Download CHAPTER (3) ELECTRIC FLUX DENSITY

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Aharonovโ€“Bohm effect wikipedia , lookup

Geomorphology wikipedia , lookup

Lorentz force wikipedia , lookup

Maxwell's equations wikipedia , lookup

Nanofluidic circuitry wikipedia , lookup

Electric charge wikipedia , lookup

Electrostatics wikipedia , lookup

Transcript
CHAPTER (3)
ELECTRIC FLUX
DENSITY
Electric flux (๐๐’† ):
The electric flux concept is based on the following rules:
1- Electric flux begins from (+ ve) charge and ends
to (-ve) charge
2- Electric field at a point is tangent to the electric
flux line passing with this point and out wide.
3- In the absence of (-ve) charge the electric flux
terminates at infinity.
4- The magnitude of the electric field at a point is
proportional to the magnitude of the electric flux
density at this point.
5- The number of electric flux lines from a (+ ve) charge Q
is equal to Q in SI unit
๐๐’† = ๐‘ธ
Electric flux density๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐‘ซ displacement vector):
โƒ— is defined
In free space, the electric flux density vector ๏ฟฝ๐ƒ
as
โˆ†๐
๏ฟฝ๐ƒ
๏ฟฝโƒ— = ๐’‚
๏ฟฝ ๐’ ๐’๐’Š๐’Žโˆ†๐’”โ†’๐ŸŽ ๐’† ๐‘ช ๐’Žโˆ’๐Ÿ ,
โˆ†๐’”
Where: โˆ†๐๐’† equals the number of electric lines that are
normal to the surface โˆ†S
๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐๐’† = ๏ฟฝ ๏ฟฝ๐ƒ
๐’…๐’”
๏ฟฝโƒ— due to Point Charge
Relation Between ๏ฟฝ๐ƒโƒ— and ๐„
If we locate a point charge Q at the origin, the electric flux
๏ฟฝโƒ— can be evaluated by dividing ๐๐’† by the surface area of
density ๏ฟฝ๐ƒ
the sphere, thus
๏ฟฝ๏ฟฝโƒ— = ๐’‚
๏ฟฝ ๐’“๐’”
๐ƒ
๏ฟฝ๐ƒโƒ— = ๐’‚
๏ฟฝ ๐’“๐’”
๐๐’†
๐Ÿ’๐…๐’“๐Ÿ๐’”
๐‘ธ
๐‘ช ๐’Žโˆ’๐Ÿ
๐Ÿ
๐Ÿ’๐…๐’“๐’”
๏ฟฝโƒ— on the surface at ๐’“๐’” due to Q, is
The expression for ๐„
๏ฟฝโƒ— = ๐’‚
๏ฟฝ ๐’“๐’”
๐„
๐‘ธ
โˆ’๐Ÿ
๐‘ต
๐‘ช
๐Ÿ’๐…๐œบ๐’ ๐’“๐Ÿ๐’”
๏ฟฝ๏ฟฝโƒ— and ๐„
๏ฟฝโƒ—, it can be seen that
From the expressions for ๐ƒ
๏ฟฝ๐ƒ
๏ฟฝโƒ— = ๐œบ๐’ ๐„
๏ฟฝโƒ—
๏ฟฝโƒ— and ๐„
๏ฟฝโƒ— was derived using a Point charge Q,
The relation between ๏ฟฝ๐ƒ
but also it is valid for general charge distribution,
๏ฟฝ๐‘ฌโƒ— = โˆญ ๐†๐’— ๐’…๐’—๐Ÿ ๐’‚
๏ฟฝ๐‘น
๐Ÿ’๐…๐œบ๐’ ๐‘น
๐†๐’— ๐’…๐’—
๏ฟฝ๐‘ซ
๏ฟฝโƒ— = ๏ฟฝ
๏ฟฝ
๐’‚
๐Ÿ’๐…๐‘น๐Ÿ ๐‘น
๏ฟฝโƒ—
From Faradayโ€™s experiment, it is found that, ๐๐’† and thus ๐ƒ
are independent of the dielectric media in which Q is
embedded.
Example:
Find the electric flux ๐๐’† that passes through the
surface shown in the figure. Where:
๏ฟฝ๐ƒโƒ— = ๏ฟฝ๐’š ๐’‚
๏ฟฝ๐’™ + ๐’™ ๐’‚
๏ฟฝ๐’š ๏ฟฝ๐’™ ๐Ÿ๐ŸŽโˆ’๐Ÿ ๐‘ช ๐’Žโˆ’๐Ÿ
Solution
๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐๐’† = ๏ฟฝ ๏ฟฝ๐ƒ
๐’…๐’”
๐Ÿ
๐Ÿ‘
๏ฟฝ๐’™ + ๐’™ ๐’‚
๏ฟฝ๐’š ๏ฟฝ๐’™ ๐Ÿ๐ŸŽโˆ’๐Ÿ . ๐’‚
๏ฟฝ ๐’š ๐’…๐’™๐’…๐’›
๐๐’† = ๏ฟฝ ๏ฟฝ ๏ฟฝ๐’š ๐’‚
๐ŸŽ
๐ŸŽ
๐’™๐Ÿ
๐Ÿ‘
๐Ÿ—
๐๐’† = ๏ฟฝ ๐Ÿ ๏ฟฝ [๐’›]๐Ÿ๐ŸŽ ๐’™๐Ÿ๐ŸŽโˆ’๐Ÿ = ๏ฟฝ๐Ÿ ๐’™ ๐Ÿ๏ฟฝ ๐’™๐Ÿ๐ŸŽโˆ’๐Ÿ = ๐Ÿ—๐’™๐Ÿ๐ŸŽโˆ’๐Ÿ ๐‘ช
Gaussโ€™s law
๐ŸŽ
As it is stated before, the total electric flux emanating from a
charge + Q [C] is equal to Q [C] in the SI units.
The previous statement can be restated by saying that the
total electric flux passing through any closed imaginary
surface, enclosing the charge Q [C], is equal to Q [C] in the
SI units.
