Download Lesson 4: The Binomial Theorem

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Ethnomathematics wikipedia , lookup

Mathematics and architecture wikipedia , lookup

List of important publications in mathematics wikipedia , lookup

History of trigonometry wikipedia , lookup

Vincent's theorem wikipedia , lookup

Fundamental theorem of calculus wikipedia , lookup

Elementary mathematics wikipedia , lookup

Theorem wikipedia , lookup

Pythagorean theorem wikipedia , lookup

Secondary School Mathematics Curriculum Improvement Study wikipedia , lookup

Fundamental theorem of algebra wikipedia , lookup

Proofs of Fermat's little theorem wikipedia , lookup

Binomial coefficient wikipedia , lookup

Negative binomial distribution wikipedia , lookup

Transcript
Lesson 4
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
PRECALCULUS AND ADVANCED TOPICS
Lesson 4: The Binomial Theorem
Student Outcomes
๏‚ง
Students discover patterns in the expansion of binomials, leading to the understanding of the binomial
theorem.
๏‚ง
Students use Pascalโ€™s triangle to find the coefficients of binomial expansions.
๏‚ง
Students use binomial coefficients ๐ถ(๐‘›, ๐‘˜) to find the coefficients of binomial expansions.
Lesson Notes
Students begin the lesson by working through an exercise verifying that a given complex number is a solution to a given
polynomial. By carrying out the tedious process of repeatedly multiplying binomial factors together, they should come
to appreciate the usefulness of finding a quicker way to expand binomials raised to whole number powers.
Students generate Pascalโ€™s triangle recursively, and then the binomial coefficients ๐ถ(๐‘›, ๐‘˜) =
๐‘›!
are introduced,
๐‘˜!(๐‘›โˆ’๐‘˜)!
th
and students connect the binomial coefficient ๐ถ(๐‘›, ๐‘˜) to the ๐‘˜ element of row ๐‘› of Pascalโ€™s triangle (counting the top
row of the triangle as row 0). Students then connect the entries in row ๐‘› of Pascalโ€™s triangle to the coefficients of the
expansion of the binomial (๐‘ข + ๐‘ฃ)๐‘› . These connections are made explicit in the binomial theorem, which students apply
to expand binomial expressions and to find specific terms in expansions (A-APR.C.5).
Consider splitting this lesson over two days, introducing Pascalโ€™s triangle and the binomial coefficients ๐ถ(๐‘›, ๐‘˜) on the
first day and then connecting these to the binomial expansion (๐‘ข + ๐‘ฃ)๐‘› and presenting the binomial theorem on the
second day.
Classwork
Exercises 1โ€“2 (4 minutes)
Assign half of the students to complete Exercise 1 and half of them to complete Exercise 2.
Students should complete the exercise individually. After a few minutes, have them verify
their responses with a partner assigned to the same exercise. Early finishers could write
their solving process on chart paper to be displayed and explained when their classmates
have completed the exercise. Review the exercises as an entire class. The purpose of this
exercise is to show how tedious it can be to expand a binomial to higher powers so that
students see the value in the formula presented in the binomial theorem.
Lesson 4:
The Binomial Theorem
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M3-TE-1.3.0-08.2015
Scaffolding:
๏‚ง Show that ๐‘ง = 1 + ๐‘– is a
solution to a simpler
polynomial such as
๐‘ง 2 โˆ’ 2๐‘ง + 2.
๏‚ง Challenge advanced
learners to explain how
properties of complex
conjugates could be used
to verify 1 โˆ’ ๐‘– is a solution
if they know that 1 + ๐‘– is a
solution.
56
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 4
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
PRECALCULUS AND ADVANCED TOPICS
Exercises
Show that ๐’› = ๐Ÿ + ๐’Š is a solution to the fourth degree polynomial equation ๐’›๐Ÿ’ โˆ’ ๐’›๐Ÿ‘ + ๐Ÿ‘๐’›๐Ÿ โˆ’ ๐Ÿ’๐’› + ๐Ÿ” = ๐ŸŽ.
1.
If (๐Ÿ + ๐’Š)๐Ÿ’ โˆ’ (๐Ÿ + ๐’Š)๐Ÿ‘ + ๐Ÿ‘(๐Ÿ + ๐’Š)๐Ÿ โˆ’ ๐Ÿ’(๐Ÿ + ๐’Š) + ๐Ÿ” = ๐ŸŽ, then ๐’› = ๐Ÿ + ๐’Š is a solution.
(๐Ÿ + ๐’Š)๐Ÿ = ๐Ÿ๐Ÿ + ๐Ÿ(๐’Š)(๐’Š) + ๐’Š๐Ÿ = ๐Ÿ๐’Š
