* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Acta Innovations • ISSN 2300-5599 • 2015 • no. 17: 22
Stepper motor wikipedia , lookup
Electric machine wikipedia , lookup
Wireless power transfer wikipedia , lookup
Loudspeaker wikipedia , lookup
Spark-gap transmitter wikipedia , lookup
Utility frequency wikipedia , lookup
Electrical substation wikipedia , lookup
Three-phase electric power wikipedia , lookup
History of electric power transmission wikipedia , lookup
Power inverter wikipedia , lookup
Electrical ballast wikipedia , lookup
Loading coil wikipedia , lookup
Pulse-width modulation wikipedia , lookup
Schmitt trigger wikipedia , lookup
Amtrak's 25 Hz traction power system wikipedia , lookup
Magnetic core wikipedia , lookup
Distribution management system wikipedia , lookup
Current source wikipedia , lookup
Variable-frequency drive wikipedia , lookup
Stray voltage wikipedia , lookup
Power MOSFET wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Surge protector wikipedia , lookup
Voltage regulator wikipedia , lookup
Voltage optimisation wikipedia , lookup
Ignition system wikipedia , lookup
Opto-isolator wikipedia , lookup
Mains electricity wikipedia , lookup
Alternating current wikipedia , lookup
Current mirror wikipedia , lookup
Switched-mode power supply wikipedia , lookup
ActaInnovations•ISSN2300-5599•2015•no.17:22-29•22 NataliaPragłowska-Ryłko CracowUniversityofTechnology,InstituteofElectrotechnicsandComputerScience, FacultyofElectricalEngineeringandComputerScience 24WarszawskaStreet,31-155Cracow,[email protected] COMPARISIONOFBUCK-CONVERTERPARAMETERSQUALITYDEPENDINGONCOILSELECTION Abstract Buck-Converters belong to DC/DC converters group. One of the main problems during the design stage of DC/DCconverteristhepropercomponentselection.Theaimofthisarticleistodescribeselectionoftheoptimal inductor for the Buck-Converter, enabling to minimize the device output overvoltage, while getting possiblyhighdeviceefficiency.Inordertoverifythequalityparameters,authormadeanefficiencycomparison ofthebuckconverter,dependingonusedinductor.Conclusionsfromthispaperallowforoptimalselectionof coilsfortheBuck-Converterdependingongivencriteria. Keywords Buck-Converter,Step-downConverter,DC/DCPowerConverter,Overvoltage,Coilselection Introduction Buck-Converter, known also as Step-down Converter, is the basic part of power section in many electronic devices.ItisalsocalledStep-downConverter.Suchconvertersarecommonlyusedinvarioustypesofpower sectionsofmodernelectronicdevices,suchasnotebooksorsmartphones.Onecanfindinliteraturetwotopologies of Step-down Converters: synchronous and nonsynchronous [2]. The synchronous converter has an additionalswitchingkeyinparallelbranch.Inthatcasethetransistorsworkcomplementarywhatmeanswhen one transistor is switched on, the second one is switched off and conversely. However, due to existence of gate-sourcecapacity,itisneededtoincludeadditionaldeadtime,necessaryforproperswitchingcontrol.Often,however,nonsynchronousStep-downConvertersareused. Whatismore,Buck-Converterisapartofbuckfamily.Inthisgrouponecanfind:buck,buck-boostandbuckboost-buck Converters [1]. Buck-Converters work in continuous and discontinuous mode. Generally BuckConverter is used to reduce the input voltage. However this converter can adjust output voltage range from zero to the input voltage value. The main impact on work of this device has proper selection of elements in