Since the charge Q is enclosed by the closed surface, so the
charge Q will be named as ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’… .
Gaussโ€™s law states that: the total flux out of a closed
surface is equal to the net charges within the surface. This
can be written in integral form as:
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐๐’† = ๏ฟฝ ๐’… ๐ ๐’† = ๏ฟฝ ๐ƒ
๐’…๐’” = ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’…
๏ฟฝ๏ฟฝโƒ— and then ๐„
๏ฟฝโƒ— by
Gaussโ€™s law is used in order to determine ๐ƒ
๏ฟฝโƒ— outside the closed surface integral. This can be
getting ๐ƒ
executed by choosing Gaussian surface that satisfies the
๏ฟฝ๏ฟฝโƒ— be independent of ds
following conditions, such that ๐ƒ
variables.
Conditions for Gaussโ€™s law:
1- The surface or volume contained charges must
has degree of symmetry.
๏ฟฝโƒ— must be defined in the surface (๐ƒ
๏ฟฝ๏ฟฝโƒ— โ‰  โˆž).
2- ๏ฟฝ๐ƒ
๏ฟฝโƒ— must be uniform on the Gaussian surface
3- ๏ฟฝ๐ƒ
4- The Gaussian surface must be identical to the
body contained the charge.
Note:
1- Gaussโ€™s law is not used for all cases of charges, but it
can be used only for the cases where the chosen
Gaussian surface satisfy the previous conditions.
2- Gaussโ€™s law is used for the following cases:
โ€ข Infinite line charges and coaxial charged cylinders
โ€ข Infinite charged sheet
โ€ข Concentric charged spheres
Example:
Find the electric flux density at a point p(๐’“๐’„ , ๐‹, ๐’›) due to an
infinite charged line of ๐†๐’ at z-axis.
Solution:
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
(1) โˆฏ ๐ƒ
๐’…๐’” = ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’…
(2) Choice of Gaussian surface
(3) ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’… = ๐†๐’ ๐‘ณ
๐Ÿ๐… ๐‘ณ
๏ฟฝ๐’“๐’„ (๐’“๐’„ ๐’…๐‹ ๐’…๐’›) = ๐Ÿ๐…๐’“๐’„ ๐‘ณ๐ƒ
(4) โˆฏ ๏ฟฝ๐ƒโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐’…๐’” = ๏ฟฝ๐ƒโƒ— . โˆซ๐ŸŽ โˆซ๐ŸŽ ๐’‚
z
(5) ๐Ÿ๐…๐’“๐’„ ๐‘ณ๐ƒ = ๐†๐’ ๐‘ณ
๏ฟฝโƒ— = ๐’‚
๏ฟฝ ๐’“๐’„
(6) ๐ƒ
๐†๐’
๐Ÿ๐…๐’“๐’„
๐‘ช ๐’Žโˆ’๐Ÿ
๏ฟฝโƒ— = ๏ฟฝ๐ƒโƒ—๏ฟฝ๐œบ = ๐’‚
๏ฟฝ ๐’“๐’„
(7) ๐„
๐’
๐†๐’
๐Ÿ๐…๐’“๐’„ ๐œบ๐’
๐๏ฟฝ
๐‘ช
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
r
(rc,
L
y
Example:
๏ฟฝโƒ— and ๐„
๏ฟฝโƒ— inside and outside a sphere of radius (a) and
Find ๏ฟฝ๐ƒ
surface charge density๐†๐’” .
Solution:
Region 1 ๐ซ๐ฌ < ๐š
๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
(1) โˆฏ ๏ฟฝ๐ƒ
๐’…๐’” = ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’…
(2) Choice of Gaussian surface
(3) ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’… = ๐ŸŽ
๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๏ฟฝโƒ— . โˆซ๐Ÿ๐… โˆซ๐… ๐’‚
๏ฟฝ๐’“๐’” ๏ฟฝ๐’“๐Ÿ๐’” ๐’”๐’Š๐’ ๐œฝ๐’…๐œฝ๐’…๐‹ ๏ฟฝ = ๐Ÿ’๐… ๐’“๐Ÿ๐’” ๐ƒ
(4) โˆฏ ๏ฟฝ๐ƒ
๐’…๐’” = ๏ฟฝ๐ƒ
๐ŸŽ
๐ŸŽ
(5) ๐Ÿ’๐…๐’“๐Ÿ๐’” ๐ƒ = ๐ŸŽ
๏ฟฝโƒ— = ๐’‚
๏ฟฝ๐’“๐’” ๐ŸŽ ๐‘ช ๐’Žโˆ’๐Ÿ
(6) ๏ฟฝ๐ƒ
๏ฟฝโƒ—๏ฟฝ
๏ฟฝโƒ— = ๏ฟฝ๐ƒ
๏ฟฝ๐’“๐’” ๐ŸŽ ๐‘ต ๐‘ชโˆ’๐Ÿ
(7) ๐„
๐œบ๐’ = ๐’‚
Region 2 ๐ซ๐ฌ > ๐‘Ž