(๐Ÿ + ๐’Š)๐Ÿ‘ = (๐Ÿ + ๐’Š)(๐Ÿ + ๐’Š)๐Ÿ = (๐Ÿ + ๐’Š)(๐Ÿ๐’Š) = โˆ’๐Ÿ + ๐Ÿ๐’Š
(๐Ÿ + ๐’Š)๐Ÿ’ = ((๐Ÿ + ๐’Š)๐Ÿ )๐Ÿ = (๐Ÿ๐’Š)๐Ÿ = ๐Ÿ’๐’Š๐Ÿ = โˆ’๐Ÿ’
(๐Ÿ + ๐’Š)๐Ÿ’ โˆ’ (๐Ÿ + ๐’Š)๐Ÿ‘ + ๐Ÿ‘(๐Ÿ + ๐’Š)๐Ÿ โˆ’ ๐Ÿ’(๐Ÿ + ๐’Š) + ๐Ÿ” = โˆ’๐Ÿ’ โˆ’ (โˆ’๐Ÿ + ๐Ÿ๐’Š) + ๐Ÿ‘(๐Ÿ๐’Š) โˆ’ ๐Ÿ’(๐Ÿ + ๐’Š) + ๐Ÿ”
= โˆ’๐Ÿ’ + ๐Ÿ โˆ’ ๐Ÿ๐’Š + ๐Ÿ”๐’Š โˆ’ ๐Ÿ’ โˆ’ ๐Ÿ’๐’Š + ๐Ÿ”
=๐ŸŽ
Show that ๐’› = ๐Ÿ โˆ’ ๐’Š is a solution to the fourth degree polynomial equation ๐’›๐Ÿ’ โˆ’ ๐’›๐Ÿ‘ + ๐Ÿ‘๐’›๐Ÿ โˆ’ ๐Ÿ’๐’› + ๐Ÿ” = ๐ŸŽ.
2.
If (๐Ÿ โˆ’ ๐’Š)๐Ÿ’ โˆ’ (๐Ÿ โˆ’ ๐’Š)๐Ÿ‘ + ๐Ÿ‘(๐Ÿ โˆ’ ๐’Š)๐Ÿ โˆ’ ๐Ÿ’(๐Ÿ โˆ’ ๐’Š) + ๐Ÿ” = ๐ŸŽ, then ๐’› = ๐Ÿ โˆ’ ๐’Š is a solution.
(๐Ÿ โˆ’ ๐’Š)๐Ÿ = ๐Ÿ๐Ÿ + ๐Ÿ(๐Ÿ)(โˆ’๐’Š) + (โˆ’๐’Š)๐Ÿ = โˆ’๐Ÿ๐’Š
(๐Ÿ โˆ’ ๐’Š)๐Ÿ‘ = (๐Ÿ โˆ’ ๐’Š)(๐Ÿ โˆ’ ๐’Š)๐Ÿ = (๐Ÿ โˆ’ ๐’Š)(โˆ’๐Ÿ๐’Š) = โˆ’๐Ÿ โˆ’ ๐Ÿ๐’Š
(๐Ÿ โˆ’ ๐’Š)๐Ÿ’ = ((๐Ÿ โˆ’ ๐’Š)๐Ÿ )๐Ÿ = (โˆ’๐Ÿ๐’Š)๐Ÿ = ๐Ÿ’๐’Š๐Ÿ = โˆ’๐Ÿ’
(๐Ÿ โˆ’ ๐’Š)๐Ÿ’ โˆ’ (๐Ÿ โˆ’ ๐’Š)๐Ÿ‘ + ๐Ÿ‘(๐Ÿ โˆ’ ๐’Š)๐Ÿ โˆ’ ๐Ÿ’(๐Ÿ โˆ’ ๐’Š) + ๐Ÿ” = โˆ’๐Ÿ’ โˆ’ (โˆ’๐Ÿ โˆ’ ๐Ÿ๐’Š) + ๐Ÿ‘(โˆ’๐Ÿ๐’Š) โˆ’ ๐Ÿ’(๐Ÿ โˆ’ ๐’Š) + ๐Ÿ”
= โˆ’๐Ÿ’ + ๐Ÿ + ๐Ÿ๐’Š โˆ’ ๐Ÿ”๐’Š โˆ’ ๐Ÿ’ + ๐Ÿ’๐’Š + ๐Ÿ”
=๐ŸŽ
Discussion (8 minutes)
๏‚ง
What was most challenging or frustrating about verifying the solution in the previous exercises?
๏ƒบ
๏‚ง
How do you think these issues would be affected by the degree of the polynomial for which you are verifying a
solution?
๏ƒบ
๏‚ง
The process becomes even more tedious and time consuming as the number of terms and degree of the
polynomial increase.
Though it is tedious to substitute and simplify expressions to verify the solutions to polynomials, it is an
important component to solving polynomials with complex solutions. What strategies did you use to try to
expedite the process of simplifying in the exercise?
๏ƒบ
๏‚ง
It is tedious to carry out all the arithmetic needed to verify the solution.
Simplifying binomials of lesser degree and then applying those expressions to simplify binomials of
higher degree helps to expedite the process of simplifying.
Instead of looking at specific complex numbers such as 1 + ๐‘– or 1 โˆ’ ๐‘–, letโ€™s look at any binomial expression
๐‘ข + ๐‘ฃ where ๐‘ข and ๐‘ฃ can be numbers or expressions such as ๐‘ฅ, 2๐‘ฅ๐‘ฆ, ๐‘Ž๐‘, etc. Letโ€™s suppose that we could
write any expression (๐‘ข + ๐‘ฃ)๐‘› in expanded form without having to multiply binomials repeatedly. We know
how to do this for a few values of ๐‘›. How can we write an expression equivalent to (๐‘ข + ๐‘ฃ)0 in expanded
form? What about (๐‘ข + ๐‘ฃ)1 ?
๏ƒบ
(๐‘ข + ๐‘ฃ)0 = 1; (๐‘ข + ๐‘ฃ)1 = ๐‘ข + ๐‘ฃ
Lesson 4:
The Binomial Theorem
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M3-TE-1.3.0-08.2015
57
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 4
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
PRECALCULUS AND ADVANCED TOPICS
๏‚ง
You might also know an expanded expression to represent quadratic polynomials. What is the expanded form
of the expression (๐‘ข + ๐‘ฃ)2 ?
๏ƒบ
๐‘ข2 + 2๐‘ข๐‘ฃ + ๐‘ฃ 2
๏‚ง
Our goal for this lesson is to find a quick way to expand polynomials of higher degree. We return to this task in
a bit.
๏‚ง
Pascalโ€™s triangle is a triangular configuration of numbers that is constructed recursively.
1
Row 0:
Row 1:
Row 2:
Row 3:
Row 4:
Row 5:
1
1
1
1
2
3
1
4
1
โ‹ฎ
5
โ‹ฎ
1
3
6
10
โ‹ฎ
1
4
10
โ‹ฎ
1
5
โ‹ฎ
1
โ‹ฎ
๏‚ง
Rows in the triangle are generated recursively. The row at the top containing a single 1 is counted as Row 0.
Row 1 contains two 1โ€™s. To build a row from the row above it, we start with a 1, written to the left of the
position of the 1 from the previous row. In the next space, which is positioned horizontally between two
elements in the row above, we add the elements in the upper row that are to the left and the right of the
current position. That is, to generate Row 5 of the table, we start with a 1 and then add 1 + 4 = 5,
4 + 6 = 10, 6 + 4 = 10, 4 + 1 = 5 across the row and end with another 1.
๏‚ง
Now we want to generate Row 6 of Pascalโ€™s triangle. Allow students to suggest the entries as you record them
