Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
5/5/2015 Sections 3-1 and 3-2 Overview and Measures of Center TWO TYPES OF STATISTICS • Descriptivestatistics summarizeor describe theimportantcharacteristicsof data. • Inferentialstatistics usesampledatato makeinferences (orgeneralizations)about apopulation. MEASURE OF CENTER Ameasureofcenter isavalueatthecenter ormiddleofadataset. Therearefourmeasuresofcenterthatwe willdiscussinthisclass • (Arithmetic)Mean • Median • Mode • Midrange 1 5/5/2015 THE MEAN Thearithmeticmean,orthemean,ofasetof dataisthemeasureofcenterfoundbyadding allthedatavaluesanddividingbythetotal numberofdatavalues.Thisiswhatis commonlyreferredtoastheaverage. PROPERTIES OF THE MEAN • Samplemeansdrawnfromthesame populationtendtovarylessthanother measuresofcenter. • Themeanofthedatasetuseseverydata value. • Adisadvantageofthemeanisthatjustone extremevalue(outlier)canchangethevalue ofthemeansubstantially.(Sincethemean cannotresistsubstantialchangescausedby extremevalues,wesaythatthemeanisnota resistant measureofcenter. NOTATION • Σ – denotesthesummation (addition)ofa setofvalues. • – isthevariable usuallyusedtorepresent theindividualdatavalues. • – representsthenumberofvalues ina sample. • N – representsthenumberofvalues ina population. 2 5/5/2015 MEAN OF A SAMPLE AND MEAN OF A POPULATION • • ̅ ∑ isthemeanofsample values. ∑ isthemeanofpopulation values. EXAMPLE ThegivenvaluesarethenumbersofDutchess Countycarcrashesforeachmonthinarecent year.Findthemean. 27817111525161414141318 FINDING THE MEAN ON THE TI-83/84 1. PressSTAT;select1:Edit…. 2. EnteryourdatavaluesinL1.(Youmay enterthevaluesinanyofthelists.) 3. Press2ND,MODE (forQUIT). 4. PressSTAT;arrowovertoCALC.Select 1:1‐VarStats. 5. EnterL1bypressing2ND,1. 6. PressENTER. 3 5/5/2015 FINDING THE MEAN ON THE TI-84 WITH THE NEW OS 1. PressSTAT;select1:Edit…. 2. EnteryourdatavaluesinL1.(Youmay enterthevaluesinanyofthelists.) 3. Press2ND,MODE (forQUIT). 4. PressSTAT;arrowovertoCALC.Select 1:1‐VarStats. 5. For“List”enterL1bypressing2ND,1. 6. Leave“FreqList”blank. 7. Highlight“Calculate”andpressENTER. MEDIAN Themedian,denotedby ,ofadatasetisthe middlevaluewhentheoriginaldatavalues arearrangedinorderofincreasing(or decreasing)magnitude. PROPERTIES OF THE MEDIAN • Themediandoesnotchangebylarge amountswhenweincludejustafew extremevalues(sothemedianisaresistant measureofcenter). • Themediandoesnotuseeverydatavalue. 4 5/5/2015 6.72 3.46 3.60 6.44 3.46 3.60 6.44 6.72 (even number of values) no exact middle -- shared by two numbers 3.60 + 6.44 MEDIAN is 5.02 2 6.72 3.46 3.60 6.44 26.70 3.46 3.60 6.44 6.72 26.70 (in order - exact middle odd number of values) MEDIAN is 6.44 EXAMPLE ThegivenvaluesarethenumbersofDutchess Countycarcrashesforeachmonthinarecent year.Findthemedian. 27817111525161414141318 FINDING THE MEDIAN ON THE TI-83/84 Thisisdoneinexactlythesamewayasfinding themean.Afteryouhavefinishedusethe downarrowtoscrolldownandyouwillsee Med=. 