Download Intel® Curie™ Module Platform Design Guide

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Power over Ethernet wikipedia , lookup

Audio power wikipedia , lookup

Transmission line loudspeaker wikipedia , lookup

Mains electricity wikipedia , lookup

Buck converter wikipedia , lookup

Solar micro-inverter wikipedia , lookup

Wireless power transfer wikipedia , lookup

Power engineering wikipedia , lookup

Alternating current wikipedia , lookup

Integrated circuit wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Rectiverter wikipedia , lookup

Opto-isolator wikipedia , lookup

AC adapter wikipedia , lookup

Microprocessor wikipedia , lookup

Transcript

Intel® Curie™ Module
Design Guide
November 2016
Revision 1.2
November 2016
rev. 1.2
Intel® Curie™
Design Guide
1
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
This document contains information on products, services, and/or processes in development. All information provided here is subject to change without notice.
Contact your Intel representative to obtain the latest forecast, schedule, specifications, and roadmaps.
The products and services described may contain defects or errors known as errata, which may cause deviations from published specifications. Current characterized errata are available on request.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein.
You agree to grant Intel a nonexclusive, royalty-free license to any patent claim thereafter drafted that includes subject matter disclosed herein.
Forecasts: Any forecasts of requirements for goods and services are provided for discussion purposes only. Intel will have no liability to make any purchase pursuant to forecasts. Any cost or expense you incur to respond to requests for information or in reliance on any forecast will be at your own risk and expense.
Business Forecast: Statements in this document that refer to Intel’s plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of risks and uncertainties. A detailed discussion of the factors that could affect Intel’s results and plans is included in Intel’s SEC filings, including the annual report on Form 10-K.
Copies of documents that have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting www.intel.com/
design/literature.htm.
Intel and the Intel logo are trademarks of Intel Corporation in the United States and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2016 Intel Corporation. All rights reserved.
Intel® Curie™
Design Guide
2
November 2016
Document number: 567219 rev. 1.2

Revision History
Revision
1.0
1.1
1.2
Description
Initial release
Minor fixes
Added reference to the Intel® Curie™ module Application Note - Power Sequencing Considerations in the power on
sequence section
Date
August 2016
September 2016
November 2016
§
November 2016
rev. 1.2
Intel® Curie™
Design Guide
3

1
Introduction ............................................................................................................................................................................. 8
1.1 Audience and purpose................................................................................................ 8
1.2 References ............................................................................................................... 8
1.3 Terminology ............................................................................................................. 9
2
System Fundamentals ......................................................................................................................................................... 10
2.1 Block diagrams ........................................................................................................10
2.2 Electrical specifications .............................................................................................13
2.3 Intel® Curie™ module footprint .................................................................................13
2.3.1
Breakout pitch of module.............................................................................13
3
Power and Energy................................................................................................................................................................. 14
3.1 Power requirements and distribution ...........................................................................14
3.2 Power supervisor, reset and voltage regulators ............................................................16
3.2.1
Power supervisor ........................................................................................16
3.2.2
Manual reset logic ......................................................................................16
3.2.3
AON IO Power............................................................................................16
3.2.4
VSYS ........................................................................................................16
3.2.5
Comparator power......................................................................................16
3.3 Battery charging and management .............................................................................16
3.3.1
Integrated charging device ..........................................................................16
3.3.2
Charging circuit example .............................................................................18
3.3.3
Wireless charger ........................................................................................19
3.3.4
Charing status indicator...............................................................................19
3.3.5
Charging mode (wired / wireless) selection and indicator .................................19
3.4 No battery configuration............................................................................................20
3.4.1
ESR1 and ESR2 regulators ...........................................................................20
3.4.2
ESR3 regulators .........................................................................................21
3.4.3
USB power and protection circuit ..................................................................24
3.5 Power ON sequencing ...............................................................................................25
3.5.1
AON_1P8, LDO_1P8, HOST_1P8 and HOST_1P8-PG ........................................27
3.5.2
VSYS, OPM_2P6, AON_1P8 and LDO_1P8 ......................................................28
4
Subsystems ............................................................................................................................................................................ 29
4.1 Analog power and input routing..................................................................................29
4.1.1
ADC ground ...............................................................................................29
4.2 Bluetooth® low energy device and antenna .................................................................30
4.2.1
Antenna placement.....................................................................................30
4.3 I2C interface design guidelines ...................................................................................31
4.3.1
I2C connections on the functional reference circuits .........................................31
4.3.2
I2C interface signals ....................................................................................31
4.4 LED driver example ..................................................................................................32
4.5 I2S interface design guidelines...................................................................................33
4.5.1
Signals for the I2S interface.........................................................................33
4.5.2
I2S interface routing guidelines ....................................................................33
4.6 Sensors ..................................................................................................................33
4.6.1
Integrated 6-axis sensor interfaces ...............................................................33
4.6.2
Environmental inputs ..................................................................................33
4.7 Haptics ...................................................................................................................35
4.7.1
Device driver .............................................................................................35
4.7.2
Reference Eccentric Rotating Mass (ERM) device .............................................35
4.8 SPI interface............................................................................................................37
4.8.1
SPI interface signals on the Intel® Curie™ module .........................................38
4.9 Flash memory..........................................................................................................38
4.10 Display panel and touch controller ..............................................................................39
4.11 Near Field Communication (NFC) ................................................................................41
4.11.1
NFC controller features................................................................................41
November 2016
rev. 1.2
Intel® Curie™
Design Guide
4

4.11.2
Secur microcontroller features......................................................................41
4.12 UART0 for Bluetooth® low energy ..............................................................................43
4.13 UART1 interface signals.............................................................................................43
4.14 USB interface design considerations............................................................................43
4.14.1
USB 1.1 length matching .............................................................................44
5
Circuit Board Recommendations ...................................................................................................................................... 45
5.1 Fundamental design rules..........................................................................................45
5.2 PCB thickness and stackup ........................................................................................45
5.2.1
Two-layer boards .......................................................................................45
5.2.2
Four-layer stackup......................................................................................45
5.2.3
Six-layer stackup........................................................................................46
6
Debug and Production Options......................................................................................................................................... 48
6.1 JTAG connector or test pads ......................................................................................48
6.2 Power rail test pads ..................................................................................................49
6.3 UART test pads ........................................................................................................49
6.4 Bluetooth® low energy test pads ...............................................................................49
November 2016
rev. 1.2
Intel® Curie™
Design Guide
5
Tables
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Intel® Curie™
Design Guide
6
References ............................................................................................................ 8
Terminology .......................................................................................................... 9
Formula to calculate resistor for battery charge current ..............................................17
Buck parameters ...................................................................................................25
I2C interface signals ..............................................................................................31
I2S interface signals ..............................................................................................33
I2S routing guidelines ............................................................................................33
Interface signals....................................................................................................33
Intel® Curie™ SPI interface signals .........................................................................38
UART interface signals............................................................................................43
USB 1.1 differential pair length matching table ..........................................................44
USB 1.1 differential pair length matching table ..........................................................44
Two-layer stackup design .......................................................................................45
Four-layer stackup design.......................................................................................45
Six-layer stackup design.........................................................................................46
November 2016
rev. 1.2