in the triangle. Talk through the process of calculating each entry in Row 6: 1, then 1 + 5 = 6 for the second
entry, then 5 + 10 = 15 for the third entry, etc.
Row 0:
Row 1:
Row 2:
Row 3:
Row 4:
Row 5:
Row 6:
๏‚ง
1
1
1
1
1
1
1
3
4
5
6
1
2
6
10
15
1
3
1
4
10
20
1
5
15
1
6
1
Though its name comes from the French mathematician Blaise Pascal (1623โ€“1662) who published the triangle
in the Treatise on the Arithmetic Triangle in France in 1654, the use of the triangle predates Pascal. The figure
on the following page was used as early as the thirteenth century and was known in China as Yang Huiโ€™s
triangle. The markings in the circles on the following page are Chinese rod numbers, and they indicate the
same numbers that we have in Pascalโ€™s triangle above.
Lesson 4:
The Binomial Theorem
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M3-TE-1.3.0-08.2015
58
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 4
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
PRECALCULUS AND ADVANCED TOPICS
โ€œYanghui Triangleโ€ by Yáng Huฤซ is licensed under CC BY 2.0
http://creativecommons.org/licenses/by/2.0
MP.7
&
MP.8
๏‚ง
The Persian mathematician Omar Khayyam (1044โ€“1123 C.E.) also mentioned the triangle in his works.
๏‚ง
What patterns do you notice in the coefficients in the triangle? Think about this, and then share your ideas
with a partner.
๏ƒบ
Each row starts and ends with 1, and each of the rest of the coefficients is found by summing the two
terms above it.
Exercise 3 (2 minutes)
Students should complete the exercise individually and verify their responses with a partner when they are done. Have
a student provide the coefficients for each row at the appropriate time.
3.
Based on the patterns seen in Pascalโ€™s triangle, what would be the coefficients of Rows 7 and 8 in the triangle?
Write the coefficients of the triangle beneath the part of the triangle shown.
Row 0:
Row 1:
Row 2:
Row 3:
Row 4:
Row 5:
Row 6:
Row 7:
Row 8:
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
Lesson 4:
๐Ÿ•
๐Ÿ–
๐Ÿ’
๐Ÿ”
1
๐Ÿ‘
๐Ÿ“
1
๐Ÿ”
๐Ÿ๐Ÿ“
๐Ÿ
๐Ÿ’
๐Ÿ๐ŸŽ
๐Ÿ๐ŸŽ
๐Ÿ‘๐Ÿ“
๐Ÿ“๐Ÿ”
๐Ÿ
๐Ÿ‘
๐Ÿ๐ŸŽ
๐Ÿ๐Ÿ
๐Ÿ๐Ÿ–
๐Ÿ
๐Ÿ
๐Ÿ๐Ÿ“
๐Ÿ‘๐Ÿ“
๐Ÿ•๐ŸŽ
The Binomial Theorem
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M3-TE-1.3.0-08.2015
๐Ÿ
๐Ÿ“
๐Ÿ
๐Ÿ”
๐Ÿ
๐Ÿ๐Ÿ
๐Ÿ“๐Ÿ”
๐Ÿ•
๐Ÿ๐Ÿ–
๐Ÿ
๐Ÿ–
๐Ÿ
59
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
NYS COMMON CORE MATHEMATICS CURRICULUM
Lesson 4
M3
PRECALCULUS AND ADVANCED TOPICS
Discussion (2 minutes)
๏‚ง
There is a way to calculate an entry of Pascalโ€™s triangle without writing out the whole triangle, but we first
need to cover the idea of a factorial, which we denote by ๐‘›! for integers ๐‘› โ‰ฅ 0. First, we define 0! = 1. Then,
if ๐‘› > 0, we define ๐‘›! to be the product of all positive integers less than or equal to ๐‘›. For example, 2! = 2 โ‹… 1
and 3! = 3 โ‹… 2 โ‹… 1 = 6. What are 4! and 5!?
4! = 4 โ‹… 3 โ‹… 2 โ‹… 1 = 24 and 5! = 5 โ‹… 4 โ‹… 3 โ‹… 2 โ‹… 1 = 120
๏ƒบ
๏‚ง
Then, for integers ๐‘› โ‰ฅ 0 and ๐‘˜ โ‰ฅ ๐‘›, we define the quantity ๐ถ(๐‘›, ๐‘˜) =
๐ถ(6,4) =
6!
6โ‹…5โ‹…4โ‹…3โ‹…2โ‹…1
6โ‹…5
=
=
= 15.
4!โ‹…2! (4โ‹…3โ‹…2โ‹…1)(2โ‹…1) 2โ‹…1
๐‘›!
. For example,
๐‘˜!(๐‘›โˆ’๐‘˜)!
Exercises 4โ€“7 (6 minutes)
In these exercises, students practice calculating simple factorials and dividing factorials. Encourage students to write out
the products and simplify the expression before calculating the factorials. Have students complete these exercises in
pairs. Quickly debrief the answers before continuing, making sure that students understand that we can generate Row ๐‘›
of Pascalโ€™s triangle by calculating the quantities ๐ถ(๐‘›, ๐‘˜) for 0 โ‰ค ๐‘˜ โ‰ค ๐‘›.
4.
Calculate the following factorials.
a.
๐Ÿ”!
๐Ÿ”! = ๐Ÿ” โ‹… ๐Ÿ“ โ‹… ๐Ÿ’ โ‹… ๐Ÿ‘ โ‹… ๐Ÿ โ‹… ๐Ÿ = ๐Ÿ•๐Ÿ๐ŸŽ
b.
๐Ÿ๐ŸŽ!
๐Ÿ๐ŸŽ! = ๐Ÿ๐ŸŽ โ‹… ๐Ÿ— โ‹… ๐Ÿ– โ‹… ๐Ÿ• โ‹… ๐Ÿ” โ‹… ๐Ÿ“ โ‹… ๐Ÿ’ โ‹… ๐Ÿ‘ โ‹… ๐Ÿ โ‹… ๐Ÿ = ๐Ÿ‘โ€†๐Ÿ”๐Ÿ๐Ÿ–โ€†๐Ÿ–๐ŸŽ๐ŸŽ
5.
Calculate the value of the following factorial expressions.
a.
๐Ÿ•!
๐Ÿ”!
๐Ÿ•! ๐Ÿ• โ‹… ๐Ÿ” โ‹… ๐Ÿ“ โ‹… ๐Ÿ’ โ‹… ๐Ÿ‘ โ‹… ๐Ÿ โ‹… ๐Ÿ
=
=๐Ÿ•
๐Ÿ”!
