* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Intel® Curie™ Module Platform Design Guide
Power over Ethernet wikipedia , lookup
Audio power wikipedia , lookup
Transmission line loudspeaker wikipedia , lookup
Mains electricity wikipedia , lookup
Buck converter wikipedia , lookup
Solar micro-inverter wikipedia , lookup
Wireless power transfer wikipedia , lookup
Power engineering wikipedia , lookup
Alternating current wikipedia , lookup
Integrated circuit wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Rectiverter wikipedia , lookup
Intel® Curie™ Module Design Guide November 2016 Revision 1.2 November 2016 rev. 1.2 Intel® Curie™ Design Guide 1 No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. This document contains information on products, services, and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications, and roadmaps. The products and services described may contain defects or errors known as errata, which may cause deviations from published specifications. Current characterized errata are available on request. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a nonexclusive, royalty-free license to any patent claim thereafter drafted that includes subject matter disclosed herein. Forecasts: Any forecasts of requirements for goods and services are provided for discussion purposes only. Intel will have no liability to make any purchase pursuant to forecasts. Any cost or expense you incur to respond to requests for information or in reliance on any forecast will be at your own risk and expense. Business Forecast: Statements in this document that refer to Intel’s plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of risks and uncertainties. A detailed discussion of the factors that could affect Intel’s results and plans is included in Intel’s SEC filings, including the annual report on Form 10-K. Copies of documents that have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting www.intel.com/ design/literature.htm. Intel and the Intel logo are trademarks of Intel Corporation in the United States and other countries. *Other names and brands may be claimed as the property of others. Copyright © 2016 Intel Corporation. All rights reserved. Intel® Curie™ Design Guide 2 November 2016 Document number: 567219 rev. 1.2 Revision History Revision 1.0 1.1 1.2 Description Initial release Minor fixes Added reference to the Intel® Curie™ module Application Note - Power Sequencing Considerations in the power on sequence section Date August 2016 September 2016 November 2016 § November 2016 rev. 1.2 Intel® Curie™ Design Guide 3 1 Introduction ............................................................................................................................................................................. 8 1.1 Audience and purpose................................................................................................ 8 1.2 References ............................................................................................................... 8 1.3 Terminology ............................................................................................................. 9 2 System Fundamentals ......................................................................................................................................................... 10 2.1 Block diagrams ........................................................................................................10 2.2 Electrical specifications .............................................................................................13 2.3 Intel® Curie™ module footprint .................................................................................13 2.3.1 Breakout pitch of module.............................................................................13 3 Power and Energy................................................................................................................................................................. 14 3.1 Power requirements and distribution ...........................................................................14 3.2 Power supervisor, reset and voltage regulators ............................................................16 3.2.1 Power supervisor ........................................................................................16 3.2.2 Manual reset logic ......................................................................................16 3.2.3 AON IO Power............................................................................................16 3.2.4 VSYS ........................................................................................................16 3.2.5 Comparator power......................................................................................16 3.3 Battery charging and management .............................................................................16 3.3.1 Integrated charging device ..........................................................................16 3.3.2 Charging circuit example .............................................................................18 3.3.3 Wireless charger ........................................................................................19 3.3.4 Charing status indicator...............................................................................19 3.3.5 Charging mode (wired / wireless) selection and indicator .................................19 3.4 No battery configuration............................................................................................20 3.4.1 ESR1 and ESR2 regulators ...........................................................................20 3.4.2 ESR3 regulators .........................................................................................21 3.4.3 USB power and protection circuit ..................................................................24 3.5 Power ON sequencing ...............................................................................................25 3.5.1 AON_1P8, LDO_1P8, HOST_1P8 and HOST_1P8-PG ........................................27 3.5.2 VSYS, OPM_2P6, AON_1P8 and LDO_1P8 ......................................................28 4 Subsystems ............................................................................................................................................................................ 