Figures
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
Intel® Curie™ module block diagram..........................................................................11
Conceptual device block diagram................................................................................12
Power distribution inside Intel® Curie™ module ...........................................................15
Battery charging profile example ................................................................................17
Battery application - example circuit ...........................................................................18
Wireless charger - example circuit ..............................................................................19
Example circuits for no battery application ...................................................................20
ESR1 and ESR2 regulator ..........................................................................................21
ESR3 regulator ........................................................................................................22
Example Circuit for Bluetooth operating at 1.8 VDC.......................................................23
USB power and protection example circuit ...................................................................24
Intel® Curie™ power sequence ..................................................................................25
AON_1P8, LDO_1P8, HOST_1P8 and HOST_1P8-PG - Oscilloscope capture.......................27
AON_1P8, ESR1 and ESR2 - Oscilloscope capture .........................................................28
Example ADC ground ................................................................................................29
Pad dimensions for chip antenna ................................................................................30
Example of I2C connection for a typical device ..............................................................31
LED driver block diagram for a tricolor module .............................................................32
LED driver example circuit for a tricolor module............................................................32
Extended environmental sensor block diagram .............................................................34
External environmental sensor example circuit .............................................................34
Haptic driver block diagram .......................................................................................35
Haptic driver - example circuit ...................................................................................36
SPI simplified topology example .................................................................................37
SPI simplified topology example .................................................................................38
Flash memory circuit for SPI interface .........................................................................39
External display topology example..............................................................................40
NFC connections ......................................................................................................41
NFC - example circuit................................................................................................42
UART interface topology ............................................................................................43
USB 1.1 port topology...............................................................................................44
Thickness of a six layer stackup .................................................................................47
Block diagram of the debug ports on the Intel® Curie™ module .....................................48
Debug ports on the Intel® Curie™ module ..................................................................48
November 2016
rev. 1.2
Intel® Curie™
Design Guide
7
Introduction
1 Introduction
This document provides design recommendations for the Intel® Curie™ module, which is based on the Intel® Quark™ SE
system on a chip. Technical implementation examples provided are derived from the functional reference circuits.
Note: The guidelines provided in this document are based on preliminary simulation work done at Intel while developing systems based on
the Intel® Curie™ module and the Intel® Quark™ SE micro-controller. This work is ongoing, and the recommendations are subject to change.
Note: All 3rd party components shown in this document are for reference example purpose only and customers have to evaluate and
choose the right components based on their use case.
CAUTION: If the guidelines listed in this document are not followed, it is very important that the designers perform thorough signal integrity
and timing simulations. Even when following these guidelines, Intel recommends the critical signals to be simulated to ensure proper
signal integrity and flight time.
1.1 Audience and purpose
The Intel® Curie™ Design Guide is provided as an aid for hardware designers and system integrators.
The functional reference circuits were created to provide information and guidance on the following subjects:
·
·
·
·
·
Block diagrams of system level communications and functional reference circuits interface configurations
System mechanicals and board topology, routing requirements; and layout recommendations
Power distribution, reset logic, boot sequencing; and energy management
Factory test, debug, recovery; and troubleshooting
Alternate implementation options
Note:
This design guide has been developed to ensure maximum flexibility for board designers while
reducing the risk of board-related issues. Design recommendations are based on Intel's
simulations and lab experience and are strongly recommended, if not necessary, to meet the
timing and signal quality specifications. They should be used as an example but may not be
applicable to particular designs. The guidelines recommended in this document are based on
experience, simulation, and preliminary validation work done at Intel while developing the Intel®
Curie™ processor-based design. This work is ongoing, and recommendations are subject to
change.
Metric units are used in some sections in addition to the standard use of U.S. customary system of units (USCS). If there
is a discrepancy between the metric and USCS units, assume the USCS unit is most accurate. The conversion factor
used is 1 inch (1000 mils) = 25.4 mm.
1.2 References
Table 1 References
Document name
Intel® Curie™ Datasheet
Intel® Curie™
Design Guide
8
November 2016
rev. 1.2

Introduction
1.3 Terminology
Table 2 Terminology
Term
Definition
ADC
Analog-to-digital converter
ANT
Antenna
AON
Awake-ON
SoC
Intel® Quark™ SE
BALUN
Balanced-unbalanced
BLE
Bluetooth* low energy
BOM
Bill of materials
CPU
Central processing unit
CTS
Clear to send
Intel® Curie™ Module
Intel’s highly integrated module based on the Intel® Quark™ SE SoC
DCCM
Closely coupled data memory
DSP
Digital signal processor
ERM
Eccentric Rotating Mass
FAR
False acceptance rate
Finish
The material used to protect the exposed copper on the PCB
FRR
False rejection rate
FW
Firmware
GUI
Graphical user interface
Impedance
The effective resistance of a trace, circuit or component
NFC
Near field communication
OEM
Original equipment manufacture
OS
Operating system
OTP
One-time programmable
PMA
Power matters alliance
PCB
Printed circuit board
POR
Power-on reset
PRU
Port replacement unit
PTU
Power transmit unit
PWM
Pulse width modulation
Qi
An interface standard developed by the Wireless Power Consortium for inductive electrical power transfer
RAM
Random access memory.
RF
Radio Frequency
Soldermask
An electrically insulating material covering traces on the external layers of a PCB
SW
Software
Space
The distance between copper features (such as traces) on the PCB
Trace
A copper line on the PCB used to connect components
UART
Universal asynchronous receiver transmitter.
VIA
Plated hole in the PCB used to connect layers
WPC
Wireless Power Consortium.
X-Y
The area of a board (the length of each side)
Z
The thickness of a board (the Z dimension)
November 2016
rev. 1.2
Intel® Curie™
Design Guide
9
System Fundamentals
2 System Fundamentals
2.1 Block diagrams
The next two block diagrams shows the Intel® Curie™ module and then the module within a typical design.
Intel® Curie™
Design Guide
10
November 2016
rev. 1.2