๐Ÿ”โ‹…๐Ÿ“โ‹…๐Ÿ’โ‹…๐Ÿ‘โ‹…๐Ÿโ‹…๐Ÿ
b.
๐Ÿ๐ŸŽ!
๐Ÿ”!
๐Ÿ๐ŸŽ! ๐Ÿ๐ŸŽ โ‹… ๐Ÿ— โ‹… ๐Ÿ– โ‹… ๐Ÿ• โ‹… ๐Ÿ” โ‹… ๐Ÿ“ โ‹… ๐Ÿ’ โ‹… ๐Ÿ‘ โ‹… ๐Ÿ โ‹… ๐Ÿ
=
= ๐Ÿ๐ŸŽ โ‹… ๐Ÿ— โ‹… ๐Ÿ– โ‹… ๐Ÿ• = ๐Ÿ“๐ŸŽ๐Ÿ’๐ŸŽ
๐Ÿ”!
๐Ÿ”โ‹…๐Ÿ“โ‹…๐Ÿ’โ‹…๐Ÿ‘โ‹…๐Ÿโ‹…๐Ÿ
c.
๐Ÿ–!
๐Ÿ“!
๐Ÿ–! ๐Ÿ– โ‹… ๐Ÿ• โ‹… ๐Ÿ” โ‹… ๐Ÿ“ โ‹… ๐Ÿ’ โ‹… ๐Ÿ‘ โ‹… ๐Ÿ โ‹… ๐Ÿ
=
= ๐Ÿ– โ‹… ๐Ÿ• โ‹… ๐Ÿ” = ๐Ÿ‘๐Ÿ‘๐Ÿ”
๐Ÿ“!
๐Ÿ“โ‹…๐Ÿ’โ‹…๐Ÿ‘โ‹…๐Ÿโ‹…๐Ÿ
Lesson 4:
The Binomial Theorem
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M3-TE-1.3.0-08.2015
60
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 4
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
PRECALCULUS AND ADVANCED TOPICS
d.
๐Ÿ๐Ÿ!
๐Ÿ๐ŸŽ!
๐Ÿ๐Ÿ! ๐Ÿ๐Ÿ โ‹… ๐Ÿ๐Ÿ โ‹… ๐Ÿ๐ŸŽ โ‹… ๐Ÿ— โ‹… ๐Ÿ– โ‹… ๐Ÿ• โ‹… ๐Ÿ” โ‹… ๐Ÿ“ โ‹… ๐Ÿ’ โ‹… ๐Ÿ‘ โ‹… ๐Ÿ โ‹… ๐Ÿ
=
= ๐Ÿ๐Ÿ โ‹… ๐Ÿ๐Ÿ = ๐Ÿ๐Ÿ‘๐Ÿ
๐Ÿ๐ŸŽ!
๐Ÿ๐ŸŽ โ‹… ๐Ÿ— โ‹… ๐Ÿ– โ‹… ๐Ÿ• โ‹… ๐Ÿ” โ‹… ๐Ÿ“ โ‹… ๐Ÿ’ โ‹… ๐Ÿ‘ โ‹… ๐Ÿ โ‹… ๐Ÿ
6.
Calculate the following quantities.
a.
๐‘ช(๐Ÿ, ๐ŸŽ) and ๐‘ช(๐Ÿ, ๐Ÿ)
๐‘ช(๐Ÿ, ๐ŸŽ) =
b.
๐‘ช(๐Ÿ, ๐ŸŽ), ๐‘ช(๐Ÿ, ๐Ÿ), and ๐‘ช(๐Ÿ, ๐Ÿ)
๐‘ช(๐Ÿ, ๐ŸŽ) =
c.
๐Ÿ!
๐Ÿ!
= ๐Ÿ and ๐‘ช(๐Ÿ, ๐Ÿ) =
=๐Ÿ
๐ŸŽ!๐Ÿ!
๐ŸŽ!๐Ÿ!
๐Ÿ!
๐Ÿ!
๐Ÿ!
= ๐Ÿ, ๐‘ช(๐Ÿ, ๐Ÿ) =
= ๐Ÿ, and ๐‘ช(๐Ÿ, ๐Ÿ) =
=๐Ÿ
๐ŸŽ!๐Ÿ!
๐Ÿ!๐Ÿ!
๐Ÿ!๐ŸŽ!
๐‘ช(๐Ÿ‘, ๐ŸŽ), ๐‘ช(๐Ÿ‘, ๐Ÿ), ๐‘ช(๐Ÿ‘, ๐Ÿ), and ๐‘ช(๐Ÿ‘, ๐Ÿ‘)
๐‘ช(๐Ÿ‘, ๐ŸŽ) = (
d.
๐‘ช(๐Ÿ’, ๐ŸŽ), ๐‘ช(๐Ÿ’, ๐Ÿ), ๐‘ช(๐Ÿ’, ๐Ÿ), ๐‘ช(๐Ÿ’, ๐Ÿ‘), and ๐‘ช(๐Ÿ’, ๐Ÿ’)
๐‘ช(๐Ÿ’, ๐ŸŽ) =
7.
MP.7
๐Ÿ‘!
๐Ÿ‘!
๐Ÿ‘!
๐Ÿ‘!
= ๐Ÿ, ๐‘ช(๐Ÿ‘, ๐Ÿ) =
= ๐Ÿ‘, ๐‘ช(๐Ÿ‘, ๐Ÿ) =
= ๐Ÿ‘, and ๐‘ช(๐Ÿ‘, ๐Ÿ‘) =
=๐Ÿ
๐ŸŽ!๐Ÿ‘!)
๐Ÿ!๐Ÿ!
๐Ÿ!๐Ÿ!
๐Ÿ‘!๐ŸŽ!
๐Ÿ’!
๐Ÿ’!
๐Ÿ’!
๐Ÿ’!
๐Ÿ’!
= ๐Ÿ, ๐‘ช(๐Ÿ’, ๐Ÿ) =
= ๐Ÿ’, ๐‘ช(๐Ÿ’, ๐Ÿ) =
= ๐Ÿ”, ๐‘ช(๐Ÿ’, ๐Ÿ‘) =
= ๐Ÿ’, and ๐‘ช(๐Ÿ’, ๐Ÿ’) =
=๐Ÿ
๐ŸŽ!๐Ÿ’!
๐Ÿ!๐Ÿ‘!
๐Ÿ!๐Ÿ!
๐Ÿ‘!๐Ÿ!
๐Ÿ’!๐ŸŽ!
What patterns do you see in Exercise 6?
The numbers ๐‘ช(๐’, ๐’Œ) for ๐Ÿ โ‰ค ๐’ โ‰ค ๐Ÿ’ give the same numbers as in Pascalโ€™s triangle.
Also, it appears that ๐‘ช(๐’, ๐ŸŽ) = ๐Ÿ and ๐‘ช(๐’, ๐’) = ๐Ÿ for each ๐’.
Exercises 8โ€“11 (7 minutes)
We now return to looking for a shortcut to expanding a binomial expression. In these exercises, students connect the
binomial coefficients ๐ถ(๐‘›, ๐‘˜) to the coefficients of the binomial expansion (๐‘ข + ๐‘ฃ)๐‘› .
Have the students complete these exercises in pairs. At an appropriate time, have students display their solutions.
8.
Expand the expression (๐’– + ๐’—)๐Ÿ‘.
(๐’– + ๐’—)๐Ÿ‘ = (๐’– + ๐’—)(๐’–๐Ÿ + ๐Ÿ๐’–๐’— + ๐’—๐Ÿ )
= ๐’–๐Ÿ‘ + ๐Ÿ๐’–๐Ÿ ๐’— + ๐’–๐’—๐Ÿ + ๐’—๐’–๐Ÿ + ๐Ÿ๐’–๐’—๐Ÿ + ๐’—๐Ÿ‘
= ๐’–๐Ÿ‘ + ๐Ÿ‘๐’–๐Ÿ ๐’— + ๐Ÿ‘๐’–๐’—๐Ÿ + ๐’—๐Ÿ‘
9.
Expand the expression (๐’– + ๐’—)๐Ÿ’.
(๐’– + ๐’—)๐Ÿ’ = (๐’– + ๐’—)(๐’–๐Ÿ‘ + ๐Ÿ‘๐’–๐Ÿ ๐’— + ๐Ÿ‘๐’–๐’—๐Ÿ + ๐’—๐Ÿ‘ )
= ๐’–๐Ÿ’ + ๐Ÿ‘๐’–๐Ÿ‘ ๐’— + ๐Ÿ‘๐’–๐Ÿ ๐’—๐Ÿ + ๐’–๐’—๐Ÿ‘ + ๐’—๐’–๐Ÿ‘ + ๐Ÿ‘๐’–๐Ÿ ๐’—๐Ÿ + ๐Ÿ‘๐’–๐’—๐Ÿ‘ + ๐’—๐Ÿ’
Scaffolding:
Encourage students to write
each term in the expansion
with the power of ๐‘ข preceding
the power of ๐‘ฃ if they are
struggling to recognize like
terms.
= ๐’–๐Ÿ’ + ๐Ÿ’๐’–๐Ÿ‘ ๐’— + ๐Ÿ”๐’–๐Ÿ ๐’—๐Ÿ + ๐Ÿ’๐’–๐’—๐Ÿ‘ + ๐’—๐Ÿ’
Lesson 4:
The Binomial Theorem
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M3-TE-1.3.0-08.2015
61
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 4
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
PRECALCULUS AND ADVANCED TOPICS
10.
a.
Multiply the expression you wrote in Exercise 9 by ๐’–.
๐’–(๐’–๐Ÿ’ + ๐Ÿ’๐’–๐Ÿ‘ ๐’— + ๐Ÿ”๐’–๐Ÿ ๐’—๐Ÿ + ๐Ÿ’๐’–๐’—๐Ÿ‘ + ๐’—๐Ÿ’ ) = ๐’–๐Ÿ“ + ๐Ÿ’๐’–๐Ÿ’ ๐’— + ๐Ÿ”๐’–๐Ÿ‘ ๐’—๐Ÿ + ๐Ÿ’๐’–๐Ÿ ๐’—๐Ÿ‘ + ๐’–๐’—๐Ÿ’
b.
Multiply the expression you wrote in Exercise 9 by ๐’—.
๐’—(๐’–๐Ÿ’ + ๐Ÿ’๐’–๐Ÿ‘ ๐’— + ๐Ÿ”๐’–๐Ÿ ๐’—๐Ÿ + ๐Ÿ’๐’–๐’—๐Ÿ‘ + ๐’—๐Ÿ’ ) = ๐’–๐Ÿ’ ๐’— + ๐Ÿ’๐’–๐Ÿ‘ ๐’—๐Ÿ + ๐Ÿ”๐’–๐Ÿ ๐’—๐Ÿ‘ + ๐Ÿ’๐’–๐’—๐Ÿ’ + ๐’—๐Ÿ“
c.
How can you use the results from parts (a) and (b) to find the expanded form of the expression (๐’– + ๐’—)๐Ÿ“ ?
Because (๐’– + ๐’—)๐Ÿ“ = (๐’– + ๐’—)(๐’– + ๐’—)๐Ÿ’ = ๐’–(๐’– + ๐’—)๐Ÿ’ + ๐’—(๐’– + ๐’—)๐Ÿ’ , we have
(๐’– + ๐’—)๐Ÿ“ = (๐’–๐Ÿ“ + ๐Ÿ’๐’–๐Ÿ’ ๐’— + ๐Ÿ”๐’–๐Ÿ‘ ๐’—๐Ÿ + ๐Ÿ’๐’–๐Ÿ ๐’—๐Ÿ‘ + ๐’–๐’—๐Ÿ’ ) + (๐’–๐Ÿ’ ๐’— + ๐Ÿ’๐’–๐Ÿ‘ ๐’—๐Ÿ + ๐Ÿ”๐’–๐Ÿ ๐’—๐Ÿ‘ + ๐Ÿ’๐’–๐’—๐Ÿ’ + ๐’—๐Ÿ“ )
= ๐’–๐Ÿ“ + ๐Ÿ“๐’–๐Ÿ’ ๐’— + ๐Ÿ๐ŸŽ๐’–๐Ÿ‘ ๐’—๐Ÿ + ๐Ÿ๐ŸŽ๐’–๐Ÿ ๐’—๐Ÿ‘ + ๐Ÿ“๐’–๐’—๐Ÿ’ + ๐’—๐Ÿ“ .