29 4.1 Analog power and input routing..................................................................................29 4.1.1 ADC ground ...............................................................................................29 4.2 Bluetooth® low energy device and antenna .................................................................30 4.2.1 Antenna placement.....................................................................................30 4.3 I2C interface design guidelines ...................................................................................31 4.3.1 I2C connections on the functional reference circuits .........................................31 4.3.2 I2C interface signals ....................................................................................31 4.4 LED driver example ..................................................................................................32 4.5 I2S interface design guidelines...................................................................................33 4.5.1 Signals for the I2S interface.........................................................................33 4.5.2 I2S interface routing guidelines ....................................................................33 4.6 Sensors ..................................................................................................................33 4.6.1 Integrated 6-axis sensor interfaces ...............................................................33 4.6.2 Environmental inputs ..................................................................................33 4.7 Haptics ...................................................................................................................35 4.7.1 Device driver .............................................................................................35 4.7.2 Reference Eccentric Rotating Mass (ERM) device .............................................35 4.8 SPI interface............................................................................................................37 4.8.1 SPI interface signals on the Intel® Curie™ module .........................................38 4.9 Flash memory..........................................................................................................38 4.10 Display panel and touch controller ..............................................................................39 4.11 Near Field Communication (NFC) ................................................................................41 4.11.1 NFC controller features................................................................................41 November 2016 rev. 1.2 Intel® Curie™ Design Guide 4 4.11.2 Secur microcontroller features......................................................................41 4.12 UART0 for Bluetooth® low energy ..............................................................................43 4.13 UART1 interface signals.............................................................................................43 4.14 USB interface design considerations............................................................................43 4.14.1 USB 1.1 length matching .............................................................................44 5 Circuit Board Recommendations ...................................................................................................................................... 45 5.1 Fundamental design rules..........................................................................................45 5.2 PCB thickness and stackup ........................................................................................45 5.2.1 Two-layer boards .......................................................................................45 5.2.2 Four-layer stackup......................................................................................45 5.2.3 Six-layer stackup........................................................................................46 6 Debug and Production Options......................................................................................................................................... 48 6.1 JTAG connector or test pads ......................................................................................48 6.2 Power rail test pads ..................................................................................................49 6.3 UART test pads ........................................................................................................49 6.4 Bluetooth® low energy test pads ...............................................................................49 November 2016 rev. 1.2 Intel® Curie™ Design Guide 5 Tables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Intel® Curie™ Design Guide 6 References ............................................................................................................ 8 Terminology .......................................................................................................... 9 Formula to calculate resistor for battery charge current ..............................................17 Buck parameters ...................................................................................................25 I2C interface signals ..............................................................................................31 I2S interface signals ..............................................................................................33 I2S routing guidelines ............................................................................................33 Interface signals....................................................................................................33 Intel® Curie™ SPI interface signals .........................................................................38 UART interface signals............................................................................................43 USB 1.1 differential pair length matching table ..........................................................44 USB 1.1 differential pair length matching table ..........................................................44 Two-layer stackup design .......................................................................................45 Four-layer stackup design.......................................................................................45 Six-layer stackup design.........................................................................................46 November 2016 rev. 1.2 Figures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Intel® Curie™ module block diagram..........................................................................11 Conceptual device block diagram................................................................................12 Power distribution inside Intel® Curie™ module ...........................................................15 Battery charging profile example ................................................................................17 Battery application - example circuit ...........................................................................18 Wireless charger - example circuit ..............................................................................19 Example circuits for no battery application ...................................................................20 ESR1 and ESR2 regulator ..........................................................................................21 ESR3 regulator ........................................................................................................22 Example Circuit for Bluetooth operating at 1.8 VDC.......................................................23 USB power and protection example circuit ...................................................................24 Intel® Curie™ power sequence ..................................................................................25 AON_1P8, LDO_1P8, HOST_1P8 and HOST_1P8-PG - Oscilloscope capture.......................27 AON_1P8, ESR1 and ESR2 - Oscilloscope capture .........................................................28 Example ADC ground ................................................................................................29 Pad dimensions for chip antenna ................................................................................30 Example of I2C connection for a typical device ..............................................................31 LED driver block diagram