System Fundamentals
Figure 1 Intel® Curie™ module block diagram
I2C0_SS
I2C1_SS
Intel®
Quark™ SE
SPI0_SS
INT
GPIO_AON
GPIO_AON[5]
GPIO[5]
BLE_ATP_INT
ATP_BLE_INT
UART_0
32MHz In
32MHz XTAL
32KHz OSC
32KHz In
I2C0
I2C1
SPI0_M / GPIO
SPI1_M / GPIO
ATP_SPI0_S / GPIO
I2S / GPIO
GPIO_AON[4]
6AXIS_INT1
SPI1_SS
GPIO[28]
GPIO[7]/AIN[7]
VUSB_EN
5V_BUS_SENSE
VCC_USB_3P3
UART_1 / GPIO_SS
GPIO / ANALOG_IN
GPIO_SS[15]
BUCK_EN
JTAG
PWM / GPIO_SS
32/16/8/4 MHz
CLK0_OUT / GPIO_SS
3V3
1V8
1V8
3V3
1V8
1V8
1.8‐3.3V
2.0‐3.3V
1V8
ESR1_LX
ESR2_LX
ESR3_LX
Nordic* Bluetooth Low Energy Controller
NRF51822
VCC_SRAM
VCC_RTC
BLE_RF
BLE_DEBUG
BLE_I2C
VDD_BLE_SEN
16MHz XTAL
Bosch BMI160*
6‐AXIS SENSOR
6‐AXIS_AUX_I2C
6AXIS_INT2
VDD_6AXIS
LDO 3.3V
Microchip MIC5504‐3.3YMT*
VDD_USB
BUCK_VOUT
1.8V/3.3V BUCK REGULATOR
TI TPS62743*
BUCK_VSEL
LDO 1.8V
ONsemiconductor NCP170AMX180TCG*
VCC_AON
VCC_BATT_ESR3_3P7/
VCC_BATT_OPM3_3P7
VCCOUT_AVD_OPM_2P6/
VCC_AVD_OPM_2P6
LDO1P8_VOUT
VSYS
OPM2P6_VOUT
VSYS
POWER SUPERVISOR
Maxim*
MAX16074RS29D3+
VDD_PLAT_1P8
VDD_PLAT_3V3
VDD_HOST_1P8
MRESET_B
POR_B
ATP_RST_B
RST_B
ADC_3P3_VCC
VIN
CMP_3P3_VCC
PV_BATT
IO_AON_VCC
GPIO_SS[7]/AIN[15]
CHG_STATUS
BATTERY CHARGER
BATTERY_ISET
VCC_HOST_1P8_PG
POWER SUPERVISOR
RICOH R3117K161C*
Texas Instruments*
BQ25101H
CHG_STATUS
BATTERY_TEMP
SENSOR SUBSYSTEM
CLOCK
November 2016
rev. 1.2
Balun
Transformer
POWER
Intel® Curie™
Design Guide
11
System Fundamentals
Figure 2 Conceptual device block diagram
I2C1_M_SCL
HOST
NFC
I2C1_M_SDA
SPI1_M_CS2
SECURE
ELEMENT
SPI1_M_SCK
SPI1_M_MOSI
SPI1_M_MISO
STMicroelectronics
ST54D*
NFC_INT
NFC_RST
NFC_GPIO
3
I2C1_SCL
I2C1_SCL
I2C1_SDA
I2C1_SCA
SPI1_M_CS2
GPIO[1] / AIN[1] / SPI_S_MISO
I2C1_M_SCL
I2C1_M_SDA
HAPTICS
TI DRV2605*
HAPTICS_IN/TRG/PWM
SPI1_M_SCK
SPI1_M_MOSI
I2C0_SS_SCL
SPI1_M_MISO
GPIO[2] / AIN[2] / SPI_S_SCK
I2C0_SS_SDA
I2C0_SS_SCL
I2C0_SS_SDA
PRESSURE ,TEMP & HUMIDITY SENSOR
Bosch BME280*
GPIO[15] / I2S_RXD
GPIO[20] / I2S_TXD
GPIO_SS[3] / AIN[11]
LED DRIVER
I2C1_SCL
SPI1_M_CS1
TI LP5562*
I2C1_SDA
SPI1_M_SCK
COMPASS_INT
COMPASS
Bosch BMM150*
SPI1_M_MOSI
I2C0_SCL
6
I2C GPIO EXPANDER
I2C0_M_SCL
I2C0_SDA
GPIO_EXP_INT
PUSH_BUTTON
WC_EN
Wireless Charger
WC_CHG_STATUS
Broadcom BQ51003*
I2C0_M_SDA
GPIO[0] / AIN[0] / SPI_S_CS_B
GPIO[24] / SPI0_M_CS_B[0]
GPIO[19] / I2S_TWS
ATP_INT2
ATP_INT3
GPIO[17] / I2S_RWS
THERMISTOR
LNA
GPS
TOUCH_INT
DISPLAY_ON/OFF
TOUCH_RESET
GPIO_SS[2] / AIN[10]
SPI0_M_CS1
FILTER
GPIO_SS[12] / PWM[2]
TEMP_ADC
DISPLAY_GPIO/
LCD_EXTCOMIN
DISPLAY /
TOUCH
HEADER
C
O
N
N
E
C
T
O
R
SPI0_M_SCK
SPI0_M_MOSI
SPI0_M_MISO
GPS_HOST_REQ
GPS_HOST_WAKE
GPS_ON
SPI0_M_CS1
Intel® CurieTM Module
SPI0_M_SCK
SPI0_M_MOSI
SPI0_M_MISO
GPIO[16] / I2S_RSCK
SPI0_SS_CS0
SPI0_SS_SCK
SPI0_SS_MOSI
SPI0_SS_MISO
SENSOR HEADER
I2C1_SS_SCL
I2C1_SS_SDA
GPIO_SS[6]/AIN_14
GPIO_SS[3]/AIN_11
ATP_INT1
UART1_RTS/AIN[9]/GPIO_SS[1]
GPIO[18] / I2S_TSCK
UART1_CTS/AIN[8]/GPIO_SS[0]
SPI0_M_CS2
SPI0_M_SCK
SEN_GPIO_1
SEN_GPIO_2
SEN_GPIO_3
SEN_GPIO_4
SPI0_M_CS2
SPI0_M_SCK
SPI0_M_MOSI
SPI0_M_MOSI
SPI0_M_MISO
SPI0_M_MISO
GPIO[14] / SPI1_M_CS_B[3]
GPIO[3] / AIN[3] / SPI_S_MOSI
4 OPTIONAL GPIO’s TO SENSOR HEADER
FLASH_WP
SPI FLASH
Macronix
MX25U12835F*
FLASH_RESET
W3008C
BLE_RF
JTAG,UART,BLE
GPIO
shared GPIO (not available default)
(3 separate headers)
GPIO_SS[14]/PLT_CLK[0]
ATP_INT0
GPIO[11] / SPI1_M_CS_B[0]
Intel® Curie™
Design Guide
12
JTAG/DEBUG/BLE
SW_FUEL_GAUGE_EN/TEMP_EN
ON‐OFF SWITCH
BATTERY_CTRL
November 2016
rev. 1.2

System Fundamentals
2.2 Electrical specifications
Refer to the Intel® Curie™ Module datasheet for complete specification.
2.3 Intel® Curie™ module footprint
Refer to the Intel® Curie™ module manufacturing guide for more information.
2.3.1 Breakout pitch of module
Due to the lateral pitch (0.0224” or 0.57 mm) on the Intel® Curie™ module package, there is a space of 0.0124” between the
pads that requires a Trace and Space of 0.004” / 0.1” for breakout of the package on the external layer.
November 2016
rev. 1.2
Intel® Curie™
Design Guide
13
Power and Energy
3 Power and Energy
The power input of the Intel® Curie™ module is intended to be supplied by direct USB power, a charging device; or a battery as
selected from a priority basis of those available.
3.1 Power requirements and distribution
The Intel® Curie™ module requires a clean and stable power supply. Poorly designed regulators or filters that drift at low loads
or that do not handle transit changes with precision can impact module performance and reliability.
Refer to the Intel® Curie™ module datasheet for power numbers.
Intel® Curie™
Design Guide
14
November 2016
rev. 1.2