11. What do you notice about your expansions for (๐’– + ๐’—)๐Ÿ’ and (๐’– + ๐’—)๐Ÿ“ ? Does your observation hold for other
powers of (๐’– + ๐’—)?
The coefficients of (๐’– + ๐’—)๐Ÿ’ are the numbers in Row 4 of Pascalโ€™s triangle. The coefficients of (๐’– + ๐’—)๐Ÿ“ are the
numbers in Row 5 of Pascalโ€™s triangle. The same pattern holds for (๐’– + ๐’—), (๐’– + ๐’—)๐Ÿ , and (๐’– + ๐’—)๐Ÿ‘ .
Discussion (5 minutes)
This teacher-led discussion reiterates the connection that students made in the previous exercises between the
coefficients of a binomial expansion and Pascalโ€™s triangle.
๏‚ง
So now we have computed the expansions for (๐‘ข + ๐‘ฃ)๐‘› starting with ๐‘› = 0 to ๐‘› = 5. Letโ€™s arrange them
vertically, from least power to the greatest and with all the coefficients written explicitly.
(๐‘ข + ๐‘ฃ)0 = 1
(๐‘ข + ๐‘ฃ)1 = 1๐‘ข + 1๐‘ฃ
(๐‘ข + ๐‘ฃ)2 = 1๐‘ข2 + 2๐‘ข๐‘ฃ + 1๐‘ฃ 2
(๐‘ข + ๐‘ฃ)3 = 1๐‘ข3 + 3๐‘ข2 ๐‘ฃ + 3๐‘ข๐‘ฃ 2 + 1๐‘ฃ 3
(๐‘ข + ๐‘ฃ)4 = 1๐‘ข4 + 4๐‘ข3 ๐‘ฃ + 6๐‘ข2 ๐‘ฃ 2 + 4๐‘ข๐‘ฃ 3 + 1๐‘ฃ 4
(๐‘ข + ๐‘ฃ)5 = 1๐‘ข5 + 5๐‘ข4 ๐‘ฃ + 10๐‘ข3 ๐‘ฃ 2 + 10๐‘ข2 ๐‘ฃ 3 + 5๐‘ข๐‘ฃ 4 + 1๐‘ฃ 5
๏‚ง
What patterns do you notice in the expansion? Think about this for a minute, and then share your ideas with a
partner.
๏ƒบ
Within each row, the power of ๐‘ข decreases from left to right, and the power of ๐‘ฃ increases from left to
right; the sum of the powers in each term is equal to the power of the binomial; each row begins and
ends with terms that have a coefficient of 1; the number of terms is one greater than the power of the
binomial.
๏ƒบ
The coefficients of the binomial expansion are the numbers in the corresponding row of Pascalโ€™s
triangle.
๏ƒบ
The coefficients of the binomial expansion (๐‘ข + ๐‘ฃ)๐‘› are ๐ถ(๐‘›, ๐‘˜) as ๐‘˜ increases from 0 to ๐‘›.
MP.7
&
MP.8
Lesson 4:
The Binomial Theorem
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M3-TE-1.3.0-08.2015
62
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 4
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
PRECALCULUS AND ADVANCED TOPICS
MP.7
&
MP.8
๏‚ง
The correspondence between the numbers in Row ๐‘› of Pascalโ€™s triangle and the coefficients of the expanded
expression (๐‘ข + ๐‘ฃ)๐‘› is known as the binomial theorem. The numbers ๐ถ(๐‘›, ๐‘˜) are called binomial coefficients.
๏‚ง
THE BINOMIAL THEOREM: For any expressions ๐‘ข and ๐‘ฃ,
(๐‘ข + ๐‘ฃ)๐‘› = ๐‘ข๐‘› + ๐ถ(๐‘›, 1)๐‘ข๐‘›โˆ’1 ๐‘ฃ + ๐ถ(๐‘›, 2)๐‘ข๐‘›โˆ’2 ๐‘ฃ 2 + โ‹ฏ + ๐ถ(๐‘›, ๐‘˜)๐‘ข๐‘›โˆ’๐‘˜ ๐‘ฃ ๐‘˜ + โ‹ฏ + ๐ถ(๐‘›, ๐‘› โˆ’ 1)๐‘ข ๐‘ฃ ๐‘›โˆ’1 + ๐‘ฃ ๐‘› .
That is, the coefficients of the expanded binomial (๐‘ข + ๐‘ฃ)๐‘› are exactly the numbers in Row ๐‘› of Pascalโ€™s
triangle.
Exercise 12 (4 minutes)
Have students work on these exercises in pairs or small groups. If time permits, have students share their results with
the class either on the document camera, using individual white boards, or by writing on the board.
12. Use the binomial theorem to expand the following binomial expressions.
a.
(๐’™ + ๐’š)๐Ÿ”
๐’™๐Ÿ” + ๐Ÿ”๐’™๐Ÿ“ ๐’š + ๐Ÿ๐Ÿ“๐’™๐Ÿ’ ๐’š๐Ÿ + ๐Ÿ๐ŸŽ๐’™๐Ÿ‘ ๐’š๐Ÿ‘ + ๐Ÿ๐Ÿ“๐’™๐Ÿ ๐’š๐Ÿ’ + ๐Ÿ”๐’™๐’š๐Ÿ“ + ๐’š๐Ÿ”
b.
(๐’™ + ๐Ÿ๐’š)๐Ÿ‘
๐’™๐Ÿ‘ + ๐Ÿ”๐’™๐Ÿ ๐’š + ๐Ÿ๐Ÿ๐’™๐’š๐Ÿ + ๐Ÿ–๐’š๐Ÿ‘
c.
(๐’‚๐’ƒ + ๐’ƒ๐’„)๐Ÿ’
๐’‚๐Ÿ’ ๐’ƒ๐Ÿ’ + ๐Ÿ’๐’‚๐Ÿ‘ ๐’ƒ๐Ÿ’ ๐’„ + ๐Ÿ”๐’‚๐Ÿ ๐’ƒ๐Ÿ’ ๐’„๐Ÿ + ๐Ÿ’๐’‚๐’ƒ๐Ÿ’ ๐’„๐Ÿ‘ + ๐’ƒ๐Ÿ’ ๐’„๐Ÿ’
d.
(๐Ÿ‘๐’™๐’š โˆ’ ๐Ÿ๐’›)๐Ÿ‘
๐Ÿ๐Ÿ•๐’™๐Ÿ‘ ๐’š๐Ÿ‘ โˆ’ ๐Ÿ“๐Ÿ’๐’™๐Ÿ ๐’š๐Ÿ ๐’› + ๐Ÿ‘๐Ÿ”๐’™๐’š๐’›๐Ÿ โˆ’ ๐Ÿ–๐’›๐Ÿ‘
e.
(๐Ÿ’๐’‘๐Ÿ ๐’’๐’“ โˆ’ ๐’’๐’“๐Ÿ )๐Ÿ“
๐Ÿ๐ŸŽ๐Ÿ๐Ÿ’๐’‘๐Ÿ๐ŸŽ ๐’’๐Ÿ“ ๐’“๐Ÿ“ โˆ’ ๐Ÿ๐Ÿ๐Ÿ–๐ŸŽ๐’‘๐Ÿ– ๐’’๐Ÿ“ ๐’“๐Ÿ” + ๐Ÿ”๐Ÿ’๐ŸŽ๐’‘๐Ÿ” ๐’’๐Ÿ“ ๐’“๐Ÿ• โˆ’ ๐Ÿ๐Ÿ”๐ŸŽ๐’‘๐Ÿ’ ๐’’๐Ÿ“ ๐’“๐Ÿ– + ๐Ÿ๐ŸŽ๐’‘๐Ÿ ๐’’๐Ÿ“ ๐’“๐Ÿ— โˆ’ ๐’’๐Ÿ“ ๐’“๐Ÿ๐ŸŽ
Closing (3 minutes)
Have the students reflect on the questions. After a minute, have them share their responses with a partner. If time
permits, a few students could share their reflections with the rest of the class.
๏‚ง
When is it helpful to apply the binomial theorem?
๏ƒบ
๏‚ง
The binomial theorem can be used to expand binomials in the form (๐‘ข + ๐‘ฃ)๐‘› without having to multiply