particularcoil,capacitorandtwoswitches:diodeandtransistor.Properselectionisunderstoodbysmallsize andimprovingqualityofBuck-Converter.Themostimportantcharacteristicsofthebuckconverterareinput and output voltage, nominal current and switching frequency. It is also important to define the quality requirements regarding tolerance to voltage and output current ripples [3]-[5]. The designer must also pay attentiontoeconomicfactors,suchasobtainingapossiblysmallsizeoftheconverter,highefficiencyandlow prices. In this article author presents research results of coil selection impact on mentioned parameters quality of Buck-Converter.Thisisasadevelopmentofconsiderationsmadein[6].IntheliteratureonecanfindtheoreticalthesisaboutworkofBuck-Converter.Inthispaperauthorincludedonlypracticalteststocheckrealworkof Buck-Converterwithdifferentinductors(infigure1markedasL1)andtheirinfluenceonefficiencyandovervoltage. Fig.1.Step-downConvertercircuitdiagram.L1–testedcoil,C1,C2–capacitors,T–MOSFETtransistor,D1–Schottkydiode, Load–resistor,PWM–Pulse-WidthModulation Source:Author’s ActaInnovations•ISSN2300-5599•2015•no.17:22-29•23 ImpactofcoilselectiononsizeandpriceofBuck-Converter In this thesis author analysed work of Buck-Converter with six different inductor models: solenoid (wounded copper wire without any core) as a reference and five inductors with core. Author used few core coil types: DTP, DTMSS, SMD and two bobbin coils. All used coils have the same inductance 330 µH but different core materials,shapesandphysicalparametersasshownbelowinfigure2. Fig.2.DifferentcoiltypesusedinBuck-Converterresearch,fromleft:aircoil,DTMSScoil,biggerbobbincoil,DTPcoil, smallerbobbincoilandSMDcoil Source:Author’s Table1presentsdimensionsandpricesoftestedinductors(showninfigure2),whichaffecttheeconomicaspect.Allinductorshavedifferentshapesasshowninfigure2,sooccupiedspaceintable1isanapproximate value.Theaircoilwasareferenceinductor,whichisfreeofthecoreinfluence. Table1.Coildimensionsandprices Coilsymbol Solenoid DTMSS-27/0,33/2,0 DSz-20/330/6,3 DTP-17,5/0,33/2,8 DSz-14/330/2,2-V DSMD-10/330/0,5 Height [mm] 34 27 18 21 15 5.4 Thickness [mm] 8 15 20 9 14 9 Outsidediameter[mm] 34 27 20 21 14 10 Occupiedspace 3 [cm ] 9.3 10.9 5.7 4.0 2.3 0.3 Price [PLN] 7.00 14.00 4.00 4.20 2.50 2.00 Source:http://www.feryster.com.pl/polski/index.php?lang=pl. Thegraphsinthispaperusesthefollowingshortcuts: § S–solenoid(withoutcore), § DTMSS–DTMSS-27/0.33/2.0(DTMSS-typereactorcoretypeRTMSS), § DSz20–coilDSz-20/330/6.3(biggercoilofDSztypewithcoretypeRSZ), § DTP–coilDTP-17.5/0.33/2.8(DTP-typecoilwithcoretypeRTP), § DSz14–coilDSz-14/330/2.2-V(smallercoilofDSztypewithcoretypeRSZ), § SMD–coilDSMD-10/330/0.5(inductorSMDwithferritecoreNi-ZnRSMDE6H). The use of an appropriate ferromagnetic core increases the self-inductance of the coil, so that you can get smallersizescoilssimilarelectricalpropertiesassolenoid[10].Thesizeoftheelementsisimportantfordesigningprintedcircuitboardsforsmallsizedevices.Whileanalysingeconomicfactorsthemostoptimalintermsof sizeandpriceisSMDcoil.Incontrast,thebiggestandthemostexpensiveisDTMSScoil.DTPcoiliswidelyused inBuck-Convertersbutasonecanseeisneitherthecheapestnorthesmallestone.Anotherideaforachieving smallerdevicesizeispresentedin[7].Thisarticlecanhelptoimproveideaofusingtwoinductorsinsteadof onecoilinclassicBuck-Converters. ActaInnovations•ISSN2300-5599•2015•no.17:22-29•24 Toshowelectricalparameterspracticaltestsweremade.Foundedtestscenarioswereimplementedusinglogic