Power and Energy
Figure 3 Power distribution inside Intel® Curie™ module
VDD_USB
USB_3V3
USB LDO
VCC_USB_3P3
Intel® QuarkTM SE
VSYS
VCC_ADC_3P3
VIN
Battery Charger
VCC_BATT_OPM_3P7
VCCOUT_AVD_OPM_2P6
Texas
Instruments
BQ25101H*
PV_BATT
VCC_CMP_3P3[1,2]
VCC_AVD_OPM_2P6
VCCOUT_ESR1_3P3
VCC_BATT_ESR1_3P7
BATT_ISET
VCC_VSENSE_ESR1
VCCOUT_QLR1_3P3
LDO_VOUT
VSYS
VCCOUT_ESR2_1P8
VCC_BATT_ESR2_3P7
BUCK
CONVERTER
BUCK_EN
GPIO_SS[15]
BUCK_VOUT
TI TPS62743*
VCC_BATT_ESR3_3P7
VCC_VSENSE_ESR2
VCCOUT_QLR2_1P8
VCCOUT_ESR3_1P8
VCC_VSENSE_ESR3
BUCK_SEL
VSYS
VCC_AON_PWR
LDO 1.8V
ON semiconductor NCP170AMX180TCG*
Enable
VCC_AON_PWR
Power supervisor
Osclillator
MAXIM
MAX16074RS29D3+T*
POR_B
VCC_AON_1P8[1,2]
VCC_HOST_1P8[1,2]
VCCOUT_HOST_1P8
VCC_PLL_1P8
VCCOUT_AON_1P8
4.7uF
VCC_AON_PWR
MRESET_B
4.7uF
VCC_IO_AON[1,2]
VCC_SRAM_1P8
ATP_RESET_B
VCC_RTC_1P8
NORDIC Bluetooth* Low Energy
NRF51822-CEAA-R_V3*
VDD_BLE_SEN
6-AXIS Sensor
BOSCH BMI160*
LDO1P8_VOUT
Note: The above diagram is for reference only; power connections within the module cannot be modified.
November 2016
rev. 1.2
Intel® Curie™
Design Guide
15
Power and Energy
3.2 Power supervisor, reset and voltage regulators
3.2.1 Power supervisor
The Intel® Curie™ input power is monitored for a threshold level by power supervisor circuit present inside the module.
If the system voltage falls below 2.9 VDC, the power supervisor will pull the POR_B pin LOW to keep SoC in reset state.
3.2.2 Manual reset logic
While the Intel® Curie™ does not include a physical reset, it does provide support manual reset switches and it is
recommended to design them into your device by pulling the ATP_RST_B line to ground, holding the CPU in reset.
3.2.3 AON IO Power
This pin powers the AON block of the Intel® Curie™ and must comply with the timing sequence shown in Figure 12
If the IO voltage is 1.8V, it is recommended to use LDO1P8_VOUT to power this pin.
It can be fed by other power supplies also provided it meets the power sequence requirements. If the IO voltage is set to 3.3
VDC, then supplying from the ESR1 regulator is permitted.
3.2.4 VSYS
Main power input for the Intel® Curie™. This supplies the OPM regulator, AON block, ESR3 and BUCK regulator.
Use a 0.1uF decoupling capacitor.
3.2.5 Comparator power
CMP_3P3_VCC is the comparator block power input pin. Use 0.1uF decoupling capacitor. Use a clean power supply for good
performance. Keep the power supply traces away from high frequency signals, DC-DC converters, and RF.
3.3 Battery charging and management
3.3.1 Integrated charging device
The Intel® Curie™ module has a built-in, low-leakage single-path Li-ion / Li-Po battery charger. This battery charger supports
3.8V batteries with charging voltage of 4.35V.
Charge current is hardware configurable from 60mA to 250mA by reference voltage at the BATT_ISET pin.
The minimum battery capacity supported is 120mAH (assuming the standard battery charge current is 0.5C) If the battery
charge current is less than 60mA, an external charger should be used and not the internal charger.
The charger has three phases of charging: pre-charge to recover a fully discharged battery, fast-charge constant current to
supply the charge safely; and voltage regulation to safely reach full capacity. The fast-charge current is programmable and
the pre-charge current is 20% of fast-charge and termination current is 10% of the fast-charge current.
If the battery voltage is below the 2.5V, the battery is considered discharged and a preconditioning cycle begins. The charging
happens at the pre-charge current level. Once the battery voltage has charged to the 2.5V threshold, fast-charge is initiated
and the fast-charge current is applied.
The typical battery charger circuit is shown below. For low power or smaller size battery application, it is good to use a load
switch on the VBATT to VSYS path to implement a ship mode circuit. The ship mode circuit will help increase the shelf life of
the product.
VIN should be connected to the charging source (for example USB VBUS). Battery should be connected to the PV_BATT.
CHG_STATUS indicates the charging status and LOW indicates charging and HIGH indicates charging completed.
Connect the BATT_TEMP to the NTC of the battery if available. If not, connect it to a 10K resistor and it will disable the
temperature monitor. BATT_ISET is used to configure the battery charger current (also called as fast charge current) by
connecting an external resistor to GND.
Intel® Curie™
Design Guide
16
November 2016
rev. 1.2

Power and Energy
Table 3 Formula to calculate resistor for battery charge current
RISET = KISET / IOUT
Where:
IOUT is the desired fast charge current
KISET is the gain factor whose value is 135 A ohms Typical. (Min 129 and Max 145)
3.3.1.1 Integrated charger profile
Figure 4 Battery charging profile example
November 2016
rev. 1.2
Intel® Curie™
Design Guide
17
Power and Energy
3.3.2 Charging circuit example
In the example circuit shown below:
VIN is connected to the charging source (for example USB VBUS).
PV_BATT is connected to the battery.
CHG_STATUS indicates the charging status and LOW indicates charging and HIGH indicates charging completed.
BATT_TEMP connects to the NTC of the battery if available. If not connect it to a 10K resistor and it will disable the
temperature monitor.
BATT_ISET is used to configure the battery charger current (also called as fast charge current) by connecting an
external resistor to GND.
Figure 5 Battery application - example circuit
BATTERY APPLICATION
From USB or
Power Supply
Curie
Intel®
Curie™
VIN _5V
VBATT
K24
C1
1uF
25V
N21
VIN[ 1]
PV_BATT
M1
VIN[ 2]
+
R1
3K
C2
0.1uF
.
-
C3
4.7uF.
3.8V Li-ion
Battery
.
2
AON_IO_VCC
GREEN
1
R2
100k
VSY S
2
Optional
Load switch
L4
Q1
M22
S
1
R3
10K
CH G_STATUS
G
SW_FG_VBATT
P21
D
3
CSD23381F4
VBATT
A2
L22
BATT_ISET
GPIO
R7
10K
.
Intel® Curie™
Design Guide
18
IN
OUT
EN
GND
C4
NC P334
0.1uF
BATT_TEMP
A1
R4
15K
B1
R5
8.2K
GND
N22
RI SET
R6
1.3k
B2
U2
November 2016
rev. 1.2