(1) โˆฏ ๏ฟฝ๐ƒโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐’…๐’” = ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’…
(2) Choice of Gaussian surface
(3) ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’… = ๐Ÿ’๐… ๐’‚๐Ÿ ๐†๐’”
๐Ÿ๐… ๐…
๏ฟฝ๐’“๐’” ๏ฟฝ๐’“๐Ÿ๐’” ๐’”๐’Š๐’ ๐œฝ๐’…๐œฝ๐’…๐‹ ๏ฟฝ = ๐Ÿ’๐… ๐’“๐Ÿ๐’” ๐ƒ
(4) โˆฏ ๏ฟฝ๐ƒโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐’…๐’” = ๏ฟฝ๐ƒโƒ— . โˆซ๐ŸŽ โˆซ๐ŸŽ ๐’‚
(5) ๐Ÿ’๐…๐’“๐Ÿ๐’” ๐ƒ = ๐Ÿ’๐… ๐’‚๐Ÿ ๐†๐’”
๐’‚๐Ÿ
๏ฟฝ
โƒ—
๏ฟฝ๐’“ ๐Ÿ ๐†๐’” ๐‘ช ๐’Žโˆ’๐Ÿ
(6) ๐ƒ = ๐’‚
๐’”
๐’“๐’”
๏ฟฝโƒ— = ๏ฟฝ๐ƒโƒ—๏ฟฝ๐œบ = ๐’‚
๏ฟฝ ๐’“๐’”
(7) ๐„
๐’
๐’‚๐Ÿ
๐œบ๐’ ๐’“๐Ÿ๐’”
๐†๐’” ๐‘ต ๐‘ชโˆ’๐Ÿ
a
Rs
E
ฮตฮŸ
rs
Example:
๏ฟฝ๏ฟฝโƒ— and ๐„
๏ฟฝโƒ— in all regions for a spherical shell of
Find ๐ƒ
radii a, b and volume charge density ๐†๐’—
b
a
rs
ฯv
Solution:
Region 1 ๐ซ๐ฌ < ๐š
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
(1) โˆฏ ๐ƒ
๐’…๐’” = ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’…
(2) Choice of Gaussian surface
(3) ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’… = ๐ŸŽ
๐Ÿ
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๏ฟฝโƒ— . โˆซ๐Ÿ๐… โˆซ๐… ๐’‚
๏ฟฝ
(4) โˆฏ ๐ƒ
๐’…๐’” = ๏ฟฝ๐ƒ
๏ฟฝ๐’“
๐’”๐’Š๐’
๐œฝ๐’…๐œฝ๐’…๐‹
๏ฟฝ
= ๐Ÿ’๐… ๐’“๐Ÿ
๐’“
๐’”
๐’”๐ƒ
๐’”
๐ŸŽ
๐ŸŽ
(5) ๐Ÿ’๐…๐’“๐Ÿ๐’” ๐ƒ = ๐ŸŽ
๏ฟฝโƒ— = ๐’‚
๏ฟฝ๐’“๐’” ๐ŸŽ ๐‘ช ๐’Žโˆ’๐Ÿ
(6) ๏ฟฝ๐ƒ
๏ฟฝโƒ— = ๏ฟฝ๐ƒโƒ—๏ฟฝ๐œบ = ๐’‚
๏ฟฝ๐’“๐’” ๐ŸŽ ๐‘ต ๐‘ชโˆ’๐Ÿ
(7) ๐„
๐’
Region 2 ๐’‚ < ๐ซ๐ฌ < ๐‘
๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
(1) โˆฏ ๏ฟฝ๐ƒ
๐’…๐’” = ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’…
(2) Choice of Gaussian surface
๐Ÿ’๐…
(3) ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’… = ๐Ÿ‘ (๐’“๐Ÿ‘๐’” โˆ’ ๐’‚๐Ÿ‘ ) ๐†๐’—
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๏ฟฝโƒ— . โˆซ๐Ÿ๐… โˆซ๐… ๐’‚
๏ฟฝ ๏ฟฝ๐’“๐Ÿ๐’” ๐’”๐’Š๐’ ๐œฝ๐’…๐œฝ๐’…๐‹ ๏ฟฝ = ๐Ÿ’๐… ๐’“๐Ÿ๐’” ๐ƒ
(4) โˆฏ ๐ƒ
๐’…๐’” = ๏ฟฝ๐ƒ
๐ŸŽ
๐ŸŽ ๐’“๐’”
(5)
(6)
๐Ÿ’๐…๐’“๐Ÿ๐’” ๐ƒ =
๏ฟฝ๐ƒโƒ— = ๐’‚
๏ฟฝ
๐Ÿ’๐…
๐Ÿ‘
(๐’“๐Ÿ‘๐’” โˆ’ ๐’‚๐Ÿ‘ ) ๐†๐’—
(๐’“๐Ÿ‘๐’” โˆ’๐’‚๐Ÿ‘ )
๐’“๐’”
๐Ÿ‘๐’“๐Ÿ๐’”
๏ฟฝโƒ— = ๏ฟฝ๐ƒโƒ—๏ฟฝ๐œบ = ๐’‚
๏ฟฝ๐’“๐’”
(7) ๐„
๐’
Region 3 ๐ซ๐ฌ > ๐‘
๐†๐’— ๐‘ช ๐’Žโˆ’๐Ÿ
(๐’“๐Ÿ‘๐’” โˆ’๐’‚๐Ÿ‘ )
๐Ÿ‘๐œบ๐’ ๐’“๐Ÿ๐’”
๐†๐’— ๐‘ต ๐‘ชโˆ’๐Ÿ
๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
(1) โˆฏ ๏ฟฝ๐ƒ
๐’…๐’” = ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’…
(2) Choice of Gaussian surface
(3) ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’… =
๐Ÿ’๐…
๐Ÿ‘
(๐’ƒ๐Ÿ‘ โˆ’ ๐’‚๐Ÿ‘ ) ๐†๐’—
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๏ฟฝโƒ— . โˆซ๐Ÿ๐… โˆซ๐… ๐’‚
๏ฟฝ ๏ฟฝ๐’“๐Ÿ๐’” ๐’”๐’Š๐’ ๐œฝ๐’…๐œฝ๐’…๐‹ ๏ฟฝ = ๐Ÿ’๐… ๐’“๐Ÿ๐’” ๐ƒ
(4) โˆฏ ๐ƒ
๐’…๐’” = ๏ฟฝ๐ƒ
๐ŸŽ
๐ŸŽ ๐’“๐’”
๐Ÿ’๐…
(5) ๐Ÿ’๐…๐’“๐Ÿ๐’” ๐ƒ =
(๐’ƒ๐Ÿ‘ โˆ’ ๐’‚๐Ÿ‘ ) ๐†๐’—
๐Ÿ‘
๏ฟฝ๏ฟฝโƒ— =
(6) ๐ƒ
๐Ÿ‘
๐Ÿ‘
(๐’ƒ โˆ’๐’‚ )
๏ฟฝ ๐’“๐’”
๐’‚
๐Ÿ‘๐’“๐Ÿ๐’”
๏ฟฝโƒ—๏ฟฝ
๏ฟฝโƒ— = ๏ฟฝ๐ƒ
(7) ๐„
๐œบ๐’ =
๐†๐’— ๐‘ช ๐’Žโˆ’๐Ÿ
๐Ÿ‘
๐Ÿ‘
(๐’ƒ โˆ’๐’‚ )
๏ฟฝ ๐’“๐’”
๐’‚
๐Ÿ‘๐œบ๐’ ๐’“๐Ÿ๐’”
๐†๐’— ๐‘ต ๐‘ชโˆ’๐Ÿ
Example:
In the figure shown, find the electric field intensity in
all regions.