analysercontrollingworkofconvertergatingtransistorandadjustablepowersupply,whichwassettinginput voltage.Withthehelpofmeasuringequipment,whichincludedadigitaloscilloscopeanddigitalmeters,author made practical measurements, in order to investigate the effect of inductor selection on the device parameters. Inthisarticlethefollowingshortcutsareused: ɳ-efficiency[%] f–transistorswitchingfrequency[kHz] I–Buck-Converterinputcurrent[A] VGS–gate-sourcetransistorvoltage[V] Vout–Buck-Converteroutputvoltage[V] Vmax–maximumovervoltageamplitude[V] Vmin–minimumovervoltageamplitude[V] ImpactofcoilselectiononefficiencyinBuck-Converter To show the impact of coil selection on tested device efficiency, the following tests were made. Figure 3a showstheefficiencychangesasafunctionofcurrentforallanalysedcoils.Measurementsweremadeforfollowingcurrentvalues:0.5A,1A,1.5Aand2A,thefrequencyof20kHzandadutycycleof50%,withaloadof 5Ω.Figure3bshowstheefficiencychangesasafunctionoffrequency.Theauthorchoseloadvalue10Ω,input currentof0.5A,dutycycleof50%andfrequencymeasurementvaluesat:20kHz,50kHz,100kHz,200kHz, 300kHzand500kHz. Fig.3.Efficiencychanges:a)asacurrentfunctionwith10Ωload,b)asafrequencyfunctionwith5Ωload,whereη–efficiency[%] Source:Author’s Fromfigure3aonecanseethatwiththecurrentalsoincreasesefficiency.Italsocanbeseenthatthegreatest efficiency in analysed current range are bobbin coil DSz-20, DTP and DTMSS. The lowest efficiency was achieved for the SMD coil. Figure 3b reflecting the efficiency evolution as a function of frequency, confirms earlierfindingsthatasignificantdifferenceinthecoilselectionisnoticeableforfrequenciesuptoabout100 kHz.Asbefore,thehighestefficiencywasobtainedforbobbincoiltypeDSz-20,andthelowestforthesolenoid andtheSMDcoil. Thefollowingfiguresillustratetheefficiencychangesasafunctionoffrequencyfortheresistanceloadof10Ω, inputcurrent0.9Aanddutycycleof75%(figure4a)andtheloadresistanceof5Ω,theinputcurrent0.9Aand dutycycleof75%(figure4b).Inordertomaintaintransparencyandforanalysisusedthreeselectedcoils:solenoid,bobbinDSz-20andSMDcoil,whichhadanaverage,thelargestandthesmallestefficiency.Thefrequency inallgraphsisshowninlogarithmicscale.Measurementpointsatgraphsformfigures4aand4bwereselected forfrequencyvaluesequal10kHz,20kHz,30kHz,50kHz,75kHz,100kHz,150kHzand200kHzand500kHz. ActaInnovations•ISSN2300-5599•2015•no.17:22-29•25 Fig.4.Efficiencychangesasafrequencyfunctionwithload:a)10Ω,b)5Ω,Source:Author’s Figures4aand4bshowtheefficiencyinfrequencyfunctionforthesamecurrentsandvariousloadresistances. InFigure4befficiencyisrelativelylowercomparingtotheefficiencyfromFigure4a,duetolowerinputvoltage, andthuscoupledwithitvoltageVGS,whichisrequiredtoachievethesameinputcurrent.InFigure4aonecan seeasignificantdropofefficiencyforswitchingfrequencyof75kHz.Figure4bshowsthattheminimumefficiencyoccursatafrequencyof200kHz.Changeoftheminimumefficiencypointisdependentonbothcurrent and duty cycle. This phenomenon occurs regardless of the type of coil used in the inverter and is connected withtheresonance[7]. ImpactofcoilselectiononovervoltageinBuck-Converter One of the most important features that define the quality of the output voltage of Step-down converter is outputvoltagepeaksvalues.Overvoltagehasnegativeimpactondeviceworkandmaycausefasterdestruction and affect on electromagnetic compatibility. This test was designed to check the effect of coil selection on output voltage peaks depending on the frequency and current. Presented test results refer to