Power and Energy
3.3.3 Wireless charger
This example is based on the Texas Instruments BQ51003* device, a WPC/Qi based wireless with these key features:
·
·
·
·
·
Provides 5 VDC output to charge a battery
WPC v1.1 compliant communication control
93% overall peak AC-DC efficiency
Full synchronous rectifier
Temperature monitoring inputs
Note: Contact the original device datasheet for latest product information.
Figure 6 Wireless charger - example circuit
USB_VBUS
P‐CHANNEL FET
AD
5V_VOUT
AD_EN
C1
Intel Curie module
OUT
AC1
COIL PAD
#CHG
C2
EN[1:2]
L1
COIL PAD
AC2
Texas Instruments
DUAL RESONANT CIRCUIT
FOD
TEMP SENSE ATP_INT3
GPIO[24] / SPI0_M_CS_B[0]
FILTER BQ51003*
QI Controller
CLAMP BOOTSTRAP
COMMUNICATION 3.3.4 Charing status indicator
The CHG_STATUS pin on Intel® Curie™ is an open drain that indicates charging in progress with a LOW (0) signal and that
charge is complete with a HIGH (1) signal. This can drive a simple LED or other indicator circuit.
If BATTERY_TEMP signal is connected to ground, this disables the internal battery charger and makes the CHG_STATUS pin
available for other use as GPIO_SS_[7] or AIN[15].
3.3.5 Charging mode (wired / wireless) selection and indicator
When an external source, like wired USB power, raises the AD pin above 3.6 VDC then the wireless charger is disabled and the
AD_EN output is driven HIGH to switch ON the external P_Channel FET.
Adapter mode can be enabled by providing low to the EN[1:2] control pin. In this mode, wired and wireless power modes are
enabled but priority is provided to wired power.
Wired and wireless charging power can be disabled through setting EN[1:2] high.
November 2016
rev. 1.2
Intel® Curie™
Design Guide
19
Power and Energy
Charging indication pin is provided to AON_GPIO of SoC, through which battery charging can be detected.
The conceptual design can include a green LED to indicate when 5 VDC is available either through wireless charger or USB.
3.4 No battery configuration
For designs that function on direct power sources and without a battery connected, implementing one of the following two
circuit schemes is recommended for best results.
Leaving BATT_TEMP open puts the charger in NO BATTERY mode, where the charger does not attempt to charge the battery.
The VIN1, VIN2, BATT_ISET, CHG_STATUS and PVT_BATT can be left open if no battery is present in the system.
Figure 7 Example circuits for no battery application
NO BATTERY APPLICATION - Option1
Curie
Intel®
Curie™
VIN_5V
K24
C7
1uF
25V
N21
VIN[1]
PV_BATT
NO BATTERY APPLICATION - Option2
Curie
Intel®
Curie™
VIN_5V
VBATT
M1
K24
VIN[2]
C5
0.1uF
.
C8
4.7uF.
C6
1uF
25V
N21
VIN[1]
PV_BATT
M1
VIN[2]
VIN_5V
M22
L22
M22
CHG_STATUS
SW_FG_VBATT
P21
L22
BATT_ISET
GPIO
N22
BATT_TEMP
CHG_STATUS
SW_FG_VBATT
BATT_ISET
P21
LDO
C9
0.1uF
.
C11
1uF
C10
4.7uF.
GPIO
BATT_TEMP
GND
N22
VSY S
L4
GND
VSYS
L4
3.4.1 ESR1 and ESR2 regulators
Do NOT use these regulators. It is highly recommended to connect the pins below to reduce leakage current.
· ESR1_VBAT and ESR2_VBATT - connect to ground
· ESR1_LX and ESR2_LX - leave open
· VDD_PLAT_3P3 and VDD_PLAT_1P8 - connect using 10k resistor to ground
Intel® Curie™
Design Guide
20
November 2016
rev. 1.2

Power and Energy
Figure 8 ESR1 and ESR2 regulator
Intel® Curie™
3.4.2 ESR3 regulators
.The purpose of the ESR3 regulator is to power the core of Intel® Curie™ module. Maximum capacity of the ESR3 regulator is
100mA and typical output is 1.8V +/-10%. Use this to power Intel® Curie™ module only and DO NOT use it for any other
purpose.
November 2016
rev. 1.2
Intel® Curie™
Design Guide
21
Power and Energy
Figure 9 ESR3 regulator
Intel® Curie™
Intel® Curie™
Design Guide
22
November 2016
rev. 1.2

Power and Energy
3.4.2.1 Bluetooth* and sensor power
The Bluetooth and sensor block within Intel® Curie™ are powered by a common source, this can be 1.8V or 3.3V.
The voltage levels of VDD_BLE_SEN should match with AON_IO_VCC which is the IO power supply of module.
It is recommended to use the BUCK_OUT of the Intel® Curie™ to power the VDD_BLE_SEN. The Intel® Quark™ SE SoC can
disable this converter when not needed; typical 70nA quiescent current consumption.
Figure 10 Example Circuit for Bluetooth operating at 1.8 VDC
3.3V Operation
1.8V Operation
Curie
Intel®
Curie™
Curie
Intel®
Curie™
BUCK_VOUT
BLE_DEC2
VDD_BLE_SEN
REG_OUT
BUCK_VOUT
K1
G23
BLE_DEC2
H24
VDD_BLE_SEN
REG_OUT
K1
G23
H24
VDD_IO_3.3V
VDD_IO_1.8V
AON_IO_VCC
AON_IO_VCC
E21
C12
0.1uF
BUCK_VSEL
C14
0.1uF
C13
0.1uF
BUCK_VSEL
K22
November 2016
rev. 1.2
GND
GND
R8
0
.
E21
C15
0.1uF
K22
VSY S
R9
0
Pull up to
VSYS rail
Intel® Curie™
Design Guide
23
Power and Energy
3.4.3 USB power and protection circuit
VDD_USB powers the USB logic in Intel® Curie™ module. This should be connected to USB VBUS using a RC network. The
purpose of the RC network is to suppress any surges in the VBUS. 22 ohm and 0.1uF should be good value for the RC. It is
highly recommended to have a protection device on the USB VBUS and the DP/DM lines of USB.
Figure 11 provides a circuit-example of USB filtering and protection.
Figure 11 USB power and protection example circuit
RC to filter transients
voltage in VBUS
USB_5V
6
7
8
9
10
11
SH1
VBUS
SH2
DSH3
D+
SH4
ID
SH5
GND
1
K24
2
N21
Intel®
Curie™
Curie
VIN[1]
VIN[2]
3
C23
0.1uF
4
C24
2.2uF
R14
1.07K
FB1000
600ohm, 0.1A
R15
5
K4
22
VDD_USB
C25
0.1uF
SH6
CONN_USB_1X5_F_6MTAB
.
R16
R17
1
J23
J24
USB_DM
USB_DP
1
GND
A1 A2
22
22
CR1
LFTVS18-1F3
18V
CR2
2
CR3
2
B1 B2
Intel® Curie™
Design Guide
24
November 2016
rev. 1.2