for a tricolor module .............................................................32 LED driver example circuit for a tricolor module............................................................32 Extended environmental sensor block diagram .............................................................34 External environmental sensor example circuit .............................................................34 Haptic driver block diagram .......................................................................................35 Haptic driver - example circuit ...................................................................................36 SPI simplified topology example .................................................................................37 SPI simplified topology example .................................................................................38 Flash memory circuit for SPI interface .........................................................................39 External display topology example..............................................................................40 NFC connections ......................................................................................................41 NFC - example circuit................................................................................................42 UART interface topology ............................................................................................43 USB 1.1 port topology...............................................................................................44 Thickness of a six layer stackup .................................................................................47 Block diagram of the debug ports on the Intel® Curie™ module .....................................48 Debug ports on the Intel® Curie™ module ..................................................................48 November 2016 rev. 1.2 Intel® Curie™ Design Guide 7 Introduction 1 Introduction This document provides design recommendations for the Intel® Curie™ module, which is based on the Intel® Quark™ SE system on a chip. Technical implementation examples provided are derived from the functional reference circuits. Note: The guidelines provided in this document are based on preliminary simulation work done at Intel while developing systems based on the Intel® Curie™ module and the Intel® Quark™ SE micro-controller. This work is ongoing, and the recommendations are subject to change. Note: All 3rd party components shown in this document are for reference example purpose only and customers have to evaluate and choose the right components based on their use case. CAUTION: If the guidelines listed in this document are not followed, it is very important that the designers perform thorough signal integrity and timing simulations. Even when following these guidelines, Intel recommends the critical signals to be simulated to ensure proper signal integrity and flight time. 1.1 Audience and purpose The Intel® Curie™ Design Guide is provided as an aid for hardware designers and system integrators. The functional reference circuits were created to provide information and guidance on the following subjects: · · · · · Block diagrams of system level communications and functional reference circuits interface configurations System mechanicals and board topology, routing requirements; and layout recommendations Power distribution, reset logic, boot sequencing; and energy management Factory test, debug, recovery; and troubleshooting Alternate implementation options Note: This design guide has been developed to ensure maximum flexibility for board designers while reducing the risk of board-related issues. Design recommendations are based on Intel's simulations and lab experience and are strongly recommended, if not necessary, to meet the timing and signal quality specifications. They should be used as an example but may not be applicable to particular designs. The guidelines recommended in this document are based on experience, simulation, and preliminary validation work done at Intel while developing the Intel® Curie™ processor-based design. This work is ongoing, and recommendations are subject to change. Metric units are used in some sections in addition to the standard use of U.S. customary system of units (USCS). If there is a discrepancy between the metric and USCS units, assume the USCS unit is most accurate. The conversion factor used is 1 inch (1000 mils) = 25.4 mm. 1.2 References Table 1 References Document name Intel® Curie™ Datasheet Intel® Curie™ Design Guide 8 November 2016 rev. 1.2 Introduction 1.3 Terminology Table 2 Terminology Term Definition ADC Analog-to-digital converter ANT Antenna AON Awake-ON SoC Intel® Quark™ SE BALUN Balanced-unbalanced BLE Bluetooth* low energy BOM Bill of materials CPU Central processing unit CTS Clear to send Intel® Curie™ Module Intel’s highly integrated module based on the Intel® Quark™ SE SoC DCCM Closely coupled data memory DSP Digital signal processor ERM Eccentric Rotating Mass FAR False acceptance rate Finish The material used to protect the exposed copper on the PCB FRR False rejection rate FW Firmware GUI Graphical user interface Impedance The effective resistance of a trace, circuit or component NFC Near field communication OEM Original equipment manufacture OS Operating system OTP One-time programmable PMA Power matters alliance PCB Printed circuit board POR Power-on reset PRU Port replacement unit PTU Power transmit unit PWM Pulse width modulation Qi An interface standard developed by the Wireless Power Consortium for inductive electrical power transfer RAM Random access memory. RF Radio Frequency Soldermask An electrically insulating material covering traces on the external layers of a PCB SW Software Space The distance between copper features (such as traces) on the PCB Trace A copper line on the PCB used to connect components UART Universal asynchronous receiver transmitter. VIA Plated hole in the PCB used to connect layers WPC Wireless Power Consortium. X-Y The area of a board (the length of each side) Z The thickness of a board (the Z dimension) November 2016 rev. 1.2 Intel® Curie™ Design Guide 9 System Fundamentals 2 System Fundamentals 2.1 Block diagrams The next two block diagrams shows the Intel® Curie™ module and then the module within a typical design. Intel® Curie™ Design Guide 10 November 2016 rev. 1.2 System Fundamentals Figure 1 Intel® Curie™ module block diagram I2C0_SS I2C1_SS Intel® Quark™ SE SPI0_SS INT GPIO_AON GPIO_AON[5] GPIO[5] BLE_ATP_INT ATP_BLE_INT UART_0 32MHz In 32MHz XTAL 32KHz OSC 32KHz In I2C0 I2C1 SPI0_M / GPIO SPI1_M / GPIO ATP_SPI0_S / GPIO I2S / GPIO GPIO_AON[4] 6AXIS_INT1 SPI1_SS GPIO[28] GPIO[7]/AIN[7] VUSB_EN 5V_BUS_SENSE VCC_USB_3P3 UART_1 / GPIO_SS GPIO / ANALOG_IN GPIO_SS[15] BUCK_EN JTAG PWM / GPIO_SS 32/16/8/4 MHz CLK0_OUT / GPIO_SS 3V3 1V8 1V8 3V3 1V8 1V8 1.8‐3.3V 2.0‐3.3V 1V8 ESR1_LX ESR2_LX ESR3_LX Nordic* Bluetooth Low Energy Controller NRF51822 VCC_SRAM VCC_RTC BLE_RF BLE_DEBUG BLE_I2C VDD_BLE_SEN 16MHz XTAL Bosch BMI160* 6‐AXIS SENSOR 6‐AXIS_AUX_I2C 6AXIS_INT2 VDD_6AXIS LDO 3.3V Microchip MIC5504‐3.3YMT* VDD_USB BUCK_VOUT 1.8V/3.3V BUCK REGULATOR TI TPS62743* BUCK_VSEL LDO 1.8V ONsemiconductor NCP170AMX180TCG* VCC_AON VCC_BATT_ESR3_3P7/ VCC_BATT_OPM3_3P7 VCCOUT_AVD_OPM_2P6/ VCC_AVD_OPM_2P6 LDO1P8_VOUT VSYS OPM2P6_VOUT VSYS POWER SUPERVISOR Maxim* MAX16074RS29D3+ VDD_PLAT_1P8 VDD_PLAT_3V3 VDD_HOST_1P8 MRESET_B POR_B