the converter showninFigure1. Thefirstanalysewasmadejustforsolenoidwhichdoesnothavecoreinfluenceandcanbeusedasthereference inductor. In figure 5a one can see output voltage changes in function of time which coming from oscilloscopemeasurements.Comparisonwasmadefortwocurrentvaluesof0.5Aand1A.Infigure5bauthor presentsoutputvoltagesignalforalltestedcoilsinafunctionoftime.Thesignalswereobservedforswitching frequencyof20kHz,dutycycleof50%andBuck-Converterinputcurrentequal0.5A. Fig.5.Outputvoltagetimechangesa)fordifferentcurrentvalueswiththeusageofsolenoid,b)fordifferentcoils Source:Author’s ActaInnovations•ISSN2300-5599•2015•no.17:22-29•26 Analysingfigure5aonecanseethedependenceofvoltagepeaksfromcurrentvalue.Forlesscurrentvaluethe biggest voltage peaks appear with delay. It can be also seen that bigger current value causes elongation of transientstate.Sizeofovervoltagewillbediscussedinthefollowingparagraphs.Ingraphfromfigure5bone canseethatcoilselectionaffectsonovervoltageamplitudeandthetimeofovervoltageoccurrence.Tocheck differencesbetweenovervoltagepeaksthefollowinganalysiswasmade. Thebelowmeasurementsweremadeforfrequencyequal100kHz.Graphsfromfigures6(aandb)showminimumandmaximumvoltagechangesinfunctionofinputcurrentfordutycycle50%.Measurementsweremade forcurrentvaluesof0.2A,0.4A,0.8A,1Aand1.2A. Fig.6.Outputvoltagepeaksfordifferentcurrentswiththeusageofsolenoid,fora)minimumvoltagepeaks,b)maximum voltagepeaks Source:Author’s Graphs in figures 7 (a and b) show minimum and maximum voltage changes in function of input current for dutycycle75%.Measurementsweremadeforcurrentvaluesof0.4A,0.8Aand1.2A. Fig.7.Outputvoltagepeaksfordifferentcurrentswiththeusageofsolenoid,fora)minimumvoltagepeaks,b)maximum voltagepeaks Source:Author’s Analysingthegraphsabove(infigures6a,band7a,b)itcanbeconcludedthattheincreaseofinputcurrent, significantlyfloatsonthevalueoftheoutputvoltagepeaks,whichisparticularlyvisibletothedutycycleequal 50%.Moreover,theloadvoltagepeaksincreaseexponentiallyduringcurrentchanges.Inthecaseoftheduty ActaInnovations•ISSN2300-5599•2015•no.17:22-29•27 cycleof75%overvoltagechangesarelessnoticeable,butthetrendisthesame.Tocompareovervoltagesize, abovefigureshavethesamerangeofy-axis. Figures8aand8bshowstheoutputvoltageamplitudechangesasafunctionoffrequency.Duetotheasymmetry of voltage peaks, the author made a distinction between positive and negative peaks. Measurement pointswereselectedforfrequencyvaluesequal20kHz,50kHz,100kHzand200kHz. Fig.8.Peakvalueschanges:a)maximum,b)minimum,asafunctionoffrequencyforinputcurrentof0.5A,Source:Author’s Accordingtotheoreticalconsiderationsfrom[5],[11]-[13],forthelowerfrequenciesarevoltagepeakshave bigger values. In the case of a positive voltage peaks the author measured values from about 1.1 to 1.35 V, whileinthecaseofanegativepeak,recordedvaluesfrom-1to-1.3Volts.Forthelowerfrequencythesmallest overvoltageoccurredforthebobbincoiltypeDSz-20whilethebiggestovervoltageappearedforsolenoidand DTMSScoil. Figure9aand9bshowtheoutputvoltagepeaksforcurrentequal1Aanddutycycleof50%.Forthiscaseto maintaintheparametersofvoltageandcurrent,themeasurementsweremadeonlyfortwofrequencyvalues: 50kHzand100kHz. Fig.9.Peakvalueschanges:a)maximum,b)minimum,asafunctionoffrequencyforinputcurrentof1A Source:Author’s Analyzingthefigures9aand9bonecanseethatbothpositiveandnegativeovervoltagetheworstresultswere obtainedforthesolenoid,whilethebestresultsforbobbincoils:DSz-14andDSz-20.Despitethelimitednumber