Power and Energy
3.5 Power ON sequencing
Figure 12 shows the power sequence diagram of Intel® Curie™ module; timings shown are typical results.
All rails except VSYS and AON_IO_VCC are outputs.
VIN is the system power supply.
AON_IO_VCC has to be supplied externally.
It is recommended to use VCC_AON_PWR to power the AON_IO_VCC. If it is fed by any other source, the design must ensure
the timing specifications are met.
The internal TPS62743 buck regulator is fed by VSYS; VSYS enable is controlled by the a module GPIO.
During power on the TPS62743 is enabled and can be turned off if needed by the software.
Figure 12 Intel® Curie™ power sequence
Curie Sequence
A
VSYS
tPWR_OPM
B
AVD_OPM_2P6
tPWR_AON_1P8
C
VCCOUT_AON_1P8 (INT)
tPWR_AON_PWR
D
VCC_AON_PWR
tPWR_ESR3
F
VCCOUT_ESR3_1P8
tPWR_IO_VCC
AON_IO_VCC
E
tHOST_1P8_PG
G
VCC_HOST_1P8_PG
TPS62743 Internal Buck Timing
BUCK_EN
tPWR_BUCK_VOUT
BUCK_VOUT
Table 4 Buck parameters
Parameter
Min
Typ
Max
Units
tPWR_OPM
20
μs
tPWR_AON_1P8
6
ms
tPWR_AON_PWR
200
μs
tPWR_ESR3
1.125
ms
tPWR_IO_VCC
0
ms
tHOST_1P8_PG
100
tPWR_BUCK_VOUT
10
November 2016
rev. 1.2
μs
25
ms
Intel® Curie™
Design Guide
25
Power and Energy
Note: If the voltage transition on the power supply pin VSYS causes it to power down and commence a power up sequence before the
internal reference voltage OPM2P6_VOUT has dropped below 100mV, an incorrect power sequence may occur. The device may
become unresponsive if that happens. Refer to the Intel® Curie™ module Application Note - Power Sequencing Considerations for
more information.
Intel® Curie™
Design Guide
26
November 2016
rev. 1.2

Power and Energy
3.5.1 AON_1P8, LDO_1P8, HOST_1P8 and HOST_1P8-PG
Following diagram shows the timing measured between VCCOUT_AON_1P8, VCC_AON_PWR, VCC_HOST_1P8 and
VCC_HOST_1P8_PG.
Figure 13 AON_1P8, LDO_1P8, HOST_1P8 and HOST_1P8-PG - Oscilloscope capture
November 2016
rev. 1.2
Intel® Curie™
Design Guide
27
Power and Energy
3.5.2 VSYS, OPM_2P6, AON_1P8 and LDO_1P8
Following diagram shows the timing measured between VIN, AVD_OPM_2P6, VCCOUT_AON_1P8 and
VCC_AON_PWR.AON_1P8, ESR1 and ESR2
Figure 14 AON_1P8, ESR1 and ESR2 - Oscilloscope capture
Intel® Curie™
Design Guide
28
November 2016
rev. 1.2

Subsystems
4 Subsystems
4.1 Analog power and input routing
4.1.1 ADC ground
Inputs to the Intel® Curie™ module Analog to Digital Converter (ADC) are multiplexed with the IO pins of the Intel® Curie™
module and a separate analog GND plane is highly recommended for return path of analog signals. Follow best practices,
which include these analog guidelines:
· Provide dedicated GND planes for analog ground, connected to digital ground at a single point.
· Analog signals and analog GND should be kept away from:
− high speed digital signals
− switching mode power supplies
− crystals and oscillators
− other design specific components which can generate noise across traces or through planes
4.1.1.1 ADC Power
ADC_3P3_VCC is the ADC block power input pin. Use 0.1uF decoupling capacitor. Use a clean power supply for good
performance. Keep the power supply traces away from high frequency signals, DC-DC converters and, RF.
This image shows a large analog ground around the Intel® Curie™ module ADC input pins and bridge to digital ground.
Figure 15 Example ADC ground
November 2016
rev. 1.2
Intel® Curie™
Design Guide
29
Subsystems
4.2 Bluetooth® low energy device and antenna
4.2.1 Antenna placement
The functional reference circuits utilizes a Pulse W3008C ceramic chip antenna that can excite a host circuit board to radiate
at 2.4-2.48 GHz frequencies in an omni-directional pattern. Reference to the manufacturer datasheet for more details.
This solution requires a ground clearance of 4.00 mm x 6.25 mm under the SMT antenna with all metalization removed from
all circuit board layers under the antenna. EMI shields and rings can limit antenna performance, place battery away from
antenna. Example of matching network is shown on Figure 16
Figure 16 Pad dimensions for chip antenna
Intel® Curie™
Design Guide
30
November 2016
rev. 1.2

Subsystems
4.3 I2C interface design guidelines
There are four I2C ports for Intel® Curie™. Two ports are for generic use and two are dedicated ports for sensor subsystem.
These operate in both master and slave mode. Both 7-bit and 10-bit addressing modes are supported and support standard
(100 kbps), fast mode(400 kbps) and fast mode plus (1 Mbps).
4.3.1 I2C connections on the functional reference circuits
The following diagram shows an example I2C interface for a Intel® Curie™ module-based design; maximum speeds are listed
in Table 5
Figure 17 Example of I2C connection for a typical device
Intel®
Curie™
HAPTICS
Texas Instruments
DRV2605*
DISPLAY AND TOUCH
SUPPORT
BOARD
I2C1_M_SCL
LED DRIVER
Texas Instruments
TI LP5562*
I2C1_M_SDA
I2C0_SS_SCL
NEAR FIELD COMMUNICATIONS
I2C0_SS_SDA
PRESSURE & HUMIDITY SENSOR
Bosch BMI280*
STMicroelectronics
ST54D*
6AXIS_I2C1_SS_SCL
6AXIS_I2C_SS_SDA
SENSOR HEADER
COMPASS
Bosch BMI150*
I2C0_SS
4.3.2 I2C interface signals
Table 5 I2C interface signals
Name
Type
Max Frequency / Data Rate
Description
I2C[0:1]_SCL
I2C[0:1]_SDA
I/O
1 MHz
Main I2C[0:1] clock and data
I2C_SS[0:1]_CLK
I2C_SS[0:1]_DATA
I/O
400 KHz
Sensor Subsystem I2C clock and data
November 2016
rev. 1.2
Intel® Curie™
Design Guide
31
Subsystems
4.4 LED driver example
The diagram below shows the I2C interface connections communicating with an external LED driver module.
The functional reference circuits includes a Texas Instruments LP5562 LED Driver connected through I2C1_M (address 0) to
provide the features to Intel® Curie™ module-based devices:
·
·
·
·
·
Four independently programmable LED outputs with 8-bit current setting (from 0mA to 25.5mA with 100uA steps)
Flexible PWM control for LED outputs
SRAM program memory for lighting pattern
Three program execution engines with flexible instruction set
Maximum current draw from Intel® Curie™ module to be less than 25mA
Figure 18 LED driver block diagram for a tricolor module
TM
Figure 19 LED driver example circuit for a tricolor module
Intel® Curie™
Design Guide
32
November 2016
rev. 1.2