ฯV
b
a
(I) (II)
(III)
L
Solution
Region 1 ๐ซ๐œ < ๐š
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
(1) โˆฏ ๐ƒ
๐’…๐’” = ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’…
(2) Choice of Gaussian surface
(3) ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’… = ๐ŸŽ
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๏ฟฝโƒ— . โˆซ๐Ÿ๐… โˆซ๐‘ณ ๐’‚
๏ฟฝ๐’“๐’„ (๐’“๐’„ ๐’…๐‹ ๐’…๐’›) = ๐Ÿ๐…๐’“๐’„ ๐‘ณ๐ƒ
(4) โˆฏ ๐ƒ
๐’…๐’” = ๏ฟฝ๐ƒ
๐ŸŽ
๐ŸŽ
(5) ๐Ÿ๐…๐’“๐’„ ๐‘ณ๐ƒ = ๐ŸŽ
๏ฟฝโƒ— = ๐’‚
๏ฟฝ๐’“๐’„ ๐ŸŽ ๐‘ช ๐’Žโˆ’๐Ÿ
(6) ๏ฟฝ๐ƒ
๏ฟฝโƒ—๏ฟฝ
๏ฟฝโƒ— = ๏ฟฝ๐ƒ
๏ฟฝ ๐’“๐’„ ๐ŸŽ
(7) ๐„
๐œบ๐’ = ๐’‚
๐‘ต ๐‘ชโˆ’๐Ÿ
Region 2 ๐’‚ < ๐ซ๐œ < ๐‘
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
(1) โˆฏ ๐ƒ
๐’…๐’” = ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’…
(2) Choice of Gaussian surface
(3) ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’… = ๏ฟฝ๐…๐’“๐Ÿ๐’„ โˆ’ ๐…๐’‚๐Ÿ ๏ฟฝ ๐‘ณ ๐†๐’—
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๏ฟฝโƒ— . โˆซ๐Ÿ๐… โˆซ๐‘ณ ๐’‚
๏ฟฝ๐’“๐’„ (๐’“๐’„ ๐’…๐‹ ๐’…๐’›) = ๐Ÿ๐…๐’“๐’„ ๐‘ณ๐ƒ
(4) โˆฏ ๐ƒ
๐’…๐’” = ๏ฟฝ๐ƒ
๐ŸŽ
๐ŸŽ
(5) ๐Ÿ๐…๐’“๐’„ ๐‘ณ๐ƒ = ๏ฟฝ๐…๐’“๐Ÿ๐’„ โˆ’ ๐…๐’‚๐Ÿ ๏ฟฝ ๐‘ณ ๐†๐’—
๏ฟฝโƒ— = ๐’‚
๏ฟฝ ๐’“๐’„
(6) ๏ฟฝ๐ƒ
๏ฟฝ๐’“๐Ÿ๐’„ โˆ’ ๐’‚๐Ÿ ๏ฟฝ
๐Ÿ๐’“๐’„
๐Ÿ
๏ฟฝ๐’“๐’„ โˆ’ ๐’‚๐Ÿ ๏ฟฝ
๐†๐’— ๐‘ช ๐’Žโˆ’๐Ÿ
๏ฟฝโƒ—๏ฟฝ
โˆ’๐Ÿ
๏ฟฝโƒ— = ๏ฟฝ๐ƒ
๏ฟฝ ๐’“๐’„
(7) ๐„
๐†
๐‘ต
๐‘ช
๐’—
๐œบ๐’ = ๐’‚
๐Ÿ๐œบ๐’ ๐’“๐’„
Region 3 ๐ซ๐œ > ๐‘
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
(1) โˆฏ ๐ƒ
๐’…๐’” = ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’…
(2) Choice of Gaussian surface
(3) ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’… = ๏ฟฝ๐…๐’ƒ๐Ÿ โˆ’ ๐…๐’‚๐Ÿ ๏ฟฝ ๐‘ณ ๐†๐’—
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๏ฟฝโƒ— . โˆซ๐Ÿ๐… โˆซ๐‘ณ ๐’‚
๏ฟฝ๐’“๐’„ (๐’“๐’„ ๐’…๐‹ ๐’…๐’›) = ๐Ÿ๐…๐’“๐’„ ๐‘ณ๐ƒ
(4) โˆฏ ๐ƒ
๐’…๐’” = ๏ฟฝ๐ƒ
๐ŸŽ
๐ŸŽ
(5) ๐Ÿ๐…๐’“๐’„ ๐‘ณ๐ƒ = ๏ฟฝ๐…๐’ƒ๐Ÿ โˆ’ ๐…๐’‚๐Ÿ ๏ฟฝ ๐‘ณ ๐†๐’—
โƒ—=๐’‚
๏ฟฝ๐’“๐’„
(6) ๏ฟฝ๐ƒ
๏ฟฝ๐…๐’ƒ๐Ÿ โˆ’ ๐…๐’‚๐Ÿ ๏ฟฝ
๐Ÿ๐’“๐’„
๏ฟฝโƒ— = ๏ฟฝ๐ƒโƒ—๏ฟฝ๐œบ = ๐’‚
๏ฟฝ๐’“๐’„
(7) ๐„
๐’
๐†๐’— ๐‘ช ๐’Žโˆ’๐Ÿ
๏ฟฝ๐…๐’ƒ๐Ÿ โˆ’ ๐…๐’‚๐Ÿ ๏ฟฝ
๐Ÿ๐œบ๐’ ๐’“๐’„
๐†๐’— ๐‘ต ๐‘ชโˆ’๐Ÿ
Example:
Find the electric field intensity in all regions for the
following charge configurations:
- Point charge Q is located at the center.