several factors together.
How is Pascalโ€™s triangle helpful when applying the binomial theorem?
๏ƒบ
The entries in Row ๐‘› represent the coefficients of the expansion of (๐‘ข + ๐‘ฃ)๐‘› .
Lesson 4:
The Binomial Theorem
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M3-TE-1.3.0-08.2015
63
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 4
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
PRECALCULUS AND ADVANCED TOPICS
๏‚ง
How are the binomial coefficients ๐ถ(๐‘›, ๐‘˜) helpful when applying the binomial theorem?
๏ƒบ
The binomial coefficients allow us to calculate Row ๐‘› of Pascalโ€™s triangle without writing out all of the
previous rows.
Lesson Summary
Pascalโ€™s triangle is an arrangement of numbers generated recursively:
Row 0:
Row 1:
Row 2:
Row 3:
Row 4:
Row 5:
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ
โ‹ฎ
๐Ÿ
๐Ÿ
๐Ÿ‘
๐Ÿ’
๐Ÿ“
โ‹ฎ
๐Ÿ
๐Ÿ‘
๐Ÿ”
๐Ÿ๐ŸŽ
โ‹ฎ
๐Ÿ
๐Ÿ’
๐Ÿ๐ŸŽ
โ‹ฎ
๐Ÿ
๐Ÿ“
โ‹ฎ
๐Ÿ
โ‹ฎ
For an integer ๐’ โ‰ฅ ๐Ÿ, the number ๐’! is the product of all positive integers less than or equal to ๐’.
We define ๐ŸŽ! = ๐Ÿ.
The binomial coefficients ๐‘ช(๐’, ๐’Œ) are given by ๐‘ช(๐’, ๐’Œ) =
๐’!
for integers ๐’ โ‰ฅ ๐ŸŽ and ๐ŸŽ โ‰ค ๐’Œ โ‰ค ๐’.
๐’Œ!(๐’โˆ’๐’Œ)!
THE BINOMIAL THEOREM: For any expressions ๐’– and ๐’—,
(๐’– + ๐’—)๐’ = ๐’–๐’ + ๐‘ช(๐’, ๐Ÿ)๐’–๐’โˆ’๐Ÿ ๐’— + ๐‘ช(๐’, ๐Ÿ)๐’–๐’โˆ’๐Ÿ ๐’—๐Ÿ + โ‹ฏ + ๐‘ช(๐’, ๐’Œ)๐’–๐’โˆ’๐’Œ ๐’—๐’Œ + โ‹ฏ + ๐‘ช(๐’, ๐’ โˆ’ ๐Ÿ)๐’– ๐’—๐’โˆ’๐Ÿ + ๐’—๐’ .
That is, the coefficients of the expanded binomial (๐’– + ๐’—)๐’ are exactly the numbers in Row ๐’ of Pascalโ€™s triangle.
Exit Ticket (4 minutes)
Lesson 4:
The Binomial Theorem
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M3-TE-1.3.0-08.2015
64
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 4
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
PRECALCULUS AND ADVANCED TOPICS
Name
Date
Lesson 4: The Binomial Theorem
Exit Ticket
1.
Evaluate the following expressions.
a.
b.
c.
2.
5!
8!
6!
๐ถ(7,3)
Find the coefficients of the terms below in the expansion of (๐‘ข + ๐‘ฃ)8 . Explain your reasoning.
a.
๐‘ข2 ๐‘ฃ 6
b.
๐‘ข3 ๐‘ฃ 5
c.
๐‘ข4 ๐‘ฃ 4
Lesson 4:
The Binomial Theorem
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M3-TE-1.3.0-08.2015
65
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 4
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
PRECALCULUS AND ADVANCED TOPICS
Exit Ticket Sample Solutions
1.
Evaluate the following expressions.
a.
๐Ÿ“!
๐Ÿ“! = ๐Ÿ“ โ‹… ๐Ÿ’ โ‹… ๐Ÿ‘ โ‹… ๐Ÿ โ‹… ๐Ÿ = ๐Ÿ๐Ÿ๐ŸŽ
b.
๐Ÿ–!
๐Ÿ”!
๐Ÿ–! ๐Ÿ– โ‹… ๐Ÿ• โ‹… ๐Ÿ” โ‹… ๐Ÿ“ โ‹… ๐Ÿ’ โ‹… ๐Ÿ‘ โ‹… ๐Ÿ โ‹… ๐Ÿ
=
= ๐Ÿ– โ‹… ๐Ÿ• = ๐Ÿ“๐Ÿ”
๐Ÿ”!
๐Ÿ”โ‹…๐Ÿ“โ‹…๐Ÿ’โ‹…๐Ÿ‘โ‹…๐Ÿโ‹…๐Ÿ
c.
๐‘ช(๐Ÿ•, ๐Ÿ‘)
๐‘ช(๐Ÿ•, ๐Ÿ‘) =
๐Ÿ•!
๐Ÿ•โ‹…๐Ÿ”โ‹…๐Ÿ“โ‹…๐Ÿ’โ‹…๐Ÿ‘โ‹…๐Ÿโ‹…๐Ÿ
๐Ÿ•โ‹…๐Ÿ”โ‹…๐Ÿ“
=
=
= ๐Ÿ‘๐Ÿ“
๐Ÿ‘! ๐Ÿ’! (๐Ÿ‘ โ‹… ๐Ÿ โ‹… ๐Ÿ)(๐Ÿ’ โ‹… ๐Ÿ‘ โ‹… ๐Ÿ โ‹… ๐Ÿ) ๐Ÿ‘ โ‹… ๐Ÿ โ‹… ๐Ÿ
Alternatively, students could use the corresponding entry of Row 7 of Pascalโ€™s triangle,
๐Ÿ• ๐Ÿ๐Ÿ ๐Ÿ‘๐Ÿ“ ๐Ÿ‘๐Ÿ“ ๐Ÿ๐Ÿ ๐Ÿ• ๐Ÿ, which is ๐Ÿ‘๐Ÿ“.
2.
Find the coefficients of the terms below in the expansion of (๐’– + ๐’—)๐Ÿ–. Explain your reasoning.
a.
๐’–๐Ÿ ๐’—๐Ÿ”
The binomial theorem says that the ๐’–๐Ÿ ๐’—๐Ÿ” term of the expansion is ๐‘ช(๐Ÿ–, ๐Ÿ)๐’–๐Ÿ ๐’—๐Ÿ”, so the coefficient is
๐‘ช(๐Ÿ–, ๐Ÿ) =
๐Ÿ–!
= ๐Ÿ๐Ÿ–. Alternatively, Row 8 of Pascalโ€™s triangle is ๐Ÿ ๐Ÿ– ๐Ÿ๐Ÿ– ๐Ÿ“๐Ÿ” ๐Ÿ•๐ŸŽ ๐Ÿ“๐Ÿ” ๐Ÿ๐Ÿ– ๐Ÿ– ๐Ÿ, and the entry
๐Ÿ!๐Ÿ”!
corresponding to ๐’–๐Ÿ ๐’—๐Ÿ” is ๐Ÿ๐Ÿ–.
b.
๐’–๐Ÿ‘ ๐’—๐Ÿ“
The binomial theorem says that the ๐’–๐Ÿ‘ ๐’—๐Ÿ“ term of the expansion is ๐‘ช(๐Ÿ–, ๐Ÿ‘)๐’–๐Ÿ‘ ๐’—๐Ÿ“, so the coefficient is
๐‘ช(๐Ÿ–, ๐Ÿ‘) =
๐Ÿ–!
= ๐Ÿ“๐Ÿ”. Alternatively, Row 8 of Pascalโ€™s triangle is ๐Ÿ ๐Ÿ– ๐Ÿ๐Ÿ– ๐Ÿ“๐Ÿ” ๐Ÿ•๐ŸŽ ๐Ÿ“๐Ÿ” ๐Ÿ๐Ÿ– ๐Ÿ– ๐Ÿ, and the entry
๐Ÿ‘!๐Ÿ“!
corresponding to ๐’–๐Ÿ‘ ๐’—๐Ÿ“ is ๐Ÿ“๐Ÿ”.
c.
๐’–๐Ÿ’ ๐’—๐Ÿ’
The binomial theorem says that the ๐’–๐Ÿ’ ๐’—๐Ÿ’ term of the expansion is ๐‘ช(๐Ÿ–, ๐Ÿ’)๐’–๐Ÿ’ ๐’—๐Ÿ’, so the coefficient is
๐‘ช(๐Ÿ–, ๐Ÿ’) =
๐Ÿ–!
= ๐Ÿ•๐ŸŽ. Alternatively, Row 8 of Pascalโ€™s triangle is ๐Ÿ ๐Ÿ– ๐Ÿ๐Ÿ– ๐Ÿ“๐Ÿ” ๐Ÿ•๐ŸŽ ๐Ÿ“๐Ÿ” ๐Ÿ๐Ÿ– ๐Ÿ– ๐Ÿ, and the entry
๐Ÿ’!๐Ÿ’!