Subsystems
4.5 I2S interface design guidelines
The following I2S interface signals are not implemented on the functional reference circuits; these ports are connected to
J1200 connector and can be used externally if needed, and are to be left unconnected if not used.
4.5.1 Signals for the I2S interface
Table 6 I2S interface signals
Name
Type
Maximum Audio Sample Rate
Description
I2S_RSCK
I2S_TSCK
I/O
48 KHz
Clock signal for I2S
I2S_RXD
I2S_RWS
I
48 KHz
RX Data for I2S
I2S_TXD
I2S_TWS
O
48 KHz
TX Data for I2S
4.5.2 I2S interface routing guidelines
Table 7 I2S routing guidelines
Max Drive Strength
I2S Interface
I2S_RSCK
4mA (1.8V IO), 7.6mA (3.3V IO)
I2S_TSCK
8mA (1.8V IO), 7.6mA (3.3V IO)
I2S_RXD
4mA (1.8V IO), 7.6mA (3.3V IO)
I2S_RWS
4mA (1.8V IO), 7.6mA (3.3V IO)
I2S_TXD
8mA (1.8V IO), 7.6mA (3.3V IO)
I2S_TWS
8mA (1.8V IO), 7.6mA (3.3V IO)
4.6 Sensors
Intel® Curie™ has an integrated 6-axis sensor module interfaced with the Intel® Quark™ SE processor by exclusive use of
SPI1_SS. This device makes available the 6-AXIS_AUX_I2C port for connection to an external environmental sensor.
Powering sensors with an Awake-ON rail will allow them to generate interrupt based wake events to the processor.
4.6.1 Integrated 6-axis sensor interfaces
The I2C master interface from the six axis sensor can be connected to an external digital compass.
Table 8 Interface signals
Name
Type
Maximum Frequency / Data Rate
Description
6Axis_SCL
6Axis_SDA
I/O
1 MHz
Clock and Data
6Axis_int2
I/O
400Hz
GPIO
Note: The 6-axis sensor is powered in common with the Bluetooth® low energy device.
4.6.2 Environmental inputs
4.6.2.1 Pressure and Humidity sensor
The concept shows the usage of Bosch* BME280 pressure/humidity/temperature sensor connected with Intel® Curie™
module over I2C0_SS, which support up to 400 kHz. Consult the manufacturer’s datasheet for the latest details on specific
features, including:
· I2C digital interface
· Operating pressure range of 300-1100hPa and relative humidity of 0 to 100%.
· Up to 16 over-sampling rate
November 2016
rev. 1.2
Intel® Curie™
Design Guide
33
Subsystems
4.6.2.2 Magnetometer (Geo Compass)
The concept shows the usage of Bosch* BME150 3-axis magnetometer connection through the Bosch BMI160 6-axis I2C for
synchronized operation with the accelerometer and gyroscope. Consult the manufacturer’s datasheet for the latest details on
specific features, including:
· I2C digital interface
· On-chip interrupt controller
· Magnet field resolution of ~ 0.3uT
.
Figure 20 Extended environmental sensor block diagram
I2C0_SS_SCL
I2C0_SS
Intel®
CurieTM
I2C0_SS_SDA
PRESSURE & HUMIDITY Bosch BME280*
6‐AXIS_AUX_I2C_SCL
6AXIS_I2C 6‐AXIS_AUX_I2C_SDA
GPIO_SS[3] / AIN[11]
VDD_IO
COMPASS_INT
VDD_IO
COMPASS
Bosch BMM150*
Figure 21 External environmental sensor example circuit
Intel® Curie™
Design Guide
34
November 2016
rev. 1.2

Subsystems
4.7 Haptics
4.7.1 Device driver
The concept shows the connection to a Texas Instrument* DRV2605 haptic driver using I2C1_M.
Consult the manufacturer’s datasheet for the latest details on specific features, including:
· I2C digital interface
· On-chip interrupt controller
· Magnet field resolution of ~ 0.3uT
4.7.2 Reference Eccentric Rotating Mass (ERM) device
The functional reference circuits is configured with an ERM unit from Precision Microdrives (304-103)*.
Consult the manufacturer’s datasheet for the latest details on specific features, including:
· Rated operating voltage of 2.7V
· Rated vibration speed of 14000rpm [+/-3000]
· Maximum rated operating current of 75mA
Figure 22 Haptic driver block diagram
TM
November 2016
rev. 1.2
Intel® Curie™
Design Guide
35
Subsystems
Figure 23 Haptic driver - example circuit
Intel® Curie™
Design Guide
36
November 2016
rev. 1.2

Subsystems
4.8 SPI interface
Intel® Curie™ module has four SPI interfaces, three are available externally and only two are used on the functional reference
circuits.
Figure 24 shows a simplified block diagram of typical SPI connections for flash memory, display/touch and NFC solutions
Figure 24 SPI simplified topology example
VDD_PLAT_1V8
FLASH_RST
GPIO[3] / AIN[3] / SPI_S_M OSI
SPI FLASH
FLASH_W P
M ACRONIX
M X25U12835F*
NFC use SPI1_M as the secure m icrocontroller com m unication and Curie m ulitplexed GPIO for interrupt signaling
GPIO[14] / SPI1_M _CS_B[3]
27.12M Hz
VDD_PLAT_1V8
SPI1_M _CS2
SPI0_M _CS2
VPS_IO
SPI0_M _M ISO
SPI0_M _M OSI
V_SYSTEM
SPI1_M _SCK
SPI0_M
SPI1_M
SPI1_M _M OSI
SPI0_M _SCK
SPI1_M _M ISO
SPI0_M _CS1
NFC_INT
GPIO[2] / AIN[2] / SPI_S_SCK
VBAT
NFC
ANT
NFC_RST
GPIO[15] / I2S_RXD
GPIO[20] / I2S_TXD
Display and DISPLAY ON/OFF
Touch system
DISPLAY GPIO
GPIO[17] / I2S_RW S
NFC_GPIO
AFE
STM icroelectronics
ST54D*
GPIO[19] / I2S_TW S
TOUCH INT
ATP INT2
TOUCH RST
GPIO_SS[12] / PW M [2]
November 2016
rev. 1.2
Intel® Curie™
Design Guide
37
Subsystems
4.8.1 SPI interface signals on the Intel® Curie™ module
Examples of SPI signals used in this concept design are outlined below.
Table 9 Intel® Curie™ SPI interface signals
Name
Input / Output
Maximum Frequency / Data Rate Description
SPI0_M_SCK
Output
16 MHz
SPI Serial Clock
SPI0_M_CS[2:0]_N
Output
8 MHz
SPI Chip Select.
SPI0_M_MISO
Input
8 Mbps
SPI Slave Output Master Input
SPI0_M_MOSI
Output
8 Mbps
SPI Master Output Slave Input
SPI1_M_SCK
Output
16 MHz
SPI Serial Clock
SPI1_M_CS[3:0]_N
Output
8 MHz
SPI Chip Select.
SPI1_M_MISO
Input
8 Mbps
SPI Slave Output Master Input
SPI1_M_MOSI
Output
8 Mbps
SPI Master Output Slave Input
4.9 Flash memory
The functional reference circuits use a Macronix MX25U12835F* serial flash memory for additional storage.
A maximum of 128Mb can be connected with the Intel® Curie™ module SPI0_M interfaces.
Figure 25 SPI simplified topology example
TM
Intel® Curie™
Design Guide
38
November 2016
rev. 1.2