- Conducting sphere of radius a and of charge ฯs.
- A volume charge of ฯv in a spherical shell of
radii b, c.
b
IV
Solution:
+
+
+
+
+ + II+
+a
D(
+
Q
+
+
+
+
+ฯ +
+
s
C
Region 1 ๐ซ๐ฌ < ๐š
ฯv
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
(1) โˆฏ ๐ƒ
๐’…๐’” = ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’…
(2) Choice of Gaussian surfa
(3) ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’… = ๐‘ธ
๐Ÿ
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๏ฟฝโƒ— . โˆซ๐Ÿ๐… โˆซ๐… ๐’‚
๏ฟฝ
(4) โˆฏ ๐ƒ
๐’…๐’” = ๏ฟฝ๐ƒ
๏ฟฝ๐’“
๐’”๐’Š๐’
๐œฝ๐’…๐œฝ๐’…๐‹
๏ฟฝ
= ๐Ÿ’๐… ๐’“๐Ÿ
๐’“
๐’”
๐’”๐ƒ
๐’”
๐ŸŽ
๐ŸŽ
(5) ๐Ÿ’๐…๐’“๐Ÿ๐’” ๐ƒ = ๐‘ธ
๐‘ธ
โˆ’๐Ÿ
๏ฟฝโƒ— = ๐’‚
๏ฟฝ ๐’“๐’”
(6) ๐ƒ
๐‘ช
๐’Ž
๐Ÿ
๐Ÿ’๐…๐’“
๐’”
๐‘ธ
๏ฟฝโƒ—๏ฟฝ
โˆ’๐Ÿ
๏ฟฝโƒ— = ๏ฟฝ๐ƒ
๏ฟฝ ๐’“๐’”
(7) ๐„
๐‘ต
๐‘ช
๐Ÿ
๐œบ๐’ = ๐’‚
๐Ÿ’๐…๐œบ๐’ ๐’“๐’”
Region 2 ๐’‚ < ๐ซ๐ฌ < ๐‘
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
(1) โˆฏ ๐ƒ
๐’…๐’” = ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’…
(2) Choice of Gaussian surface
(3) ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’… = ๐‘ธ + ๐Ÿ’๐…๐’‚๐Ÿ ๐†๐’”
๐Ÿ
๐Ÿ
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๏ฟฝโƒ— . โˆซ๐Ÿ๐… โˆซ๐… ๐’‚
๏ฟฝ
(4) โˆฏ ๐ƒ
๐’…๐’” = ๏ฟฝ๐ƒ
๏ฟฝ๐’“
๐’”๐’Š๐’
๐œฝ๐’…๐œฝ๐’…๐‹
๏ฟฝ
=
๐Ÿ’๐…
๐’“
๐’“
๐’”
๐’”๐ƒ
๐’”
๐ŸŽ
๐ŸŽ
(5)
๐Ÿ’๐…๐’“๐Ÿ๐’” ๐ƒ = ๐‘ธ + ๐Ÿ’๐…๐’‚๐Ÿ ๐†๐’”
(6)
(7)
๏ฟฝ๐ƒโƒ— = ๐’‚
๏ฟฝ
๐‘ธ+๐Ÿ’๐…๐’‚๐Ÿ ๐†๐’”
๐’“๐’”
๐Ÿ’๐…๐’“๐Ÿ๐’”
๏ฟฝโƒ— = ๏ฟฝ๐ƒโƒ—๏ฟฝ๐œบ = ๐’‚
๏ฟฝ๐’“๐’”
๐„
๐’
Region 3 ๐› < ๐ซ๐ฌ < ๐‘
๐‘ช ๐’Žโˆ’๐Ÿ
๐‘ธ+๐Ÿ’๐…๐’‚๐Ÿ ๐†๐’”
๐Ÿ’๐…๐œบ๐’ ๐’“๐Ÿ๐’”
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
(1) โˆฏ ๐ƒ
๐’…๐’” = ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’…
(2) Choice of Gaussian surface
(3) ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’… = ๐‘ธ + ๐Ÿ’๐…๐’‚๐Ÿ ๐†๐’” +
(4)
(5)
(6)
(7)
๐†๐’— ๐‘ต ๐‘ชโˆ’๐Ÿ
๐Ÿ’๐…
๐Ÿ‘
(๐’“๐Ÿ‘๐’” โˆ’ ๐’‚ ) ๐†๐’—
๐Ÿ‘
๐Ÿ๐… ๐…
๐Ÿ
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๏ฟฝโƒ— . โˆซ โˆซ ๐’‚
๏ฟฝ
๐’…๐’” = ๏ฟฝ๐ƒ
๏ฟฝ๐’“
โˆฏ๐ƒ
๐’“
๐’” ๐’”๐’Š๐’ ๐œฝ๐’…๐œฝ๐’…๐‹ ๏ฟฝ
๐’”
๐ŸŽ
๐ŸŽ
๐Ÿ’๐…
๐Ÿ‘
๐Ÿ’๐…๐’“๐Ÿ๐’” ๐ƒ = ๐‘ธ + ๐Ÿ’๐…๐’‚๐Ÿ ๐†๐’” + (๐’“๐Ÿ‘๐’” โˆ’ ๐’‚ ) ๐†๐’—
๐Ÿ‘
๐Ÿ’๐…
๐‘ธ+๐Ÿ’๐…๐’‚๐Ÿ ๐†๐’” + (๐’“๐Ÿ‘๐’” โˆ’๐’‚๐Ÿ‘ ) ๐†๐’—
๐Ÿ‘
๐’“๐’”
๐Ÿ’๐…๐’“๐Ÿ๐’”