ATP_RST_B RST_B ADC_3P3_VCC VIN CMP_3P3_VCC PV_BATT IO_AON_VCC GPIO_SS[7]/AIN[15] CHG_STATUS BATTERY CHARGER BATTERY_ISET VCC_HOST_1P8_PG POWER SUPERVISOR RICOH R3117K161C* Texas Instruments* BQ25101H CHG_STATUS BATTERY_TEMP SENSOR SUBSYSTEM CLOCK November 2016 rev. 1.2 Balun Transformer POWER Intel® Curie™ Design Guide 11 System Fundamentals Figure 2 Conceptual device block diagram I2C1_M_SCL HOST NFC I2C1_M_SDA SPI1_M_CS2 SECURE ELEMENT SPI1_M_SCK SPI1_M_MOSI SPI1_M_MISO STMicroelectronics ST54D* NFC_INT NFC_RST NFC_GPIO 3 I2C1_SCL I2C1_SCL I2C1_SDA I2C1_SCA SPI1_M_CS2 GPIO[1] / AIN[1] / SPI_S_MISO I2C1_M_SCL I2C1_M_SDA HAPTICS TI DRV2605* HAPTICS_IN/TRG/PWM SPI1_M_SCK SPI1_M_MOSI I2C0_SS_SCL SPI1_M_MISO GPIO[2] / AIN[2] / SPI_S_SCK I2C0_SS_SDA I2C0_SS_SCL I2C0_SS_SDA PRESSURE ,TEMP & HUMIDITY SENSOR Bosch BME280* GPIO[15] / I2S_RXD GPIO[20] / I2S_TXD GPIO_SS[3] / AIN[11] LED DRIVER I2C1_SCL SPI1_M_CS1 TI LP5562* I2C1_SDA SPI1_M_SCK COMPASS_INT COMPASS Bosch BMM150* SPI1_M_MOSI I2C0_SCL 6 I2C GPIO EXPANDER I2C0_M_SCL I2C0_SDA GPIO_EXP_INT PUSH_BUTTON WC_EN Wireless Charger WC_CHG_STATUS Broadcom BQ51003* I2C0_M_SDA GPIO[0] / AIN[0] / SPI_S_CS_B GPIO[24] / SPI0_M_CS_B[0] GPIO[19] / I2S_TWS ATP_INT2 ATP_INT3 GPIO[17] / I2S_RWS THERMISTOR LNA GPS TOUCH_INT DISPLAY_ON/OFF TOUCH_RESET GPIO_SS[2] / AIN[10] SPI0_M_CS1 FILTER GPIO_SS[12] / PWM[2] TEMP_ADC DISPLAY_GPIO/ LCD_EXTCOMIN DISPLAY / TOUCH HEADER C O N N E C T O R SPI0_M_SCK SPI0_M_MOSI SPI0_M_MISO GPS_HOST_REQ GPS_HOST_WAKE GPS_ON SPI0_M_CS1 Intel® CurieTM Module SPI0_M_SCK SPI0_M_MOSI SPI0_M_MISO GPIO[16] / I2S_RSCK SPI0_SS_CS0 SPI0_SS_SCK SPI0_SS_MOSI SPI0_SS_MISO SENSOR HEADER I2C1_SS_SCL I2C1_SS_SDA GPIO_SS[6]/AIN_14 GPIO_SS[3]/AIN_11 ATP_INT1 UART1_RTS/AIN[9]/GPIO_SS[1] GPIO[18] / I2S_TSCK UART1_CTS/AIN[8]/GPIO_SS[0] SPI0_M_CS2 SPI0_M_SCK SEN_GPIO_1 SEN_GPIO_2 SEN_GPIO_3 SEN_GPIO_4 SPI0_M_CS2 SPI0_M_SCK SPI0_M_MOSI SPI0_M_MOSI SPI0_M_MISO SPI0_M_MISO GPIO[14] / SPI1_M_CS_B[3] GPIO[3] / AIN[3] / SPI_S_MOSI 4 OPTIONAL GPIO’s TO SENSOR HEADER FLASH_WP SPI FLASH Macronix MX25U12835F* FLASH_RESET W3008C BLE_RF JTAG,UART,BLE GPIO shared GPIO (not available default) (3 separate headers) GPIO_SS[14]/PLT_CLK[0] ATP_INT0 GPIO[11] / SPI1_M_CS_B[0] Intel® Curie™ Design Guide 12 JTAG/DEBUG/BLE SW_FUEL_GAUGE_EN/TEMP_EN ON‐OFF SWITCH BATTERY_CTRL November 2016 rev. 1.2 System Fundamentals 2.2 Electrical specifications Refer to the Intel® Curie™ Module datasheet for complete specification. 2.3 Intel® Curie™ module footprint Refer to the Intel® Curie™ module manufacturing guide for more information. 2.3.1 Breakout pitch of module Due to the lateral pitch (0.0224” or 0.57 mm) on the Intel® Curie™ module package, there is a space of 0.0124” between the pads that requires a Trace and Space of 0.004” / 0.1” for breakout of the package on the external layer. November 2016 rev. 1.2 Intel® Curie™ Design Guide 13 Power and Energy 3 Power and Energy The power input of the Intel® Curie™ module is intended to be supplied by direct USB power, a charging device; or a battery as selected from a priority basis of those available. 3.1 Power requirements and distribution The Intel® Curie™ module requires a clean and stable power supply. Poorly designed regulators or filters that drift at low loads or that do not handle transit changes with precision can impact module performance and reliability. Refer to the Intel® Curie™ module datasheet for power numbers. Intel® Curie™ Design Guide 14 November 2016 rev. 1.2 Power and Energy Figure 3 Power distribution inside Intel® Curie™ module VDD_USB USB_3V3 USB LDO VCC_USB_3P3 Intel® QuarkTM SE VSYS VCC_ADC_3P3 VIN Battery Charger VCC_BATT_OPM_3P7 VCCOUT_AVD_OPM_2P6 Texas Instruments BQ25101H* PV_BATT VCC_CMP_3P3[1,2] VCC_AVD_OPM_2P6 VCCOUT_ESR1_3P3 VCC_BATT_ESR1_3P7 BATT_ISET VCC_VSENSE_ESR1 VCCOUT_QLR1_3P3 LDO_VOUT VSYS VCCOUT_ESR2_1P8 VCC_BATT_ESR2_3P7 BUCK CONVERTER BUCK_EN GPIO_SS[15] BUCK_VOUT TI TPS62743* VCC_BATT_ESR3_3P7 VCC_VSENSE_ESR2 VCCOUT_QLR2_1P8 VCCOUT_ESR3_1P8 VCC_VSENSE_ESR3 BUCK_SEL VSYS VCC_AON_PWR LDO 1.8V ON semiconductor NCP170AMX180TCG* Enable VCC_AON_PWR Power supervisor Osclillator MAXIM MAX16074RS29D3+T* POR_B VCC_AON_1P8[1,2] VCC_HOST_1P8[1,2] VCCOUT_HOST_1P8 VCC_PLL_1P8 VCCOUT_AON_1P8 4.7uF VCC_AON_PWR MRESET_B 4.7uF VCC_IO_AON[1,2] VCC_SRAM_1P8 ATP_RESET_B VCC_RTC_1P8 NORDIC Bluetooth* Low Energy NRF51822-CEAA-R_V3* VDD_BLE_SEN 6-AXIS Sensor BOSCH BMI160* LDO1P8_VOUT Note: The above diagram is for reference only; power connections within the module cannot be modified. November 2016 rev. 1.2 Intel® Curie™ Design Guide 15 Power and Energy 3.2 Power supervisor, reset and voltage regulators 3.2.1 Power supervisor The Intel® Curie™ input power is monitored for a threshold level by power supervisor circuit present inside the module. If the system voltage falls below 2.9 VDC, the power supervisor will pull the POR_B pin LOW to keep SoC in reset state. 3.2.2 Manual reset logic While the Intel® Curie™ does not include a physical reset, it does provide support manual reset switches and it is recommended to design them into your device by pulling the ATP_RST_B line to ground, holding the CPU in reset. 3.2.3 AON IO Power This pin powers the AON block of the Intel® Curie™ and must comply with the timing sequence shown in Figure 12 If the IO voltage is 1.8V, it is recommended to use LDO1P8_VOUT to power this pin. It can be fed by other power supplies also provided it meets the power sequence requirements. If the IO voltage is set to 3.3 VDC, then supplying from the ESR1 regulator is permitted. 3.2.4 VSYS Main power input for the Intel® Curie™. This supplies the OPM regulator, AON block, ESR3 and BUCK regulator. Use a 0.1uF decoupling capacitor. 3.2.5 Comparator power CMP_3P3_VCC is the comparator block power input pin. Use 0.1uF decoupling capacitor. Use a clean power supply for good performance. Keep the power supply traces away from high frequency signals, DC-DC converters, and RF. 3.3 Battery charging and management 3.3.1 Integrated charging device The Intel® Curie™ module has a built-in, low-leakage single-path Li-ion / Li-Po battery charger. This battery charger supports 3.8V batteries with charging voltage of 4.35V. Charge current is hardware configurable from 60mA to 250mA by reference voltage at the BATT_ISET pin. The minimum battery capacity supported is 120mAH (assuming the standard battery charge current is 0.5C) If the battery charge current is less than 60mA, an external charger should be used and not the internal charger. The charger has three phases of charging: pre-charge to recover a fully discharged battery, fast-charge constant current to supply the charge safely; and voltage regulation to safely reach full capacity. The fast-charge current is programmable and the pre-charge current is 20% of fast-charge and termination current is 10% of the fast-charge current. If the battery voltage is below the 2.5V, the battery is considered discharged and a preconditioning cycle begins. The charging happens at the pre-charge current level. Once the battery voltage has charged to the 2.5V threshold, fast-charge is initiated and the fast-charge current is applied. The typical battery charger circuit is shown below. For low power or smaller size battery application, it is good to use a load switch on the VBATT to VSYS path to implement a ship mode circuit. The ship mode circuit will help increase the shelf life of the product. VIN should be connected to the charging source (for example USB