 4, 9, 16 placed upon a balance scale. If each number weighs one pound, and is placed at its 123 Measures of Central Tendency by David M. Lane Prerequisites • Chapter 1: Distributions • Chapter 3: Central Tendency Learning Objectives 1. Compute mean 2. Compute median 3. Compute mode In the previous section we saw that there are several ways to define central tendency. This section defines the three most common measures of central tendency: the mean, the median, and the mode. The relationships among these measures of central tendency and the definitions given in the previous section will probably not be obvious to you. This section gives only the basic definitions of the mean, median and mode. A further discussion of the relative merits and proper applications of these statistics is presented in a later section. Arithmetic Mean The arithmetic mean is the most common measure of central tendency. It is simply sum of the numbers divided by the number of numbers. The symbol "μ" is used s of centralthetendency for the mean of a population. The symbol "M" is used for the mean of a sample. The formula for μ is shown below: = where ΣX is the sum of all the numbers in the population and N is the number of numbers in the population. = The formula for M is essentially identical: = = 634 = 20.4516 31 128 = easures of central tendency = where ΣX is the sum of all the numbers in the sample and = of numbers in the sample. N is the number 634 As=an example, of the numbers 1, 2, 3, 6, 8 is 20/5 = 4 regardless of = the=mean 20.4516 31 whether the numbers constitute the entire population or just a sample from the population. Table 1 shows the= number of touchdown (TD) passes thrown by each of the 31 teams (4in+the 7)National Football League in the 2000 season. The mean number of 5.5 is 20.4516 as shown below. touchdown passes=thrown 2 634 = 20.4516 31 al measures of central tendency = = Table 1. Number of touchdown passes. (4 + 7) 2 229, 5028, += 5.5 75) 37,(33,25 33,+32, = 28, 23, 22, 22, 4 22, 21, 21, 21, 20, 20, 19, 19, 18, 18, 18, 18, 16, 15, dditional measures of central tendency 14, 14, 14, 12, 12, 9, 6 (15 + 2 × 20 + 23) 78 = = 19.5 4 4 Although the arithmetic mean ( 25 + 2is not 50the + only 75)"mean" (there is also a geometric mean), it is by far = the most commonly used. Therefore, if the term "mean" is used 4 without specifying whether it is the arithmetic mean, the geometric mean, or some other mean, it is assumed to refer to the arithmetic mean. (15 + 2 × 20 + 23) Median 78 = 19.5 The median is also 4 a frequently used 4 measure of central tendency. The median is = the midpoint of a distribution: the same number of scores is above the median as below it. For the data in Table 1, there are 31 scores. The 16th highest score (which equals 20) is the median because there are 15 scores below the 16th score and 15 129 = scores above the=16th score. The median can also be thought of as the 50th percentile. Computation of the Median When there is an634 odd number of numbers, the median is simply the middle number. =the median = 20.4516 = For example, of 2, 4, and 7 is 4. When there is an even number of 31 numbers, the median is the mean of the two middle numbers. Thus, the median of the numbers 2, 4, 7, 12 is: (4 + 7) = 5.5 2 Mode The mode is the most frequently occurring value. For the data in Table 1, the mode nal measures of central tendency is 18 since more teams (4) had 18 touchdown passes than any other number of touchdown passes. With continuous data, such as response time measured to many decimals, the frequency of each value is one since no two scores will be exactly the ( 25 + 2 50 + 75) same (see = discussion of continuous variables). Therefore the mode of continuous 4 from a grouped frequency distribution. Table 2 shows a data is normally computed grouped frequency distribution for the target response time data. Since the interval with the highest frequency is 600-700, the mode is the middle of that interval (15 + 2 × 20 + 23) 78 (650). 4 = 4 = 19.5 130 Table 2. Grouped frequency distribution. Range 500-600 600-700 700-800 800-900 900-1000 1000-1100 Frequency 3 6 5 5 0 1 131 Measures of Variability by David M. Lane Prerequisites • Chapter 1: Percentiles • Chapter 1: Distributions • Chapter 3: Measures of Central Tendency Learning Objectives 1. Determine the relative variability of two distributions 2. Compute the range 3. Compute the inter-quartile range 4. Compute the variance in the population 5. Estimate the variance from a sample 6. Compute the standard deviation from the variance What is Variability? Variability refers to how "spread out" a group of scores is. To see what we mean by spread out, consider graphs in Figure 1. These graphs represent the scores on two quizzes. The mean score for each quiz is 7.0. Despite the equality of means, you can see that the distributions are quite different. Specifically, the scores on Quiz 1 are more densely packed and those on Quiz 2 are more spread out. The differences among students were much greater on Quiz 2 than on Quiz 1. 