๐Ÿ ๐† +๐Ÿ’๐… (๐’“๐Ÿ‘ โˆ’๐’‚๐Ÿ‘ ) ๐†
๐‘ธ+๐Ÿ’๐…๐’‚
๐’”
๏ฟฝโƒ—๏ฟฝ
๐’” ๐Ÿ‘
๐’—
๏ฟฝโƒ— = ๏ฟฝ๐ƒ
๏ฟฝ
=
๐’‚
๐„
๐’“
๐œบ๐’
๐’”
๐Ÿ’๐…๐œบ๐’ ๐’“๐Ÿ๐’”
๏ฟฝ๐ƒโƒ— = ๐’‚
๏ฟฝ
= ๐Ÿ’๐… ๐’“๐Ÿ๐’” ๐ƒ
๐‘ช ๐’Žโˆ’๐Ÿ
Region 4 ๐ซ๐ฌ > ๐‘
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
(1) โˆฏ ๐ƒ
๐’…๐’” = ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’…
(2) Choice of Gaussian surface
(3) ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’… = ๐‘ธ + ๐Ÿ’๐…๐’‚๐Ÿ ๐†๐’” +
(4)
(5)
(6)
(7)
๐Ÿ’๐…
(๐’ƒ๐Ÿ‘ โˆ’ ๐’‚๐Ÿ‘ ) ๐†๐’—
๐Ÿ‘
๐Ÿ๐… ๐…
๐Ÿ
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๏ฟฝโƒ— . โˆซ โˆซ ๐’‚
๏ฟฝ
๐’…๐’” = ๏ฟฝ๐ƒ
๏ฟฝ๐’“
โˆฏ๐ƒ
๐’“
๐’” ๐’”๐’Š๐’ ๐œฝ๐’…๐œฝ๐’…๐‹ ๏ฟฝ =
๐’”
๐ŸŽ
๐ŸŽ
๐Ÿ’๐…
๐Ÿ’๐…๐’“๐Ÿ๐’” ๐ƒ = ๐‘ธ + ๐Ÿ’๐…๐’‚๐Ÿ ๐†๐’” + (๐’ƒ๐Ÿ‘ โˆ’ ๐’‚๐Ÿ‘ ) ๐†๐’—
๐Ÿ‘
๏ฟฝ๐ƒโƒ— = ๐’‚
๏ฟฝ๐’“๐’”
๐Ÿ’๐…
๐‘ธ+๐Ÿ’๐…๐’‚๐Ÿ ๐†๐’” +
๏ฟฝโƒ—๏ฟฝ
๏ฟฝโƒ— = ๏ฟฝ๐ƒ
๏ฟฝ ๐’“๐’”
๐„
๐œบ๐’ = ๐’‚
๐Ÿ‘
๐Ÿ’๐…๐’“๐Ÿ๐’”
๐‘ธ+๐Ÿ’๐…๐’‚๐Ÿ
๐Ÿ‘
(๐’ƒ๐Ÿ‘ โˆ’๐’‚ ) ๐†๐’—
๐‘ช ๐’Žโˆ’๐Ÿ
๐Ÿ‘
๐Ÿ’๐…
๐Ÿ‘
๐†๐’” + (๐’ƒ โˆ’๐’‚ ) ๐†๐’—
๐Ÿ‘
๐Ÿ’๐…๐œบ๐’ ๐’“๐Ÿ๐’”
๐‘ต ๐‘ชโˆ’๐Ÿ
๐Ÿ’๐… ๐’“๐Ÿ๐’” ๐ƒ
๐‘ต ๐‘ชโˆ’๐Ÿ
Divergence
โƒ— equals the net flux of the vector ๏ฟฝ๐ƒ
๏ฟฝโƒ— that
The divergence of ๏ฟฝ๐ƒ
flows outwardly through a closed surface S per unit volume
(enclosed by โˆฏ) as the volume goes to zero.
Divergence Law
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐‘ซ . ๐’…๐’”
โˆฏ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๏ฟฝโƒ— = ๐›. ๏ฟฝ๐‘ซ
๏ฟฝโƒ— โ‰œ ๐’๐’Š๐’Žโˆ†๐’—โ†’๐ŸŽ
๐‘ซ๐’Š๐’— ๏ฟฝ๐‘ซ
โˆ†๐’—
๏ฟฝโƒ— = ๐†๐’— [๐‘ช๐’Žโˆ’๐Ÿ‘ ]
๐›. ๏ฟฝ๐‘ซ
The general form of the divergence can be written as
๏ฟฝโƒ— =
๐›. ๏ฟฝ๐‘ซ
๐Ÿ
๐
๐
๏ฟฝ
(๐’‰๐Ÿ ๐’‰๐Ÿ‘ ๐‘ซ๐๐Ÿ ) +
(๐’‰ ๐’‰ ๐‘ซ )
๐’‰๐Ÿ ๐’‰๐Ÿ ๐’‰๐Ÿ‘ ๐๐๐Ÿ
๐๐๐Ÿ ๐Ÿ ๐Ÿ‘ ๐๐Ÿ
๐
+
(๐’‰ ๐’‰ ๐‘ซ )๏ฟฝ
๐๐๐Ÿ‘ ๐Ÿ ๐Ÿ ๐๐Ÿ‘
Where, ๐๐Ÿ , ๐๐Ÿ , ๐’‚๐’๐’… ๐๐Ÿ‘ are the variables of the coordinates
system, and ๐’‰๐Ÿ , ๐’‰๐Ÿ , ๐’‚๐’๐’… ๐’‰๐Ÿ‘ are the factors multiplied by
the differentiable of the variables. So
For Cartesian coordinates
๏ฟฝโƒ— = ๏ฟฝ
๐›. ๏ฟฝ๐‘ซ
๐
๐
๐
๐‘ซ +
๐‘ซ +
๐‘ซ ๏ฟฝ
๐๐’™ ๐’™ ๐๐’š ๐’š ๐๐’› ๐’›
For Cylinderical coordinates
๐Ÿ ๐
๐
๐
๏ฟฝ
๐’“ ๐’„ ๐‘ซ ๐’“๐’„ +
๐‘ซ๐‹ +
๐’“ ๐‘ซ ๏ฟฝ
๐’“๐’„ ๐๐’“๐’„
๐๐‹
๐๐’› ๐’„ ๐’›
For Spherical coordinates
๏ฟฝโƒ— =
๐›. ๏ฟฝ๐‘ซ
๏ฟฝโƒ— =
๐›. ๏ฟฝ๐‘ซ