VBUS). Battery should be connected to the PV_BATT. CHG_STATUS indicates the charging status and LOW indicates charging and HIGH indicates charging completed. Connect the BATT_TEMP to the NTC of the battery if available. If not, connect it to a 10K resistor and it will disable the temperature monitor. BATT_ISET is used to configure the battery charger current (also called as fast charge current) by connecting an external resistor to GND. Intel® Curie™ Design Guide 16 November 2016 rev. 1.2 Power and Energy Table 3 Formula to calculate resistor for battery charge current RISET = KISET / IOUT Where: IOUT is the desired fast charge current KISET is the gain factor whose value is 135 A ohms Typical. (Min 129 and Max 145) 3.3.1.1 Integrated charger profile Figure 4 Battery charging profile example November 2016 rev. 1.2 Intel® Curie™ Design Guide 17 Power and Energy 3.3.2 Charging circuit example In the example circuit shown below: VIN is connected to the charging source (for example USB VBUS). PV_BATT is connected to the battery. CHG_STATUS indicates the charging status and LOW indicates charging and HIGH indicates charging completed. BATT_TEMP connects to the NTC of the battery if available. If not connect it to a 10K resistor and it will disable the temperature monitor. BATT_ISET is used to configure the battery charger current (also called as fast charge current) by connecting an external resistor to GND. Figure 5 Battery application - example circuit BATTERY APPLICATION From USB or Power Supply Curie Intel® Curie™ VIN _5V VBATT K24 C1 1uF 25V N21 VIN[ 1] PV_BATT M1 VIN[ 2] + R1 3K C2 0.1uF . - C3 4.7uF. 3.8V Li-ion Battery . 2 AON_IO_VCC GREEN 1 R2 100k VSY S 2 Optional Load switch L4 Q1 M22 S 1 R3 10K CH G_STATUS G SW_FG_VBATT P21 D 3 CSD23381F4 VBATT A2 L22 BATT_ISET GPIO R7 10K . Intel® Curie™ Design Guide 18 IN OUT EN GND C4 NC P334 0.1uF BATT_TEMP A1 R4 15K B1 R5 8.2K GND N22 RI SET R6 1.3k B2 U2 November 2016 rev. 1.2 Power and Energy 3.3.3 Wireless charger This example is based on the Texas Instruments BQ51003* device, a WPC/Qi based wireless with these key features: · · · · · Provides 5 VDC output to charge a battery WPC v1.1 compliant communication control 93% overall peak AC-DC efficiency Full synchronous rectifier Temperature monitoring inputs Note: Contact the original device datasheet for latest product information. Figure 6 Wireless charger - example circuit USB_VBUS P‐CHANNEL FET AD 5V_VOUT AD_EN C1 Intel Curie module OUT AC1 COIL PAD #CHG C2 EN[1:2] L1 COIL PAD AC2 Texas Instruments DUAL RESONANT CIRCUIT FOD TEMP SENSE ATP_INT3 GPIO[24] / SPI0_M_CS_B[0] FILTER BQ51003* QI Controller CLAMP BOOTSTRAP COMMUNICATION 3.3.4 Charing status indicator The CHG_STATUS pin on Intel® Curie™ is an open drain that indicates charging in progress with a LOW (0) signal and that charge is complete with a HIGH (1) signal. This can drive a simple LED or other indicator circuit. If BATTERY_TEMP signal is connected to ground, this disables the internal battery charger and makes the CHG_STATUS pin available for other use as GPIO_SS_[7] or AIN[15]. 3.3.5 Charging mode (wired / wireless) selection and indicator When an external source, like wired USB power, raises the AD pin above 3.6 VDC then the wireless charger is disabled and the AD_EN output is driven HIGH to switch ON the external P_Channel FET. Adapter mode can be enabled by providing low to the EN[1:2] control pin. In this mode, wired and wireless power modes are enabled but priority is provided to wired power. Wired and wireless charging power can be disabled through setting EN[1:2] high. November 2016 rev. 1.2 Intel® Curie™ Design Guide 19 Power and Energy Charging indication pin is provided to AON_GPIO of SoC, through which battery charging can be detected. The conceptual design can include a green LED to indicate when 5 VDC is available either through wireless charger or USB. 3.4 No battery configuration For designs that function on direct power sources and without a battery connected, implementing one of the following two circuit schemes is recommended for best results. Leaving BATT_TEMP open puts the charger in NO BATTERY mode, where the charger does not attempt to charge the battery. The VIN1, VIN2, BATT_ISET, CHG_STATUS and PVT_BATT can be left open if no battery is present in the system. Figure 7 Example circuits for no battery application NO BATTERY APPLICATION - Option1 Curie Intel® Curie™ VIN_5V K24 C7 1uF 25V N21 VIN[1] PV_BATT NO BATTERY APPLICATION - Option2 Curie Intel® Curie™ VIN_5V VBATT M1 K24 VIN[2] C5 0.1uF . C8 4.7uF. C6 1uF 25V N21 VIN[1] PV_BATT M1 VIN[2] VIN_5V M22 L22 M22 CHG_STATUS SW_FG_VBATT P21 L22 BATT_ISET GPIO N22 BATT_TEMP CHG_STATUS SW_FG_VBATT BATT_ISET P21 LDO C9 0.1uF . C11 1uF C10 4.7uF. GPIO BATT_TEMP GND N22 VSY S L4 GND VSYS L4 3.4.1 ESR1 and ESR2 regulators Do NOT use these regulators. It is highly recommended to connect the pins below to reduce leakage current. · ESR1_VBAT and ESR2_VBATT - connect to ground · ESR1_LX and ESR2_LX - leave open · VDD_PLAT_3P3 and VDD_PLAT_1P8 - connect using 10k resistor to ground Intel® Curie™ Design Guide 20 November 2016 rev. 1.2 Power and Energy Figure 8 ESR1 and ESR2 regulator Intel® Curie™ 3.4.2 ESR3 regulators .The purpose of the ESR3 regulator is to power the core of Intel® Curie™ module. Maximum capacity of the ESR3 regulator is 100mA and typical output is 1.8V +/-10%. Use this to power Intel® Curie™ module only and DO NOT use it for any other purpose. November 2016 rev. 1.2 Intel® Curie™ Design Guide 21 Power and Energy Figure 9 ESR3 regulator Intel® Curie™ Intel® Curie™ Design Guide 22 November 2016 rev. 1.2 Power and Energy 3.4.2.1 Bluetooth* and sensor power The Bluetooth and sensor block within Intel® Curie™ are powered by a common source, this can be 1.8V or 3.3V. The voltage levels of VDD_BLE_SEN should match with AON_IO_VCC which is the IO power supply of module. It is recommended to use the BUCK_OUT of the Intel® Curie™ to power the VDD_BLE_SEN. The Intel® Quark™ SE SoC can disable this converter when not needed; typical 70nA quiescent current consumption. Figure 10 Example Circuit for Bluetooth operating at 1.8 VDC 3.3V Operation 1.8V Operation Curie Intel® Curie™ Curie Intel® Curie™ BUCK_VOUT BLE_DEC2 VDD_BLE_SEN REG_OUT BUCK_VOUT K1 G23 BLE_DEC2 H24 VDD_BLE_SEN REG_OUT K1 G23 H24 VDD_IO_3.3V VDD_IO_1.8V AON_IO_VCC AON_IO_VCC E21 C12 0.1uF BUCK_VSEL C14 0.1uF C13 0.1uF BUCK_VSEL K22 November 2016 rev. 1.2 GND GND R8 0 . E21 C15 0.1uF K22 VSY S R9 0 Pull up to VSYS rail Intel® Curie™ Design Guide 23 Power and Energy 3.4.3 USB power and protection circuit VDD_USB powers the USB logic in Intel® Curie™ module. This should be connected to USB VBUS using a RC network. The purpose of the RC network is to suppress any surges in the VBUS. 22 ohm and 0.1uF should be good value for the RC. It is highly recommended to have a protection device on the USB VBUS and the DP/DM lines of USB. Figure 11 provides a circuit-example of USB filtering and protection. Figure 11 USB power and protection example circuit RC to filter transients voltage in VBUS USB_5V 6 7 8 9 10 11 SH1 VBUS SH2 DSH3 D+ SH4 ID SH5 GND 1 K24 2 N21 Intel® Curie™ Curie VIN[1] VIN[2] 3 C23 0.1uF 4 C24 2.2uF R14 1.07K FB1000 600ohm, 0.1A R15 5 K4 22 VDD_USB C25 0.1uF SH6 CONN_USB_1X5_F_6MTAB . R16 R17 1 J23 J24 USB_DM USB_DP 1 GND A1 A2 22 22 CR1 LFTVS18-1F3 18V CR2 2 CR3 2 B1 B2 Intel® Curie™ Design Guide 24 November 2016 rev. 1.2 Power and Energy 3.5 Power ON sequencing Figure 12 shows