5 5/5/2015 MODE • Themode,denotedbyM,ofadatasetisthenumberthat occursmostfrequently. • Whentwovaluesoccurwiththesamegreatestfrequency, eachoneisamodeandthedatasetissaidtobebimodal. • Whenmorethantwovaluesoccurwiththesamegreatest frequency,eachisamodeandthedatasetissaidtobe multimodal. • Whennodatavalueisrepeated,wesaythatthereisno mode. • Thisistheonly measureofcenterthatcanbeusedwith nominal data. EXAMPLE a. 5 5 5 3 1 5 1 4 3 5 Mode is 5 b. 1 2 2 2 3 4 5 6 6 6 7 9 Bimodal - c. 1 2 3 6 7 8 9 10 No Mode 2 and 6 EXAMPLE ThegivenvaluesarethenumbersofDutchess Countycarcrashesforeachmonthinarecent year.Findthemode. 27817111525161414141318 6 5/5/2015 FINDING THE MODE ON THE TI-83/84 TheTI‐83/84willNOT calculatethemodeofa dataset.However,thedatainalistcanbe easilysortedtohelpinfindingthemode. TosortL1inascending order:STAT,2:SortA, L1,), andENTER. Tosortindescending order,use3:SortD. MIDRANGE Themidrange ofadatasetisthemeasureofcenterthat isthevaluemidwaybetweenthehighestandlowest valuesoftheoriginaldataset.Itisfoundbyaddingthe highestdatavalueandthelowestdatavalueandthen dividingby2;thatis, midrange maximumdatavalue minimumdatavalue 2 PROPERTIES OF THE MIDRANGE • • Becausethemidrangeusesonlythemaximumand minimumvalues,itisverysensitivetothoseextremes. Inpractice,themidrangeisrarelyused,butithasthree redeemingfeatures: 1. Themidrangeiseasytocompute. 2. Themidrangehelpsreinforcetheveryimportant pointthatthereareseveraldifferentwaystodefine thecenterofadataset. 3. Thevalueofthemidrangeissometimesused incorrectlyforthemedian,soconfusioncanbe reducedbyclearlydefiningthemidrangealongwith themedian. 7 5/5/2015 EXAMPLE ThegivenvaluesarethenumbersofDutchess Countycarcrashesforeachmonthinarecent year.Findthemidrange. 27817111525161414141318 ROUND-OFF RULES FOR MEAN, MEDIAN, AND MIDRANGE Forthemean,median,andmidrange,carry onemoredecimalplacethanispresentin theoriginalsetofvalues. Forthemode,leavethevaluewithout rounding(becausevaluesofthemodearethe sameassomeoftheoriginaldatavalues). MEAN FROM A FREQUENCY DISTRIBUTION Tocomputethemeanfromafrequency distribution,weassumethatallsamplevalues areequaltotheclassmidpoint. ̅ ∑ · ∑ =classmidpoint =frequency Σf =sumoffrequencies= 8 5/5/2015 EXAMPLE Thefollowingdatarepresentthenumberof peopleaged25–64coveredbyhealthinsurance in2007.Approximatethemeanage. Age 25–34 Number (inbillions) 39.8 35–44 41.9 45–54 43.8 55–64 33.3 Source:ebri.orgNotes• August2009•Vol.30,No.8 FINDING THE MEAN FROM A FREQUENCY TABLE ON TI-83/84 1. EntertheclassmidpointsinL1. 2. EnterthefrequenciesinL2. 3. PressSTAT,arrowovertoCALC,and select1:1‐VarStats. 4. PressL1,L2 followedbyENTER. 5. Themeanwillbethefirstitem. FINDING THE MEAN FROM A FREQUENCY TABLE ON TI-84 WITH NEW OS 1. EntertheclassmidpointsinL1. 2. EnterthefrequenciesinL2. 3. PressSTAT,arrowovertoCALC,and select1:1‐VarStats. 4. For“List”,enterL1 5. For“FreqList”,enter L2. 6. Highlight“Calculate”andpressENTER. 7. Themeanwillbethefirstitem. 9 5/5/2015 WEIGHTED MEAN Insomecases,thevaluesvaryintheirdegreeof importance,sowemaywanttoweightthem accordingly.Wecancomputetheweighted mean forsuchvalues. ̅ · ∑ ∑ =value =weightofvalue ∑ =sumofweights EXAMPLE Marissajustcompletedherfirstsemesterin college.Sheearnedan“A”inherfour‐hour statisticscourse,a“B”inherthree‐hour sociologycourse,an“A”inherthree‐hour psychologycourse,a“C”inherfive‐hour computerprogrammingcourse,andan“A”in herone‐hourdramacourse.Determine Marissa’sgradepointaverage. BEST MEASURE OF CENTER 10