corresponding to ๐’–๐Ÿ’ ๐’—๐Ÿ’ is ๐Ÿ•๐ŸŽ.
Lesson 4:
The Binomial Theorem
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M3-TE-1.3.0-08.2015
66
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 4
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
PRECALCULUS AND ADVANCED TOPICS
Problem Set Sample Solutions
1.
Evaluate the following expressions.
a.
๐Ÿ—!
๐Ÿ–!
๐Ÿ—! ๐Ÿ— โ‹… ๐Ÿ– โ‹… ๐Ÿ• โ‹… ๐Ÿ” โ‹… ๐Ÿ“ โ‹… ๐Ÿ’ โ‹… ๐Ÿ‘ โ‹… ๐Ÿ โ‹… ๐Ÿ
=
=๐Ÿ—
๐Ÿ–!
๐Ÿ–โ‹…๐Ÿ•โ‹…๐Ÿ”โ‹…๐Ÿ“โ‹…๐Ÿ’โ‹…๐Ÿ‘โ‹…๐Ÿโ‹…๐Ÿ
b.
๐Ÿ•!
๐Ÿ“!
๐Ÿ•! ๐Ÿ• โ‹… ๐Ÿ” โ‹… ๐Ÿ“ โ‹… ๐Ÿ’ โ‹… ๐Ÿ‘ โ‹… ๐Ÿ โ‹… ๐Ÿ
=
= ๐Ÿ• โ‹… ๐Ÿ” = ๐Ÿ’๐Ÿ
๐Ÿ“!
๐Ÿ“โ‹…๐Ÿ’โ‹…๐Ÿ‘โ‹…๐Ÿโ‹…๐Ÿ
c.
๐Ÿ๐Ÿ!
๐Ÿ๐Ÿ—!
๐Ÿ๐Ÿ! ๐Ÿ๐Ÿ โ‹… ๐Ÿ๐ŸŽ โ‹… ๐Ÿ๐Ÿ— โ‹… ๐Ÿ๐Ÿ– โ‹… ๐Ÿ๐Ÿ• โ‹ฏ โ‹… ๐Ÿ“ โ‹… ๐Ÿ’ โ‹… ๐Ÿ‘ โ‹… ๐Ÿ โ‹… ๐Ÿ
=
= ๐Ÿ๐Ÿ โ‹… ๐Ÿ๐ŸŽ = ๐Ÿ’๐Ÿ๐ŸŽ
๐Ÿ๐Ÿ—!
๐Ÿ๐Ÿ— โ‹… ๐Ÿ๐Ÿ– โ‹… ๐Ÿ๐Ÿ• โ‹ฏ โ‹… ๐Ÿ“ โ‹… ๐Ÿ’ โ‹… ๐Ÿ‘ โ‹… ๐Ÿ โ‹… ๐Ÿ
d.
๐Ÿ–!
๐Ÿ’!
๐Ÿ–! ๐Ÿ– โ‹… ๐Ÿ• โ‹… ๐Ÿ” โ‹… ๐Ÿ“ โ‹… ๐Ÿ’ โ‹… ๐Ÿ‘ โ‹… ๐Ÿ โ‹… ๐Ÿ
=
= ๐Ÿ– โ‹… ๐Ÿ• โ‹… ๐Ÿ” โ‹… ๐Ÿ“ = ๐Ÿ๐Ÿ”๐Ÿ–๐ŸŽ
๐Ÿ’!
๐Ÿ’โ‹…๐Ÿ‘โ‹…๐Ÿโ‹…๐Ÿ
2.
Use the binomial theorem to expand the following binomial expressions.
a.
(๐’™ + ๐’š)๐Ÿ’
(๐’™ + ๐’š)๐Ÿ’ = ๐’™๐Ÿ’ + ๐‘ช(๐Ÿ’, ๐Ÿ)๐’™๐Ÿ‘ ๐’š + ๐‘ช(๐Ÿ’, ๐Ÿ)๐’™๐Ÿ ๐’š๐Ÿ + ๐‘ช(๐Ÿ’, ๐Ÿ‘)๐’™๐’š๐Ÿ‘ + ๐’š๐Ÿ’
= ๐’™๐Ÿ’ + ๐Ÿ’๐’™๐Ÿ‘ ๐’š + ๐Ÿ”๐’™๐Ÿ ๐’š๐Ÿ + ๐Ÿ’๐’™๐’š๐Ÿ‘ + ๐’š๐Ÿ’
b.
(๐’™ + ๐Ÿ๐’š)๐Ÿ’
(๐’™ + ๐Ÿ๐’š)๐Ÿ’ = ๐’™๐Ÿ’ + ๐‘ช(๐Ÿ’, ๐Ÿ)๐’™๐Ÿ‘ (๐Ÿ๐’š) + ๐‘ช(๐Ÿ’, ๐Ÿ)๐’™๐Ÿ (๐Ÿ๐’š)๐Ÿ + ๐‘ช(๐Ÿ’, ๐Ÿ‘)๐’™(๐Ÿ๐’š)๐Ÿ‘ + (๐Ÿ๐’š)๐Ÿ’
= ๐’™๐Ÿ’ + ๐Ÿ’๐’™๐Ÿ‘ (๐Ÿ๐’š) + ๐Ÿ”๐’™๐Ÿ (๐Ÿ’๐’š๐Ÿ ) + ๐Ÿ’๐’™(๐Ÿ–๐’š๐Ÿ‘ ) + ๐Ÿ๐Ÿ”๐’š๐Ÿ’
= ๐’™๐Ÿ’ + ๐Ÿ–๐’™๐Ÿ‘ ๐’š + ๐Ÿ๐Ÿ’๐’™๐Ÿ ๐’š๐Ÿ + ๐Ÿ‘๐Ÿ๐’™๐’š๐Ÿ‘ + ๐Ÿ๐Ÿ”๐’š๐Ÿ’
c.
(๐’™ + ๐Ÿ๐’™๐’š)๐Ÿ’
(๐’™ + ๐Ÿ๐’™๐’š)๐Ÿ’ = ๐’™๐Ÿ’ + ๐‘ช(๐Ÿ’, ๐Ÿ)๐’™๐Ÿ‘ (๐Ÿ๐’™๐’š) + ๐‘ช(๐Ÿ’, ๐Ÿ)๐’™๐Ÿ (๐Ÿ๐’™๐’š)๐Ÿ + ๐‘ช(๐Ÿ’, ๐Ÿ‘)๐’™(๐Ÿ๐’™๐’š)๐Ÿ‘ + (๐Ÿ๐’™๐’š)๐Ÿ’
= ๐’™๐Ÿ’ + ๐Ÿ’๐’™๐Ÿ‘ (๐Ÿ๐’™๐’š) + ๐Ÿ”๐’™๐Ÿ (๐Ÿ’๐’™๐Ÿ ๐’š๐Ÿ ) + ๐Ÿ’๐’™(๐Ÿ–๐’™๐Ÿ‘ ๐’š๐Ÿ‘ ) + ๐Ÿ๐Ÿ”๐’™๐Ÿ’ ๐’š๐Ÿ’
= ๐’™๐Ÿ’ + ๐Ÿ–๐’™๐Ÿ’ ๐’š + ๐Ÿ๐Ÿ’๐’™๐Ÿ’ ๐’š๐Ÿ + ๐Ÿ‘๐Ÿ๐’™๐Ÿ’ ๐’š๐Ÿ‘ + ๐Ÿ๐Ÿ”๐’™๐Ÿ’ ๐’š๐Ÿ’
d.
(๐’™ โˆ’ ๐’š)๐Ÿ’
๐Ÿ’
(๐’™ โˆ’ ๐’š)๐Ÿ’ = (๐’™ + (โˆ’๐’š))
= ๐’™๐Ÿ’ + ๐‘ช(๐Ÿ’, ๐Ÿ)๐’™๐Ÿ‘ (โˆ’๐’š) + ๐‘ช(๐Ÿ’, ๐Ÿ)๐’™๐Ÿ (โˆ’๐’š)๐Ÿ + ๐‘ช(๐Ÿ’, ๐Ÿ‘)๐’™(โˆ’๐’š)๐Ÿ‘ + (โˆ’๐’š)๐Ÿ’
= ๐’™๐Ÿ’ โˆ’ ๐Ÿ’๐’™๐Ÿ‘ ๐’š + ๐Ÿ”๐’™๐Ÿ ๐’š๐Ÿ โˆ’ ๐Ÿ’๐’™๐’š๐Ÿ‘ + ๐’š๐Ÿ’
Lesson 4:
The Binomial Theorem
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M3-TE-1.3.0-08.2015
67
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 4
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
PRECALCULUS AND ADVANCED TOPICS
e.
(๐’™ โˆ’ ๐Ÿ๐’™๐’š)๐Ÿ’
(๐’™ โˆ’ ๐Ÿ๐’™๐’š)๐Ÿ’ = ๐’™๐Ÿ’ + ๐‘ช(๐Ÿ’, ๐Ÿ)๐’™๐Ÿ‘ (โˆ’๐Ÿ๐’™๐’š) + ๐‘ช(๐Ÿ’, ๐Ÿ)๐’™๐Ÿ (โˆ’๐Ÿ๐’™๐’š)๐Ÿ + ๐‘ช(๐Ÿ’, ๐Ÿ‘)๐’™(โˆ’๐Ÿ๐’™๐’š)๐Ÿ‘ + (โˆ’๐Ÿ๐’™๐’š)๐Ÿ’
= ๐’™๐Ÿ’ + ๐Ÿ’๐’™๐Ÿ‘ (โˆ’๐Ÿ๐’™๐’š) + ๐Ÿ”๐’™๐Ÿ (๐Ÿ’๐’™๐Ÿ ๐’š๐Ÿ ) + ๐Ÿ’๐’™(โˆ’๐Ÿ–๐’™๐Ÿ‘ ๐’š๐Ÿ‘ ) + ๐Ÿ๐Ÿ”๐’™๐Ÿ’ ๐’š๐Ÿ’
= ๐’™๐Ÿ’ โˆ’ ๐Ÿ–๐’™๐Ÿ’ ๐’š + ๐Ÿ๐Ÿ’๐’™๐Ÿ’ ๐’š๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ๐’™๐Ÿ’ ๐’š๐Ÿ‘ + ๐Ÿ๐Ÿ”๐’™๐Ÿ’ ๐’š๐Ÿ’
3.
Use the binomial theorem to expand the following binomial expressions.
a.
๐Ÿ“
(๐Ÿ + โˆš๐Ÿ)
๐Ÿ“
๐Ÿ
๐Ÿ‘
๐Ÿ’
๐Ÿ“
(๐Ÿ + โˆš๐Ÿ) = ๐Ÿ๐Ÿ“ + ๐‘ช(๐Ÿ“, ๐Ÿ)๐Ÿ๐Ÿ’ โˆš๐Ÿ + ๐‘ช(๐Ÿ“, ๐Ÿ)๐Ÿ๐Ÿ‘ (โˆš๐Ÿ) + ๐‘ช(๐Ÿ“, ๐Ÿ‘)๐Ÿ๐Ÿ (โˆš๐Ÿ) + ๐‘ช(๐Ÿ“, ๐Ÿ’)๐Ÿ โ‹… (โˆš๐Ÿ) + (โˆš๐Ÿ)
= ๐Ÿ + ๐Ÿ“โˆš๐Ÿ + ๐Ÿ๐ŸŽ โ‹… ๐Ÿ + ๐Ÿ๐ŸŽ โ‹… ๐Ÿโˆš๐Ÿ + ๐Ÿ“ โ‹… ๐Ÿ’ + ๐Ÿ’โˆš๐Ÿ
= ๐Ÿ’๐Ÿ + ๐Ÿ๐Ÿ—โˆš๐Ÿ
b.
(๐Ÿ + ๐’Š)๐Ÿ—
(๐Ÿ + ๐’Š)๐Ÿ— = ๐Ÿ + ๐Ÿ—๐’Š + ๐Ÿ‘๐Ÿ”๐’Š๐Ÿ + ๐Ÿ–๐Ÿ’๐’Š๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ”๐’Š๐Ÿ’ + ๐Ÿ๐Ÿ๐Ÿ”๐’Š๐Ÿ“ + ๐Ÿ–๐Ÿ’๐’Š๐Ÿ” + ๐Ÿ‘๐Ÿ”๐’Š๐Ÿ• + ๐Ÿ—๐’Š๐Ÿ– + ๐’Š๐Ÿ—
= ๐Ÿ + ๐Ÿ—๐’Š โˆ’ ๐Ÿ‘๐Ÿ” โˆ’ ๐Ÿ–๐Ÿ’๐’Š + ๐Ÿ๐Ÿ๐Ÿ” + ๐Ÿ๐Ÿ๐Ÿ”๐’Š โˆ’ ๐Ÿ–๐Ÿ’ โˆ’ ๐Ÿ‘๐Ÿ”๐’Š + ๐Ÿ— + ๐’Š
= ๐Ÿ๐Ÿ” + ๐Ÿ๐Ÿ”๐’Š
c.
(๐Ÿ โˆ’ ๐…)๐Ÿ“ (Hint: ๐Ÿ โˆ’ ๐… = ๐Ÿ + (โˆ’๐…).)
(๐Ÿ โˆ’ ๐…)๐Ÿ“ = ๐Ÿ + ๐‘ช(๐Ÿ“, ๐Ÿ)(โˆ’๐…) + ๐‘ช(๐Ÿ“, ๐Ÿ)(โˆ’๐…)๐Ÿ + ๐‘ช(๐Ÿ“, ๐Ÿ‘)(โˆ’๐…)๐Ÿ‘ + ๐‘ช(๐Ÿ“, ๐Ÿ’)(โˆ’๐…)๐Ÿ’ + (โˆ’๐…)๐Ÿ“
= ๐Ÿ โˆ’ ๐Ÿ“๐… + ๐Ÿ๐ŸŽ๐…๐Ÿ โˆ’ ๐Ÿ๐ŸŽ๐…๐Ÿ‘ + ๐Ÿ“๐…๐Ÿ’ โˆ’ ๐…๐Ÿ“
d.
๐Ÿ”
(โˆš๐Ÿ + ๐’Š)
๐Ÿ”
(โˆš๐Ÿ + ๐’Š)
๐Ÿ”
๐Ÿ“
๐Ÿ’
๐Ÿ‘
๐Ÿ
= (โˆš๐Ÿ) + ๐‘ช(๐Ÿ”, ๐Ÿ)(โˆš๐Ÿ) ๐’Š + ๐‘ช(๐Ÿ”, ๐Ÿ)(โˆš๐Ÿ) ๐’Š๐Ÿ + ๐‘ช(๐Ÿ”, ๐Ÿ‘)(โˆš๐Ÿ) ๐’Š๐Ÿ‘ + ๐‘ช(๐Ÿ”, ๐Ÿ’)(โˆš๐Ÿ) ๐’Š๐Ÿ’
+ ๐‘ช(๐Ÿ”, ๐Ÿ“)โˆš๐Ÿ๐’Š๐Ÿ“ + ๐’Š๐Ÿ”