๐Ÿ
๐
๐
๐
๐Ÿ
(
)
๏ฟฝ
๏ฟฝ๐’“
๐’”๐’Š๐’
๐œฝ
๐‘ซ
๏ฟฝ
+
๐’“
๐’”๐’Š๐’๐œฝ
๐‘ซ
+
๏ฟฝ๐’“ ๐‘ซ ๏ฟฝ๏ฟฝ
๐’“๐’”
๐œฝ
๐’“๐Ÿ๐’” ๐’”๐’Š๐’ ๐œฝ ๐๐’“๐’” ๐’”
๐๐œฝ ๐’”
๐๐‹ ๐’” ๐‹
Proof of Divergence Law
Let a cube enclosed at its center the point (xo,yo,zo) and the
๏ฟฝโƒ— crossing the cube surface at this
electric field density ๐ท
point and is giving by:
๏ฟฝโƒ— = ๐’‚
๏ฟฝ๐’™ ๐‘ซ๐’™๐’ + ๐’‚
๏ฟฝ๐’š ๐‘ซ๐’š๐’ + ๐’‚
๏ฟฝ ๐’› ๐‘ซ๐’› ๐’
๐ท
D(x+โˆ†x)
D(x)
dS
b
โˆ†x
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ— for the cube, all six faces
๏ฟฝ๏ฟฝ๏ฟฝโƒ— . ๐‘‘๐‘ 
In order to express โˆฏ ๐ท
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ— is outward since the
must be taken, the direction of ๐‘‘๐‘ 
faces are normal to the three axes. Only one component of
๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐ท will cross any two surface. Thus, Itโ€™s required to
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—. We take at the first the surface in + x
๏ฟฝ๏ฟฝ๏ฟฝโƒ— . ๐‘‘๐‘ 
findโˆฏ ๐ท
direction and in โ€“ x direction.
โˆซ D โ‹… d S = (D
Xo
( )
xห† + DYo yห† + D Zo zห† ) โ‹… โˆ†yโˆ†z Xห† โ†“ left + D(x + โˆ†x ) xห† โ‹… โˆ†yโˆ†z xห† โ†“ right
โˆ‚D
โˆ†x + ๏Œ
โˆ‚x
โˆ‚D ๏ฃน
๏ฃฎ
โ‹…
=
โˆ’
โˆ†
โˆ†
+
โˆ†
โˆ—
D
d
S
D
z
x
Xo Y
โˆซ
๏ฃฏ o โˆ‚x โˆ†x ๏ฃบ โˆ†yโˆ†z
๏ฃฐ
๏ฃป
โˆ‚D
โˆซ D โ‹… d S = โˆ‚x Dxโˆ†yโˆ†z
โˆ‚D y
โ‹…
โ†“
=
D
d
S
Dxโˆ†yโˆ†z
backed , front
โˆซ
โˆ‚y
โˆ‚D z
โ‹…
D
d
S
D x โˆ†yโˆ†z
โ†“ top ,bottom =
โˆซ
โˆ‚z
โˆ‚D ๏ฃน
๏ฃฎ
โˆซ D โ‹… d S = โˆ’ D Xo โˆ† Y โˆ†z + ๏ฃฏ๏ฃฐโˆ†xo โˆ— โˆ‚x โˆ†x๏ฃบ๏ฃป โˆ†yโˆ†z
โˆ‚D
D
โ‹…
d
S
=
Dxโˆ†yโˆ†z
โˆซ
โˆ‚x
โˆ‚Dy
D
โ‹…
d
S
โ†“
=
Dxโˆ†yโˆ†z
backed
,
front
โˆซ
โˆ‚y
๏‘ D(x + โˆ†x ) = D(x O ) +
โˆซ D โ‹… d S โ†“top ,bottom =
๏ฃซ โˆ‚D X
๏ฃฌ๏ฃฌ
โ‹…
=
+
D
d
S
โˆซ
โˆ‚
x
๏ฃญ
๏ฃซ โˆ‚D X
โˆด โˆซ D โ‹… d S = ๏ฃฌ๏ฃฌ
๏ฃญ โˆ‚x
โˆด ฯฯ… =
โˆ‚Dz
Dxโˆ†yโˆ†z
โˆ‚z
โˆ‚DY โˆ‚D Z
+
โˆ‚y
โˆ‚z
๏ฃถ
๏ฃท๏ฃทโˆ†xโˆ†yโˆ†z
๏ฃธ
โˆ‚DY
โˆ‚D Z ๏ฃถ
๏ฃท๏ฃทโˆ†v = Q
+
+
โˆ‚y
โˆ‚z ๏ฃธ
โˆ‚DY
โˆ‚D Z
Q โˆ‚D X
=
+
+
=โˆ‡โ‹…D
โˆ†v
โˆ‚x
โˆ‚y
โˆ‚z
Example:
A charged sphere of ฯv and radius a, the electric flux
density D for rs < a is given by:
and for rs > a is given by: D =
10 โˆ’5 rs
D=
rห†s ,
3
10 โˆ’5 a 3
3rs
2
.
Find ฯv in the previous two regions.