142 Quiz 1 7 6 5 4 3 2 1 0 4 5 6 7 8 9 10 143 Quiz 2 5 4 3 2 1 0 4 5 6 7 8 9 10 Figure 1. Bar charts of two quizzes. The terms variability, spread, and dispersion are synonyms, and refer to how spread out a distribution is. Just as in the section on central tendency we discussed measures of the center of a distribution of scores, in this chapter we will discuss measures of the variability of a distribution. There are four frequently used measures of variability: range, interquartile range, variance, and standard deviation. In the next few paragraphs, we will look at each of these four measures of variability in more detail. Range The range is the simplest measure of variability to calculate, and one you have probably encountered many times in your life. The range is simply the highest score minus the lowest score. Let’s take a few examples. What is the range of the following group of numbers: 10, 2, 5, 6, 7, 3, 4? Well, the highest number is 10, and the lowest number is 2, so 10 - 2 = 8. The range is 8. Let’s take another 144 example. Here’s a dataset with 10 numbers: 99, 45, 23, 67, 45, 91, 82, 78, 62, 51. What is the range? The highest number is 99 and the lowest number is 23, so 99 23 equals 76; the range is 76. Now consider the two quizzes shown in Figure 1. On Quiz 1, the lowest score is 5 and the highest score is 9. Therefore, the range is 4. The range on Quiz 2 was larger: the lowest score was 4 and the highest score was 10. Therefore the range is 6. Interquartile Range The interquartile range (IQR) is the range of the middle 50% of the scores in a distribution. It is computed as follows: IQR = 75th percentile - 25th percentile For Quiz 1, the 75th percentile is 8 and the 25th percentile is 6. The interquartile range is therefore 2. For Quiz 2, which has greater spread, the 75th percentile is 9, the 25th percentile is 5, and the interquartile range is 4. Recall that in the discussion of box plots, the 75th percentile was called the upper hinge and the 25th percentile was called the lower hinge. Using this terminology, the interquartile range is referred to as the H-spread. A related measure of variability is called the semi-interquartile range. The semi-interquartile range is defined simply as the interquartile range divided by 2. If a distribution is symmetric, the median plus or minus the semi-interquartile range contains half the scores in the distribution. Variance Variability can also be defined in terms of how close the scores in the distribution are to the middle of the distribution. Using the mean as the measure of the middle of the distribution, the variance is defined as the average squared difference of the scores from the mean. The data from Quiz 1 are shown in Table 1. The mean score is 7.0. Therefore, the column "Deviation from Mean" contains the score minus 7. The column "Squared Deviation" is simply the previous column squared. 145 Table 1. Calculation of Variance for Quiz 1 scores. Scores Deviation from Mean Squared Deviation 9 2 4 9 2 4 9 2 4 8 1 1 8 1 1 8 1 1 8 1 1 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 6 -1 1 6 -1 1 6 -1 1 6 -1 1 6 -1 1 6 -1 1 5 -2 4 5 -2 4 Means 7 0 1.5 One thing that is important to notice is that the mean deviation from the mean is 0. This will always be the case. The mean of the squared deviations is 1.5. Therefore, the variance is 1.5. Analogous calculations with Quiz 2 show that its variance is 6.7. The formula for the variance is: 146 variability variability = ( ) where σ2 is the variance, μ is the mean, and N is the number of numbers. For Quiz f variabilityMeasures ( Nof )variability 1, μ = 7 and = 20. f variability = ( variance ) in a sample is used to estimate the variance in a population, ures of variability If the = then the previous 1 formula underestimates the variance and the following formula ( ) should be used: ( ) = = ( ) ) ) ( =( = = 1 + 2 + 3 + 4 +15 12 = = =3 4 4 2 where s is the estimate of the variance and M is the sample mean. Note that M is ( ) ( a sample) taken from a population the mean of with a mean of μ. Since, in practice, = ) = ( 1 1 +the 2 variance += 3 + 4is+usually 51 ( 12 ) in a sample, this formula is most often used. computed = = 3 1 4 + 1 + 1 + 4 10 the scores 1, 2, 4, and 5 were (2 3)= + (4 3)Let's + (5take=3) a concrete 4 = 4 1example. Assume = = 3.333 (2 4 3 3 1sampled from a larger population. To estimate the variance in the population you s2 as 1would + 2 +compute 3+4+ 5 follows: 12 1 + 2 + 3 + 4 + 5 12 == 3 = =3 = 1 + 2 + 3 + 4 + 5 = 12 4 4 + 4 10 3) = + (4 3) 1 +4+ (52 + 3)3 +=44 + 4 15=+ 31 12 + ( =) 4 = = 3 = 3.333 4 = = 3 4 3 4 1 4 = (1 +3) (2 3)4 ++1(4 + 1 3) + 4 + (5 10 3) = 4 + 1 + 1 + 4 = 10 = 3.333 + (2 3) + (4 = 3) (5 + 3) + (2 3) + (4 3) + (5( 3)) = 44+ 11+ 1 + 4 = 10 = 3.333 3 3 = 3) 3 4 + 1 = 1 3) +4(2 1 3) + (4 3) + (5 + 13+=4 3.333 10 3 3 4 1 = = = 3.333 3 4 1 = ( formulas ) There are alternate that can be easier to use3 if you are doing your calculations with a hand calculator: ( ) = = = = and = = 1(( ( = ) ) ) 1 ( ( 1 = 1 For this example, ) ) ) = ( ( ) = ( ) 1 1 147 (1 + 2 + 4 + 5) 144 = = = 36 4 4 (1 + 2 + 4 + 5) 144 = = = 36 4 4 (1 + 2 + 4 + 5) 144 = 36) = = 36 (46 4 = =42.5 4 (46 36) = = 2.5 4 (46 36) = = 2.5 (46 36) 4 = = 3.333 3 (46 36) as = with the other formula. = 3.333 3 (46 36) Standard Deviation = = 3.333 f Distributions 3 The standard deviation is simply the square root of the variance. This makes the standard deviations of the two quiz distributions 1.225 and 2.588. The standard Distributions deviation is an especially useful measure of variability when the distribution is ) 3( or approximately normal apes of Distributions normal (see Chapter 7) because the proportion of the distribution within a given number of standard deviations from the mean can be ) 3( calculated. For example, 68% of the distribution is within one standard deviation of the mean and 3( approximately 95%)of the distribution is within two standard deviations of( the mean. ) Therefore, if you had a normal distribution with a mean of 50 and a standard deviation of 10, then 68% of the distribution would be between ( and 50) +10 =60. Similarly, about 95% of the distribution would be 50 - 10 = 40 between 50 - 2 x 10 = 30 and 50 + 2 x 10 = 70. The symbol for the population ( the symbol ) standard deviation is σ; for an estimate computed in a sample is s. ( ) normal distributions. The red distribution has a mean of 40 and Figure 2 shows two 3 the blue distribution has a mean of 60 and a standard a standard deviation of 5; ( ) deviation of 10. For the 3 red distribution, 68% of the distribution is between 45 and 55; for the blue distribution, 68% is between 40 and 60. ( ) 3 Sum law I um law I riance Sum law I = = + + = + 148 Figure 2. Normal distributions with standard deviations of 5 and 10. 149 Introduction to Normal Distributions by David M. Lane Prerequisites • Chapter 1: Distributions • Chapter 3: Central Tendency • Chapter 3: Variability Learning Objectives 1. Describe the shape of normal distributions 2. State 7 features of normal distributions The normal distribution is the most important and most widely used distribution in statistics. It is sometimes called the "bell curve," although the tonal qualities of such a bell would be less than pleasing. It is also called the "Gaussian curve" after the mathematician Karl Friedrich Gauss. As you will see in the section on the history of the normal distribution, although Gauss played an important role in its history, de Moivre first discovered the normal distribution. Strictly speaking, it is not correct to talk about "the normal distribution" since there are many normal distributions. Normal distributions can differ in their means and in their standard deviations. Figure 1 shows three normal distributions. The green (left-most) distribution has a mean of -3 and a standard deviation of 0.5, the distribution in red (the middle distribution) has a mean of 0 and a standard deviation of 1, and the distribution in black (right-most) has a mean of 2 and a standard deviation of 3. These as well as all other normal distributions are symmetric with relatively more values at the center of the distribution and relatively few in the tails. 243 Figure 1. Normal distributions differing in mean and standard deviation. The density of the normal distribution (the height for a given value on the x-axis) is shown below. The parameters μ and σ are the mean and standard deviation, respectively, and define the normal distribution. The symbol e is the base of the natural logarithm and π is the constant pi. 1 ( ) 2 Since this is a non-mathematical treatment of statistics, do not worry if this expression confuses you. We will not be referring back to it in later sections. Seven features of normal distributions are listed below. These features are illustrated in more detail in the remaining sections of this chapter. 1. Normal distributions are symmetric around their mean. 2. The mean, median, and mode of a normal distribution are equal. 3. The !area under the normal curve is equal to 1.0. ( )= (1 ) 4.! (Normal distributions are denser in the center and less dense in the tails. )! 5. Normal distributions are defined by two parameters, the mean (μ) and the standard deviation (σ). 6. 68% of the area of a normal distribution is within one standard deviation of the mean. 244 7. Approximately 95% of the area of a normal distribution is within two standard deviations of the mean. 245