= ๐Ÿ– + ๐Ÿ” โ‹… ๐Ÿ’โˆš๐Ÿ๐’Š + ๐Ÿ๐Ÿ“ โ‹… ๐Ÿ’(โ€“ ๐Ÿ) + ๐Ÿ๐ŸŽ โ‹… ๐Ÿโˆš๐Ÿ(โˆ’๐’Š) + ๐Ÿ๐Ÿ“ โ‹… ๐Ÿ โ‹… ๐Ÿ + ๐Ÿ”โˆš๐Ÿ(๐’Š) + (โˆ’๐Ÿ)
= โˆ’๐Ÿ๐Ÿ‘ โˆ’ ๐Ÿ๐ŸŽโˆš๐Ÿ๐’Š
e.
(๐Ÿ โˆ’ ๐’Š)๐Ÿ”
๐Ÿ”
(๐Ÿ โˆ’ ๐’Š)๐Ÿ” = (๐Ÿ + (โˆ’๐’Š))
= ๐Ÿ๐Ÿ” + ๐‘ช(๐Ÿ”, ๐Ÿ)๐Ÿ๐Ÿ“ (โˆ’๐’Š) + ๐‘ช(๐Ÿ”, ๐Ÿ)๐Ÿ๐Ÿ’ (โˆ’๐’Š)๐Ÿ + ๐‘ช(๐Ÿ”, ๐Ÿ‘)๐Ÿ๐Ÿ‘ (โˆ’๐’Š)๐Ÿ‘ + ๐‘ช(๐Ÿ”, ๐Ÿ’)๐Ÿ๐Ÿ (โˆ’๐’Š)๐Ÿ’ + ๐‘ช(๐Ÿ”, ๐Ÿ“)๐Ÿ(โˆ’๐’Š)๐Ÿ“
+ (โˆ’๐’Š)๐Ÿ”
= ๐Ÿ”๐Ÿ’ โˆ’ ๐Ÿ” โ‹… ๐Ÿ‘๐Ÿ๐’Š + ๐Ÿ๐Ÿ“ โ‹… ๐Ÿ๐Ÿ”(โˆ’๐Ÿ) + ๐Ÿ๐ŸŽ โ‹… ๐Ÿ–(๐’Š) + ๐Ÿ๐Ÿ“ โ‹… ๐Ÿ’ โ‹… ๐Ÿ + ๐Ÿ” โ‹… ๐Ÿ(โˆ’๐’Š) โˆ’ ๐Ÿ
= โˆ’๐Ÿ๐Ÿ๐Ÿ• โˆ’ ๐Ÿ’๐Ÿ’๐’Š
4.
Consider the expansion of (๐’‚ + ๐’ƒ)๐Ÿ๐Ÿ. Determine the coefficients for the terms with the powers of ๐’‚ and ๐’ƒ shown.
a.
๐’‚๐Ÿ ๐’ƒ๐Ÿ๐ŸŽ
(๐’‚ + ๐’ƒ)๐Ÿ๐Ÿ = ๐’‚๐Ÿ๐Ÿ + ๐‘ช(๐Ÿ๐Ÿ, ๐Ÿ)๐’‚๐Ÿ๐Ÿ ๐’ƒ + โ‹ฏ + ๐‘ช(๐Ÿ๐Ÿ, ๐Ÿ๐ŸŽ)๐’‚๐Ÿ ๐’ƒ๐Ÿ๐ŸŽ + ๐‘ช(๐Ÿ๐Ÿ, ๐Ÿ๐Ÿ)๐’‚๐’ƒ๐Ÿ๐Ÿ + ๐’ƒ๐Ÿ๐Ÿ
So, the coefficient of ๐’‚๐Ÿ ๐’ƒ๐Ÿ๐ŸŽ is ๐‘ช(๐Ÿ๐Ÿ, ๐Ÿ๐ŸŽ) =
Lesson 4:
๐Ÿ๐Ÿ!
๐Ÿ๐Ÿโ‹…๐Ÿ๐Ÿ
=
= ๐Ÿ”๐Ÿ”.
๐Ÿ!๐Ÿ๐ŸŽ!
๐Ÿโ‹…๐Ÿ
The Binomial Theorem
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M3-TE-1.3.0-08.2015
68
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 4
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
PRECALCULUS AND ADVANCED TOPICS
b.
๐’‚๐Ÿ“ ๐’ƒ๐Ÿ•
The coefficient of ๐’‚๐Ÿ“ ๐’ƒ๐Ÿ• is ๐‘ช(๐Ÿ๐Ÿ, ๐Ÿ•) =
c.
๐’‚๐Ÿ– ๐’ƒ๐Ÿ’
The coefficient of ๐’‚๐Ÿ– ๐’ƒ๐Ÿ’ is ๐‘ช(๐Ÿ๐Ÿ, ๐Ÿ’) =
5.
๐Ÿ๐Ÿ!
๐Ÿ๐Ÿโ‹…๐Ÿ๐Ÿโ‹…๐Ÿ๐ŸŽโ‹…๐Ÿ—โ‹…๐Ÿ–
=
= ๐Ÿ•๐Ÿ—๐Ÿ.
๐Ÿ“!๐Ÿ•!
๐Ÿ“โ‹…๐Ÿ’โ‹…๐Ÿ‘โ‹…๐Ÿโ‹…๐Ÿ
๐Ÿ๐Ÿ!
๐Ÿ๐Ÿโ‹…๐Ÿ๐Ÿโ‹…๐Ÿ๐ŸŽโ‹…๐Ÿ—
=
= ๐Ÿ’๐Ÿ—๐Ÿ“.
๐Ÿ–!๐Ÿ’!
๐Ÿ’โ‹…๐Ÿ‘โ‹…๐Ÿโ‹…๐Ÿ
Consider the expansion of (๐’™ + ๐Ÿ๐’š)๐Ÿ๐ŸŽ . Determine the coefficients for the terms with the powers of ๐’™ and ๐’š shown.
a.
๐’™๐Ÿ ๐’š๐Ÿ–
The ๐’™๐Ÿ ๐’š๐Ÿ– term is ๐‘ช(๐Ÿ๐ŸŽ, ๐Ÿ–)๐’™๐Ÿ (๐Ÿ๐’š)๐Ÿ– = ๐Ÿ’๐Ÿ“๐’™๐Ÿ โ‹… ๐Ÿ๐Ÿ“๐Ÿ”๐’š๐Ÿ– = ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ๐ŸŽ ๐’™๐Ÿ ๐’š๐Ÿ–, so the coefficient of ๐’™๐Ÿ ๐’š๐Ÿ– is ๐Ÿ๐Ÿ, ๐Ÿ“๐Ÿ๐ŸŽ.
b.
๐’™๐Ÿ’ ๐’š๐Ÿ”
The ๐’™๐Ÿ’ ๐’š๐Ÿ” term is ๐‘ช(๐Ÿ๐ŸŽ, ๐Ÿ”)๐’™๐Ÿ’ (๐Ÿ๐’š)๐Ÿ” = ๐Ÿ๐Ÿ๐ŸŽ๐’™๐Ÿ’ โ‹… ๐Ÿ”๐Ÿ’๐’š๐Ÿ” = ๐Ÿ๐Ÿ‘๐Ÿ’๐Ÿ’๐ŸŽ ๐’™๐Ÿ’ ๐’š๐Ÿ”, so the coefficient of ๐’™๐Ÿ’ ๐’š๐Ÿ” is ๐Ÿ๐Ÿ‘, ๐Ÿ’๐Ÿ’๐ŸŽ.
c.
๐’™๐Ÿ“ ๐’š๐Ÿ“
The ๐’™๐Ÿ“ ๐’š๐Ÿ“ term is ๐‘ช(๐Ÿ๐ŸŽ, ๐Ÿ“)๐’™๐Ÿ“ (๐Ÿ๐’š)๐Ÿ“ = ๐Ÿ๐Ÿ“๐Ÿ๐’™๐Ÿ โ‹… ๐Ÿ‘๐Ÿ๐’š๐Ÿ– = ๐Ÿ–๐ŸŽ๐Ÿ”๐Ÿ’ ๐’™๐Ÿ“ ๐’š๐Ÿ“, so the coefficient of ๐’™๐Ÿ“ ๐’š๐Ÿ“ is ๐Ÿ–, ๐ŸŽ๐Ÿ”๐Ÿ’.
6.
Consider the expansion of (๐Ÿ“๐’‘ + ๐Ÿ๐’’)๐Ÿ”. Determine the coefficients for the terms with the powers of ๐’‘ and ๐’’ shown.
a.
๐’‘๐Ÿ ๐’’๐Ÿ’
Since ๐‘ช(๐Ÿ”, ๐Ÿ) = ๐Ÿ๐Ÿ“ and ๐Ÿ๐Ÿ“(๐Ÿ“๐’‘)๐Ÿ (๐Ÿ๐’’)๐Ÿ’ = ๐Ÿ๐Ÿ“(๐Ÿ๐Ÿ“๐’‘๐Ÿ )(๐Ÿ๐Ÿ”๐’’๐Ÿ’ ) = ๐Ÿ”๐ŸŽ๐ŸŽ๐ŸŽ๐’‘๐Ÿ ๐’’๐Ÿ’, the coefficient is ๐Ÿ”, ๐ŸŽ๐ŸŽ๐ŸŽ.
b.
๐’‘๐Ÿ“ ๐’’
Since ๐‘ช(๐Ÿ”, ๐Ÿ“) = ๐Ÿ” and ๐Ÿ”(๐Ÿ“๐’‘)๐Ÿ“ (๐Ÿ๐’’) = ๐Ÿ”(๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ“๐’‘๐Ÿ“ )(๐Ÿ๐’’) = ๐Ÿ‘๐Ÿ•๐Ÿ“๐ŸŽ๐ŸŽ๐’‘๐Ÿ“ ๐’’, the coefficient is ๐Ÿ‘๐Ÿ•, ๐Ÿ“๐ŸŽ๐ŸŽ.
c.
๐’‘๐Ÿ‘ ๐’’๐Ÿ‘
Since ๐‘ช(๐Ÿ”, ๐Ÿ‘) = ๐Ÿ๐ŸŽ and ๐Ÿ๐ŸŽ(๐Ÿ“๐’‘)๐Ÿ‘ (๐Ÿ๐’’)๐Ÿ‘ = ๐Ÿ๐ŸŽ(๐Ÿ๐Ÿ๐Ÿ“๐’‘๐Ÿ‘ )(๐Ÿ–๐’’๐Ÿ‘ ) = ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ๐’‘๐Ÿ‘ ๐’’๐Ÿ‘, the coefficient is ๐Ÿ๐ŸŽ, ๐ŸŽ๐ŸŽ๐ŸŽ.
7.
Explain why the coefficient of the term that contains ๐’–๐’ is ๐Ÿ in the expansion of (๐’– + ๐’—)๐’ .
The corresponding binomial coefficient is ๐‘ช(๐’, ๐ŸŽ) =
8.
Explain why the coefficient of the term that contains ๐’–๐’โˆ’๐Ÿ ๐’— is ๐’ in the expansion of (๐’– + ๐’—)๐’ .
The corresponding binomial coefficient is ๐‘ช(๐’, ๐Ÿ) =
9.
๐’!
๐Ÿ
= = ๐Ÿ.
๐ŸŽ!๐’! ๐ŸŽ!
๐’โ‹…(๐’โˆ’๐Ÿ)โ‹…(๐’โˆ’๐Ÿ)โ‹ฏ๐Ÿโ‹…๐Ÿ
๐’!
=
= ๐’.
๐Ÿ!(๐’โˆ’๐Ÿ)! (๐Ÿ)((๐’โˆ’๐Ÿ)โ‹…(๐’โˆ’๐Ÿ)โ‹ฏ๐Ÿโ‹…๐Ÿ)
Explain why the rows of Pascalโ€™s triangle are symmetric. That is, explain why ๐‘ช(๐’, ๐’Œ) = ๐‘ช(๐’, (๐’ โˆ’ ๐’Œ)).
Using the formula for the binomial coefficients, ๐‘ช(๐’, ๐’Œ) =
so ๐‘ช(๐’, ๐’ โˆ’ ๐’Œ) = (
Lesson 4:
๐’!
= ๐‘ช(๐’, ๐’Œ).
๐’โˆ’๐’Œ)!๐’!
๐’!
๐’!
and ๐‘ช(๐’, ๐’ โˆ’ ๐’Œ) = (
,
๐’Œ!(๐’โˆ’๐’Œ)!
๐’โˆ’๐’Œ)!(๐’โˆ’(๐’โˆ’๐’Œ)!)
The Binomial Theorem
This work is derived from Eureka Math โ„ข and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M3-TE-1.3.0-08.2015
69
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.