Solution:
โˆ‡โ‹…D=
1
h1 h2 h3
๏ฃฎโˆ‚
๏ฃน
โˆ‚
โˆ‚
(
)
(
)
(
)
h
h
D
h
h
D
h
h
D
+
+
2 3 rs
1 3 ฮธ
1 2 ฯ• ๏ฃบ
๏ฃฏ
โˆ‚ฮธ
โˆ‚ฯ†
๏ฃฐ โˆ‚rs
๏ฃป
where :
h1 = 1, h2 = rs , h3 = rs sin ฮธ
for rs < a :
1
ฯv = โˆ‡ โ‹… D = 2
rs sin ฮธ
๏ฃฎ โˆ‚
๏ฃฏ
๏ฃฐ๏ฃฏ โˆ‚rs
๏ฃน
๏ฃซ rs 2 sin ฮธ โ‹… 10 โˆ’5 rs ๏ฃถ
๏ฃฌ
๏ฃท + 0 + 0๏ฃบ
๏ฃฌ
๏ฃท
3
๏ฃญ
๏ฃธ
๏ฃป๏ฃบ
10 โˆ’5
ฯ v = โˆ‡ โ‹… D = 2 โˆ— 3rs 2 = 10 โˆ’5 C / m 3
3rs
for rs > a :
2
1 ๏ฃฎ โˆ‚ ๏ฃซ๏ฃฌ rs sin ฮธ โ‹…10 โˆ’5 a 3 ๏ฃถ๏ฃท๏ฃน
ฯv = โˆ‡ โ‹… D = 2
๏ฃฏ ๏ฃฌ
๏ฃบ+0+0 = 0
2
๏ฃท
โˆ‚
r
3rs
rs sin ฮธ ๏ฃฏ๏ฃฐ s ๏ฃญ
๏ฃธ๏ฃบ๏ฃป
ฯv = ?
ฯv = ?
a
Divergence Theorem:
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๏ฟฝ๐ƒ
๐’…๐’” = ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’… = ๏ฟฝ ๐†๐’— ๐’…๐’—
From divergence law,
So
๏ฟฝโƒ— = ๐†๐’— [๐‘ช๐’Žโˆ’๐Ÿ‘ ]
๐›. ๏ฟฝ๐‘ซ
๏ฟฝ๏ฟฝโƒ— . ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๏ฟฝ๐ƒ
๐’…๐’” = ๐‘ธ๐’†๐’๐’„๐’๐’๐’”๐’†๐’… = ๏ฟฝ ๐†๐’— ๐’…๐’— = ๏ฟฝ โˆ‡. ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐ท ๐’…๐’—
We can transfer the surface integral into a volume
integral. For the left-hand side to be equal the right
hand side of divergence theorem, the following
conditions must be fulfilled:
โ€œ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐ท Must be well behaved within the volume v and on
the surfaceโ€
Note:
๏ฟฝโƒ— and โˆ‡. ๐ท
๏ฟฝโƒ— are
Well behaved means that ๐ท
continuous and defined (not infinite).
Example:
10 x 3
Given D = 3 xห† evaluate both sides of the divergence
theorem for the volume of cube 2m on edge centered at
the origin and with edges parallel to the axis.
Solution:
z
z
x
โˆซ D โ‹… d S = โˆซ โˆ‡ โ‹… D dv
L.H .S =
โˆซ D โ‹… dS
1 1
1 1
10 x 3 ห†
10 x 3 ห†
ห†
=โˆซโˆซ
X โ‹… dydzX โ†“ X =! + โˆซ โˆซ
X โ‹… dydzXห† โ†“ X = โˆ’! +0 + 0
3
3
โˆ’1 โˆ’1
โˆ’1 โˆ’1
10(1)
40
โ‹…2โ‹…2=
C
3
3
40
40 80
=
+
=
C
3
3
3
3
=
R.H .S =
โˆซโˆ‡โ‹…
D dv
โˆ‚ ๏ฃฎ10 x 3 ๏ฃน
2
โˆดโˆ‡ โ‹… D =
๏ฃฏ
๏ฃบ = 10 x
โˆ‚x ๏ฃฐ
3
๏ฃป
1
๏ฃฎ x3 ๏ฃน
2
โˆด โˆซ โˆ‡ โ‹… D dv = โˆซ โˆซ โˆซ 10 x dxdydz = 10 ๏ฃฏ ๏ฃบ โ‹… 2 โ‹… 2
๏ฃฐ 3 ๏ฃป โˆ’1
โˆ’1 โˆ’1 โˆ’1
10
[1 + 1]โ‹… 2 โ‹… 2 = 80 C
=
3
3
1 1 1
Example:
2
5r
D = s rห†s
4
Given
evaluate both sides of divergence
ฯ€
theorem for volume: r = 4m , ฮธ = 4
z
Solution:
r = 4m
ฮธ
ฮธ= 45o
y
x
โˆซ D โ‹… d S = โˆซ โˆ‡ โ‹… D dv
L.H .S = โˆซ D โ‹… d S
ฯ€
2ฯ€ 4
2
5r
2
= โˆซ โˆซ s rห†s โ‹… rห†s rs sin ฮธdฮธdฯ† โ†“ rs = 4
4
0 0
ฯ€
ฯ€
5(4 ) 4
5(4 )
(โˆ’ cos ฮธ )04
=
โ‹… โˆซ sin ฮธdฮธ โ‹… โˆซ dฯ† =
4 0
4
0
4
= 589.1 C
2ฯ€
4
โˆ‡โ‹…D =
=
rs
2
2
4rs ๏ฃน
โˆ‚ ๏ฃฎ 2
1
๏ฃฏ rs sin ฮธ
๏ฃบ
โˆ‚
r
4 ๏ฃป
sin ฮธ
s ๏ฃฐ
5
2
โ‹… 4rs = 5rs
2
4rs
ฯ€
RHS =
โˆซ โˆ‡ โ‹… D dv =
5rs
=
4
4
2ฯ€ 4 4
โˆซ
โˆซ โˆซ 5rs โ‹… r
2
sin ฮธdrs dฮธ dฯ†
0 0 0
ฯ€
(โˆ’ cos ฮธ )04
โ‹… 2ฯ€ = 589.1C