the power sequence diagram of Intel® Curie™ module; timings shown are typical results. All rails except VSYS and AON_IO_VCC are outputs. VIN is the system power supply. AON_IO_VCC has to be supplied externally. It is recommended to use VCC_AON_PWR to power the AON_IO_VCC. If it is fed by any other source, the design must ensure the timing specifications are met. The internal TPS62743 buck regulator is fed by VSYS; VSYS enable is controlled by the a module GPIO. During power on the TPS62743 is enabled and can be turned off if needed by the software. Figure 12 Intel® Curie™ power sequence Curie Sequence A VSYS tPWR_OPM B AVD_OPM_2P6 tPWR_AON_1P8 C VCCOUT_AON_1P8 (INT) tPWR_AON_PWR D VCC_AON_PWR tPWR_ESR3 F VCCOUT_ESR3_1P8 tPWR_IO_VCC AON_IO_VCC E tHOST_1P8_PG G VCC_HOST_1P8_PG TPS62743 Internal Buck Timing BUCK_EN tPWR_BUCK_VOUT BUCK_VOUT Table 4 Buck parameters Parameter Min Typ Max Units tPWR_OPM 20 μs tPWR_AON_1P8 6 ms tPWR_AON_PWR 200 μs tPWR_ESR3 1.125 ms tPWR_IO_VCC 0 ms tHOST_1P8_PG 100 tPWR_BUCK_VOUT 10 November 2016 rev. 1.2 μs 25 ms Intel® Curie™ Design Guide 25 Power and Energy Note: If the voltage transition on the power supply pin VSYS causes it to power down and commence a power up sequence before the internal reference voltage OPM2P6_VOUT has dropped below 100mV, an incorrect power sequence may occur. The device may become unresponsive if that happens. Refer to the Intel® Curie™ module Application Note - Power Sequencing Considerations for more information. Intel® Curie™ Design Guide 26 November 2016 rev. 1.2 Power and Energy 3.5.1 AON_1P8, LDO_1P8, HOST_1P8 and HOST_1P8-PG Following diagram shows the timing measured between VCCOUT_AON_1P8, VCC_AON_PWR, VCC_HOST_1P8 and VCC_HOST_1P8_PG. Figure 13 AON_1P8, LDO_1P8, HOST_1P8 and HOST_1P8-PG - Oscilloscope capture November 2016 rev. 1.2 Intel® Curie™ Design Guide 27 Power and Energy 3.5.2 VSYS, OPM_2P6, AON_1P8 and LDO_1P8 Following diagram shows the timing measured between VIN, AVD_OPM_2P6, VCCOUT_AON_1P8 and VCC_AON_PWR.AON_1P8, ESR1 and ESR2 Figure 14 AON_1P8, ESR1 and ESR2 - Oscilloscope capture Intel® Curie™ Design Guide 28 November 2016 rev. 1.2 Subsystems 4 Subsystems 4.1 Analog power and input routing 4.1.1 ADC ground Inputs to the Intel® Curie™ module Analog to Digital Converter (ADC) are multiplexed with the IO pins of the Intel® Curie™ module and a separate analog GND plane is highly recommended for return path of analog signals. Follow best practices, which include these analog guidelines: · Provide dedicated GND planes for analog ground, connected to digital ground at a single point. · Analog signals and analog GND should be kept away from: − high speed digital signals − switching mode power supplies − crystals and oscillators − other design specific components which can generate noise across traces or through planes 4.1.1.1 ADC Power ADC_3P3_VCC is the ADC block power input pin. Use 0.1uF decoupling capacitor. Use a clean power supply for good performance. Keep the power supply traces away from high frequency signals, DC-DC converters and, RF. This image shows a large analog ground around the Intel® Curie™ module ADC input pins and bridge to digital ground. Figure 15 Example ADC ground November 2016 rev. 1.2 Intel® Curie™ Design Guide 29 Subsystems 4.2 Bluetooth® low energy device and antenna 4.2.1 Antenna placement The functional reference circuits utilizes a Pulse W3008C ceramic chip antenna that can excite a host circuit board to radiate at 2.4-2.48 GHz frequencies in an omni-directional pattern. Reference to the manufacturer datasheet for more details. This solution requires a ground clearance of 4.00 mm x 6.25 mm under the SMT antenna with all metalization removed from all circuit board layers under the antenna. EMI shields and rings can limit antenna performance, place battery away from antenna. Example of matching network is shown on Figure 16 Figure 16 Pad dimensions for chip antenna Intel® Curie™ Design Guide 30 November 2016 rev. 1.2 Subsystems 4.3 I2C interface design guidelines There are four I2C ports for Intel® Curie™. Two ports are for generic use and two are dedicated ports for sensor subsystem. These operate in both master and slave mode. Both 7-bit and 10-bit addressing modes are supported and support standard (100 kbps), fast mode(400 kbps) and fast mode plus (1 Mbps). 4.3.1 I2C connections on the functional reference circuits The following diagram shows an example I2C interface for a Intel® Curie™ module-based design; maximum speeds are listed in Table 5 Figure 17 Example of I2C connection for a typical device Intel® Curie™ HAPTICS Texas Instruments DRV2605* DISPLAY AND TOUCH SUPPORT BOARD I2C1_M_SCL LED DRIVER Texas Instruments TI LP5562* I2C1_M_SDA I2C0_SS_SCL NEAR FIELD COMMUNICATIONS I2C0_SS_SDA PRESSURE & HUMIDITY SENSOR Bosch BMI280* STMicroelectronics ST54D* 6AXIS_I2C1_SS_SCL 6AXIS_I2C_SS_SDA SENSOR HEADER COMPASS Bosch BMI150* I2C0_SS 4.3.2 I2C interface signals Table 5 I2C interface signals Name Type Max Frequency / Data Rate Description I2C[0:1]_SCL I2C[0:1]_SDA I/O 1 MHz Main I2C[0:1] clock and data I2C_SS[0:1]_CLK I2C_SS[0:1]_DATA I/O 400 KHz Sensor Subsystem I2C clock and data November 2016 rev. 1.2 Intel® Curie™ Design Guide 31 Subsystems 4.4 LED driver example The diagram below shows the I2C interface connections communicating with an external LED driver module. The functional reference circuits includes a Texas Instruments LP5562 LED Driver connected through I2C1_M (address 0) to provide the features to Intel® Curie™ module-based devices: · · · · · Four independently programmable LED outputs with 8-bit current setting (from 0mA to 25.5mA with 100uA steps) Flexible PWM control for LED outputs SRAM program memory for lighting pattern Three program execution engines with flexible instruction set Maximum current draw from Intel® Curie™ module to be less than 25mA Figure 18 LED driver block diagram for a tricolor module TM Figure 19 LED driver example circuit for a tricolor module Intel® Curie™ Design Guide 32 November 2016 rev. 1.2 Subsystems 4.5 I2S interface design guidelines The following I2S interface signals are not implemented on the functional reference circuits; these ports are connected to J1200 connector and can be used externally if needed, and are to be left unconnected if not used. 4.5.1 Signals for the I2S interface Table 6 I2S interface signals Name Type Maximum Audio Sample Rate Description I2S_RSCK I2S_TSCK I/O 48 KHz Clock signal for I2S I2S_RXD I2S_RWS I 48 KHz RX Data for I2S I2S_TXD I2S_TWS O 48 KHz TX Data for I2S 4.5.2 I2S interface routing guidelines Table 7 I2S routing guidelines Max Drive Strength I2S Interface I2S_RSCK 4mA (1.8V IO), 7.6mA (3.3V IO) I2S_TSCK 8mA (1.8V IO), 7.6mA (3.3V IO) I2S_RXD 4mA (1.8V IO), 7.6mA (3.3V IO) I2S_RWS 4mA (1.8V IO), 7.6mA (3.3V IO) I2S_TXD 8mA (1.8V IO), 7.6mA (3.3V IO) I2S_TWS 8mA (1.8V IO), 7.6mA (3.3V IO) 4.6 Sensors Intel® Curie™ has an integrated 6-axis sensor module interfaced with the Intel® Quark™ SE processor by exclusive use of SPI1_SS. This device makes available the 6-AXIS_AUX_I2C port for connection to an external environmental sensor. Powering sensors with an Awake-ON rail will allow them to generate interrupt based wake events to the processor. 4.6.1 Integrated 6-axis sensor interfaces The I2C master interface from the six axis sensor can be connected to an external digital compass. Table 8 Interface signals Name Type Maximum Frequency / Data Rate Description 6Axis_SCL 6Axis_SDA I/O 1 MHz Clock and Data 6Axis_int2 I/O 400Hz GPIO Note: The 6-axis sensor is powered in common with the Bluetooth® low energy device. 