of measurement results, this study gives important information, because it allows observing the scale of overvoltagegrowthduringcurrentincrease.Inthisstudy,appropriatecoilselectionaffectsonthedevicequali ActaInnovations•ISSN2300-5599•2015•no.17:22-29•28 ty in terms of overvoltage for lower frequencies. With increasing frequency, these differences become less visible. Summaryandconclusions ThearticlepresentsstudiesresultsofusingdifferentinductortypesimpactonBuck-Converterparameters.All presentedresultscomefromrealtests.Authorobtainedtheinfluenceofcoilselectiononoutputvoltagecharacteristicsandefficiencychanges,dependingonfrequencyandcurrent.Thispaperalsoshowshowtheproper coilselectionhelpstoreduceappearingovervoltageontheoutputoftheBuck-Converter. Itishardtoindicatejustonecoilthatgivesthebestresults.Thefirstimportantproblemistoreducesizeof power supply section. Clients usually want to have possibly cheap and small devices. Designers try to make deviceswithhighefficiencyandlimitedovervoltage.Tominimizeconvertersizeandreduceprice,authorrecommendusingSMDcoil.Thiscoilisnoticeablycheaperthanothercoilsandtakesthesmallestsurface.Inthe otherhandthebestresult,inthecaseofovervoltage,wecangetusingbiggerbobbincoil(DSz-20).Thisbobbin coilalsoallowsachievingthebiggestefficiencyandhasmediumsize.PresentedtestscanbeusedduringprojectingStep-downConverters. References [1]WuTH.,Theoriginofconverters,FutureEnergyElectronicsConference(IFEEC),20131stInternational,pp. 611-617. [2] Nowakowski R., Tang N., Efficiency of synchronous versus nonsynchronous buck converters, Texas InstrumentsInc.,2009[Online].Available:http://www.ti.com/lit/an/slyt358/slyt358.pdf [3]NowakM.,BarlikR.,Poradnikinżynieraenergoelektronika,WydawnictwoNaukowo-Techniczne,Warszawa 1998,pp.160-168. [4] Janke W., Techniki opisu impulsowych przetwornic napięcia stałego, Przegląd Elektrotechniczny, nr. 11b, 2012,pp.5-10. [5] Górecki, K. Zarębski, J., Wpływ doboru elementów półprzewodnikowych na charakterystyki przetwornicy buck,Elektronika:konstrukcje,technologie,zastosowania,Vol.52,nr.8,2011,pp.124-127. [6] Pragłowska-Ryłko N., Analiza wpływu doboru cewki na pracę przetwornicy DC/DC obniżającej napięcie, Elektronika:konstrukcje,technologie,zastosowania,nr.5,2015,pp.50-52. [7]AminiM.R.,FarzanehfardH.,SwitchedresonatorDC/DCconverterwithasingleswitchandsmallinductors, PowerElectronics,IET(Volume:7,Issue:6),2014,pp.1331-1339. [8] Milashevski I., Galkin I., Tetervenok O., Assessment of Buck Converter Powered by Current or Voltage SourcesforLEDsLuminary,ElectronicsConference(BEC),201213thBiennialBaltic,pp.239-242. [9]LiuS.,LiuJ.,YangY.,ZhongJ.,DesignofIntrinsicallySafeBuckDC/DCConverters,ElectricalMachinesand Systems,Vol.2,ICEMS2005China,pp.1327-1331. [10]GóreckiK.,DetkaK.,Wpływdoborurdzeniadławikananieizotermicznecharakterystykiprzetwornicybuck, Elektronika:konstrukcje,technologie,zastosowania,Vol.52,nr10,2011,pp.76-78. [11] Górecki K., Zarębski J., Pomiary elementów i układów elektronicznych, Wyd. Tekst Sp. z o.o., Bydgoszcz, 2009 [12] Górecki K., Stepowicz W.J.: Influence of Inductor Models on the Characteristics of the Buck and Boost Converters. XXX International Conference on Fundamentals of Electrotechnics and Circuit Theory IC-SPETO 2007,Ustroń,2007,pp.71. ActaInnovations•ISSN2300-5599•2015•no.17:22-29•29 [13] Górecki K., Stepowicz W.J., Comparison of Inductor Models Used in Analysis of the Buck and Boost Converters,InformacijeMIDEM,Vol.38,No.1,2008,pp.20-25.