4.6.2 Environmental inputs 4.6.2.1 Pressure and Humidity sensor The concept shows the usage of Bosch* BME280 pressure/humidity/temperature sensor connected with Intel® Curie™ module over I2C0_SS, which support up to 400 kHz. Consult the manufacturer’s datasheet for the latest details on specific features, including: · I2C digital interface · Operating pressure range of 300-1100hPa and relative humidity of 0 to 100%. · Up to 16 over-sampling rate November 2016 rev. 1.2 Intel® Curie™ Design Guide 33 Subsystems 4.6.2.2 Magnetometer (Geo Compass) The concept shows the usage of Bosch* BME150 3-axis magnetometer connection through the Bosch BMI160 6-axis I2C for synchronized operation with the accelerometer and gyroscope. Consult the manufacturer’s datasheet for the latest details on specific features, including: · I2C digital interface · On-chip interrupt controller · Magnet field resolution of ~ 0.3uT . Figure 20 Extended environmental sensor block diagram I2C0_SS_SCL I2C0_SS Intel® CurieTM I2C0_SS_SDA PRESSURE & HUMIDITY Bosch BME280* 6‐AXIS_AUX_I2C_SCL 6AXIS_I2C 6‐AXIS_AUX_I2C_SDA GPIO_SS[3] / AIN[11] VDD_IO COMPASS_INT VDD_IO COMPASS Bosch BMM150* Figure 21 External environmental sensor example circuit Intel® Curie™ Design Guide 34 November 2016 rev. 1.2 Subsystems 4.7 Haptics 4.7.1 Device driver The concept shows the connection to a Texas Instrument* DRV2605 haptic driver using I2C1_M. Consult the manufacturer’s datasheet for the latest details on specific features, including: · I2C digital interface · On-chip interrupt controller · Magnet field resolution of ~ 0.3uT 4.7.2 Reference Eccentric Rotating Mass (ERM) device The functional reference circuits is configured with an ERM unit from Precision Microdrives (304-103)*. Consult the manufacturer’s datasheet for the latest details on specific features, including: · Rated operating voltage of 2.7V · Rated vibration speed of 14000rpm [+/-3000] · Maximum rated operating current of 75mA Figure 22 Haptic driver block diagram TM November 2016 rev. 1.2 Intel® Curie™ Design Guide 35 Subsystems Figure 23 Haptic driver - example circuit Intel® Curie™ Design Guide 36 November 2016 rev. 1.2 Subsystems 4.8 SPI interface Intel® Curie™ module has four SPI interfaces, three are available externally and only two are used on the functional reference circuits. Figure 24 shows a simplified block diagram of typical SPI connections for flash memory, display/touch and NFC solutions Figure 24 SPI simplified topology example VDD_PLAT_1V8 FLASH_RST GPIO[3] / AIN[3] / SPI_S_M OSI SPI FLASH FLASH_W P M ACRONIX M X25U12835F* NFC use SPI1_M as the secure m icrocontroller com m unication and Curie m ulitplexed GPIO for interrupt signaling GPIO[14] / SPI1_M _CS_B[3] 27.12M Hz VDD_PLAT_1V8 SPI1_M _CS2 SPI0_M _CS2 VPS_IO SPI0_M _M ISO SPI0_M _M OSI V_SYSTEM SPI1_M _SCK SPI0_M SPI1_M SPI1_M _M OSI SPI0_M _SCK SPI1_M _M ISO SPI0_M _CS1 NFC_INT GPIO[2] / AIN[2] / SPI_S_SCK VBAT NFC ANT NFC_RST GPIO[15] / I2S_RXD GPIO[20] / I2S_TXD Display and DISPLAY ON/OFF Touch system DISPLAY GPIO GPIO[17] / I2S_RW S NFC_GPIO AFE STM icroelectronics ST54D* GPIO[19] / I2S_TW S TOUCH INT ATP INT2 TOUCH RST GPIO_SS[12] / PW M [2] November 2016 rev. 1.2 Intel® Curie™ Design Guide 37 Subsystems 4.8.1 SPI interface signals on the Intel® Curie™ module Examples of SPI signals used in this concept design are outlined below. Table 9 Intel® Curie™ SPI interface signals Name Input / Output Maximum Frequency / Data Rate Description SPI0_M_SCK Output 16 MHz SPI Serial Clock SPI0_M_CS[2:0]_N Output 8 MHz SPI Chip Select. SPI0_M_MISO Input 8 Mbps SPI Slave Output Master Input SPI0_M_MOSI Output 8 Mbps SPI Master Output Slave Input SPI1_M_SCK Output 16 MHz SPI Serial Clock SPI1_M_CS[3:0]_N Output 8 MHz SPI Chip Select. SPI1_M_MISO Input 8 Mbps SPI Slave Output Master Input SPI1_M_MOSI Output 8 Mbps SPI Master Output Slave Input 4.9 Flash memory The functional reference circuits use a Macronix MX25U12835F* serial flash memory for additional storage. A maximum of 128Mb can be connected with the Intel® Curie™ module SPI0_M interfaces. Figure 25 SPI simplified topology example TM Intel® Curie™ Design Guide 38 November 2016 rev. 1.2 Subsystems Figure 26 Flash memory circuit for SPI interface 4.10 Display panel and touch controller An example showing Sharp S010B7DH02* display panel and a Cypres (I2C) CY8CTST241* capacitive touch screen controller are shown for reference. Consult the Sharp LS010B7DH02 datasheet for additional information on these features: · · · · Transflective panel of white and black Digital SPI interface 1.02 inch screen with 96 x 150 resolution 1 bit internal memory for data storage within the panel Consult the Cypress* CY8CTST241 datasheet for additional information on these features: · · · · · Up to 32 sense pin Large object detection Resistant to LCD noise Wide supply voltage range from 1.71V to 5.5V Integrated voltage regulator November 2016 rev. 1.2 Intel® Curie™ Design Guide 39 Subsystems Figure 27 External display topology example SPI1_M_CS1 VDDIO SPI1_M_SCK SPI1_M_MOSI SPI1_M_MISO V_SYSTEM I2C0_SCL I2C0_SDA VDD_PLAT_3V3 DISPLAY ON/OFF DISPLAY GPIO TOUCH INT TOUCH RST 5V_EN Intel® Curie™ Design Guide 40 I2C EXPANDER November 2016 rev. 1.2 Subsystems 4.11 Near Field Communication (NFC) This example is designed around a ST Microelectronics ST54D* NFC controller with in-built secure element. The NFC controller is connected to Intel® Curie™ module on I2C1-M (NFC Router communication) and SPI1_M (for secure micro-controller communication) interface. The NFC support card emulation mode is supported and a dedicated interrupt pin is connected to Intel® Curie™ module GPIO. 4.11.1 NFC controller features · · · · · Integrated AFE Optimized power consumption modes I2C slave interface up to 1Mbps Integrated 36Kb EEPROM Support up to three external secure element 4.11.2 Secur microcontroller features · · · · ARM SecurCore SC300* 32-bit RISC core 1280 Kbytes of flash memory available Single wire protocol (SWP) interface for communications with NFC router in SIM/NFC application SPI slave interface for non-SIM application . Figure 28 NFC connections November 2016 rev. 1.2 Intel® Curie™ Design Guide 41 Subsystems Figure 29 NFC - example circuit Intel® Curie™ Design Guide 42 November 2016 rev. 1.2 Subsystems 4.12 UART0 for Bluetooth® low energy Intel® Curie™ contains two instances of a UART controllers within the module, UART0 is dedicated to the integrated Nordic nRF51822* Bluetooth Low Energy controller while UART1 is available for use with mobile data systems and debug tools. Figure 30 UART interface topology TM Bluetooth* Low Energy Controller Nordic nRF51822* TM 4.13 UART1 interface signals Table 10 shows the UART1 interface signals available. Table 10 UART interface signals Name Type Max Data Rate Description UART1_RX I 2 MHz High-speed receive data input UART1_TX O 2 MHz High-speed transmit data UART1_RTS I 2 MHz High-speed request to send UART1_CTS O 2 MHz High-speed clear to send Note: UART signals not implemented on a design can be left unconnected. 4.14 USB interface design considerations Consult these general routing and placement guidelines when laying out a new design to minimize signal quality and EMI: · Maximum trace length is 4 inches. · Do not route traces under crystals, oscillators, clock synthesizers, magnetic devices, or ICs with strong clocks. · Follow the 20 × h rule by keeping traces at least [20 × (height above the plane)] mils away from the edge of the plane (VCC or GND, depending on the plane the trace is over). November 2016 rev. 1.2 Intel® Curie™ Design Guide 43 Subsystems For an example stackup, the height above the plane is 4.5 mils (0.114 mm). This calculates to a 90-mil (2.286 mm) spacing requirement from the edge of the plane. This helps prevent the coupling of the signal onto adjacent wires and also helps prevent free radiation of the signal from the edge of the PCB. · Avoid stubs on high-speed USB signals because stubs cause signal reflections and affect signal quality. If a stub is unavoidable in the design, the total of all the stubs on a particular line should not be greater than 200 mils (5.08 mm). · We recommend placing a low ESR 1 μF ceramic cap close to the VDD_USB pin. · If a USB port is not implemented on the design, USB_DP/N[x] signals can be left unconnected. · Protect USB lines are with ESD diodes for safe performance. · A 1.07K bleeding resistor added in USB power line can provide an immediate discharge path for USB power. Table 11 USB 1.1 differential pair length matching table Signal Name Type Max Frequency / Data Rate Description USB_DP Input / Output 12 Mbps Universal serial bus port differential (USB Data+) USB_DM Input / Output 12 Mbps Universal serial bus port differential (USB Data-) Figure 31 USB 1.1 port topology CM C ESD 4.14.1 USB 1.1 length matching Table 12 USB 1.1 differential pair length matching table Signal Total initra pair screw USB_DP 150 mils USB_DM 150 mils Intel® Curie™ Design Guide 44 November 2016 rev. 1.2 Circuit Board Recommendations 5 Circuit Board Recommendations 5.1 Fundamental design rules All of the routing guidelines (W/S, isolation, length requirement) are modeled around a 4-layer, Type II printed circuit board. If different PCB stackup is implemented, the electrical guidelines (impedance, insertion loss) provided in this design guide must be followed to ensure that the layout meets the design recommendations. These rules pertain to all the subsystems discussed in this chapter. · · · · The length values are tested and measured as package-pin-to-package-pin. The break-out and break-in minimum spacing ratio is 1:1 for all interfaces. The trace width/intra-spacing for differential pairs and trace width for single-ended signals depend on the impedance. For analog signals, it is important to keep the analog ground return path clean from digital noise to maintain high signalto-noise ratio. · All inputs, tristate buses and signals that are not connected must be pulled up or down by the firmware or hardware to prevent oscillation. This is especially important for enable or control signals like JTAG TMS signal. · Unused and reserved signals are terminated as no connection, unless specified otherwise. · Power sources and input regulation components must remain stable across the entire operating range of voltage and device systems. 5.2 PCB thickness and stackup Stackup refers to the thickness as comprised of the number of layers, the PCB technology (and via details), the thickness of each layer and the Cu weights on each layer. Fab drawings have a stackup or cross section figure. The concept referenced in this document uses high density interconnect, Type 3, 4-layer board technology. Trace width for Radio Frequency and high speed signal driver impedance must be determined per the stackup selected. 5.2.1 Two-layer boards Intel® Curie™ module can be placed on a two-layer board for simple designs that have limited buses susceptible to interference noise, or when the footprint is not a primary constraint and signals can be physically separated to improve noise tolerance. Table 13 Two-layer stackup design Layer Top Bottom Type Material Surface Air Thickness (mm) Dielectric Constant Trace Width (mm) 1 Solder Mask FR-4 0.02 4.2 Conductor Copper 0.036 4.2 Dielectric FR-4 1.48 4.2 Conductor Copper 0.036 4.2 Solder Mask FR-4 0.02 4.2 Surface Air 0.102 0.102 1 5.2.2 Four-layer stackup Table 14 Four-layer stackup design Layer Top November 2016 rev. 1.2 Type Material Surface Air Thickness (mm) Dielectric Constant Trace Width (mm) 1 Solder Mask FR-4 0.05 4.5 Conductor Copper 0.015 1 Dielectric FR-4 0.068 4.5 0.13 Intel® Curie™ Design Guide 45 Circuit Board Recommendations Table 14 Four-layer stackup design Layer L2_GND1 L3_GND2 Bottom Type Material Surface Air Thickness (mm) Dielectric Constant Conductor Copper 0.015 4.5 Dielectric FR-4 0.55 4.5 Conductor Copper 0.015 4.5 Dielectric FR-4 0.068 4.5 Trace Width (mm) 1 Conductor Copper 0.015 1 Solder Mask FR-4 0.053 4.5 Surface Air 0.1 0.1 0.13 1 Total Thickness: 1.6 mm 5.2.3 Six-layer stackup This next example is a 48mil thick, 6-layer, HDI type II board with blind vias from 1-2 and 1-3, with additional thruhole vias. This board contains 1.4 oz copper (Cu) on the outer layers and 0.25 – 0.50 oz copper on the inners layers, as detailed below. Table 15 Six-layer stackup design Layer Top L2_GND1 L3_PWR1 L4_CLK1 L5_GND2 Bottom Type Material Surface Air Thickness (mm) Dielectric Constant Trace Width (mm) 1 Solder Mask FR-4 0.05 4.5 Conductor Copper 0.015 1 Dielectric FR-4 0.068 4.5 Conductor Copper 0.015 4.5 Dielectric FR-4 0.55 4.5 Conductor Copper 0.015 4.5 Dielectric FR-4 0.2 4.5 Conductor Copper 0.015 4.5 Dielectric FR-4 0.55 4.5 Conductor Copper 0.015 4.5 Dielectric FR-4 0.068 4.5 Conductor Copper 0.015 1 Solder Mask FR-4 0.053 4.5 Surface Air 0.13 0.1 0.1 0.1 0.1 0.13 1 Total Thickness: 1.6 mm Intel® Curie™ Design Guide 46 November 2016 rev. 1.2 Circuit Board Recommendations 5.2.3.1 Six-layer stack up cross section Figure 32 Thickness of a six layer stackup § November 2016 rev. 1.2 Intel® Curie™ Design Guide 47 Debug and Production Options 6 Debug and Production Options 6.1 JTAG connector or test pads Traditional JTAG connections can be routed to test points or header pins as best suited for the need and design intent. · · · · · JTAG_TDO JTAG_TDI JTAG_TCK JTAG_TMS JTAG_RST_B Figure 33 Block diagram of the debug ports on the Intel® Curie™ module Figure 34 Debug ports on the Intel® Curie™ module VDD_IO C1005 0.1uF 10% .0201 1 3 5 7 9 J1002 R1003 10K 5% . 2 4 6 8 10 10 Pin Header . Intel® Curie™ Design Guide 48 R1004 10K 5% . R1005 10K 5% . R1016 10K 5% NO_STUFF R1010 10K 5% NO_STUFF JTAG_TMS JTAG_TCK JTAG_TDO JTAG_TDI JTAG_TRST_B R1008 10K 5% NO_STUFF R1009 10K 5%. November 2016 rev. 1.2 Debug and Production Options 6.2 Power rail test pads Test points for primary voltage rails, LDO outputs; and a clean ground are very helpful to debug and for device measurements. 6.3 UART test pads Intel® Curie™ module, when in manufacturing mode, sends out messages on the UART right from power up. Thus access to the UART will provide additional access to system functions and information logs. · AIO_05_UART_RX · AIO_05_UART_TX 6.4 Bluetooth® low energy test pads A Jlink emulator can be sued to program, or reprogram, the Bluetooth® low energy firmware. The board digital ground needs to be connected between the board and Jlink emulator. Also vref from Jlink emulator needs to connect to the same voltage level as the VDD_BLE_SEN, This allows the emulator to communicate to the Bluetooth® low energy with correct logic level. · BLE_SWDIO · BLE_SW_CLK Note: Jlink software utility allow the users to program a BLE image in .bin or .hex format. Refer to Jlink users manual and Nordic* website for more information. November 2016 rev. 1.2 Intel® Curie™ Design Guide 49