Subsystems
Figure 26 Flash memory circuit for SPI interface
4.10 Display panel and touch controller
An example showing Sharp S010B7DH02* display panel and a Cypres (I2C) CY8CTST241* capacitive touch screen controller
are shown for reference.
Consult the Sharp LS010B7DH02 datasheet for additional information on these features:
·
·
·
·
Transflective panel of white and black
Digital SPI interface
1.02 inch screen with 96 x 150 resolution
1 bit internal memory for data storage within the panel
Consult the Cypress* CY8CTST241 datasheet for additional information on these features:
·
·
·
·
·
Up to 32 sense pin
Large object detection
Resistant to LCD noise
Wide supply voltage range from 1.71V to 5.5V
Integrated voltage regulator
November 2016
rev. 1.2
Intel® Curie™
Design Guide
39
Subsystems
Figure 27 External display topology example
SPI1_M_CS1
VDDIO
SPI1_M_SCK
SPI1_M_MOSI
SPI1_M_MISO
V_SYSTEM
I2C0_SCL
I2C0_SDA
VDD_PLAT_3V3
DISPLAY ON/OFF
DISPLAY GPIO
TOUCH INT
TOUCH RST
5V_EN
Intel® Curie™
Design Guide
40
I2C EXPANDER
November 2016
rev. 1.2

Subsystems
4.11 Near Field Communication (NFC)
This example is designed around a ST Microelectronics ST54D* NFC controller with in-built secure element.
The NFC controller is connected to Intel® Curie™ module on I2C1-M (NFC Router communication) and SPI1_M (for secure
micro-controller communication) interface. The NFC support card emulation mode is supported and a dedicated interrupt
pin is connected to Intel® Curie™ module GPIO.
4.11.1 NFC controller features
·
·
·
·
·
Integrated AFE
Optimized power consumption modes
I2C slave interface up to 1Mbps
Integrated 36Kb EEPROM
Support up to three external secure element
4.11.2 Secur microcontroller features
·
·
·
·
ARM SecurCore SC300* 32-bit RISC core
1280 Kbytes of flash memory available
Single wire protocol (SWP) interface for communications with NFC router in SIM/NFC application
SPI slave interface for non-SIM application
.
Figure 28 NFC connections
November 2016
rev. 1.2
Intel® Curie™
Design Guide
41
Subsystems
Figure 29 NFC - example circuit
Intel® Curie™
Design Guide
42
November 2016
rev. 1.2

Subsystems
4.12 UART0 for Bluetooth® low energy
Intel® Curie™ contains two instances of a UART controllers within the module, UART0 is dedicated to the integrated Nordic
nRF51822* Bluetooth Low Energy controller while UART1 is available for use with mobile data systems and debug tools.
Figure 30 UART interface topology
TM
Bluetooth* Low Energy Controller
Nordic nRF51822*
TM
4.13 UART1 interface signals
Table 10 shows the UART1 interface signals available.
Table 10 UART interface signals
Name
Type
Max Data Rate
Description
UART1_RX
I
2 MHz
High-speed receive data input
UART1_TX
O
2 MHz
High-speed transmit data
UART1_RTS
I
2 MHz
High-speed request to send
UART1_CTS
O
2 MHz
High-speed clear to send
Note: UART signals not implemented on a design can be left unconnected.
4.14 USB interface design considerations
Consult these general routing and placement guidelines when laying out a new design to minimize signal quality and EMI:
· Maximum trace length is 4 inches.
· Do not route traces under crystals, oscillators, clock synthesizers, magnetic devices, or ICs with strong clocks.
· Follow the 20 × h rule by keeping traces at least [20 × (height above the plane)] mils away from the edge of the plane
(VCC or GND, depending on the plane the trace is over).
November 2016
rev. 1.2
Intel® Curie™
Design Guide
43
Subsystems
For an example stackup, the height above the plane is 4.5 mils (0.114 mm). This calculates to a 90-mil (2.286 mm)
spacing requirement from the edge of the plane. This helps prevent the coupling of the signal onto adjacent wires and
also helps prevent free radiation of the signal from the edge of the PCB.
· Avoid stubs on high-speed USB signals because stubs cause signal reflections and affect signal quality. If a stub is
unavoidable in the design, the total of all the stubs on a particular line should not be greater than 200 mils (5.08 mm).
· We recommend placing a low ESR 1 μF ceramic cap close to the VDD_USB pin.
· If a USB port is not implemented on the design, USB_DP/N[x] signals can be left unconnected.
· Protect USB lines are with ESD diodes for safe performance.
· A 1.07K bleeding resistor added in USB power line can provide an immediate discharge path for USB power.
Table 11 USB 1.1 differential pair length matching table
Signal Name
Type
Max Frequency / Data Rate
Description
USB_DP
Input / Output
12 Mbps
Universal serial bus port differential (USB Data+)
USB_DM
Input / Output
12 Mbps
Universal serial bus port differential (USB Data-)
Figure 31 USB 1.1 port topology
CM C
ESD
4.14.1 USB 1.1 length matching
Table 12 USB 1.1 differential pair length matching table
Signal
Total initra pair screw
USB_DP
150 mils
USB_DM
150 mils
Intel® Curie™
Design Guide
44
November 2016
rev. 1.2

Circuit Board Recommendations
5 Circuit Board Recommendations
5.1 Fundamental design rules
All of the routing guidelines (W/S, isolation, length requirement) are modeled around a 4-layer, Type II printed circuit board.
If different PCB stackup is implemented, the electrical guidelines (impedance, insertion loss) provided in this design guide
must be followed to ensure that the layout meets the design recommendations.
These rules pertain to all the subsystems discussed in this chapter.
·
·
·
·
The length values are tested and measured as package-pin-to-package-pin.
The break-out and break-in minimum spacing ratio is 1:1 for all interfaces.
The trace width/intra-spacing for differential pairs and trace width for single-ended signals depend on the impedance.
For analog signals, it is important to keep the analog ground return path clean from digital noise to maintain high signalto-noise ratio.
· All inputs, tristate buses and signals that are not connected must be pulled up or down by the firmware or hardware to
prevent oscillation. This is especially important for enable or control signals like JTAG TMS signal.
· Unused and reserved signals are terminated as no connection, unless specified otherwise.
· Power sources and input regulation components must remain stable across the entire operating range of voltage and
device systems.
5.2 PCB thickness and stackup
Stackup refers to the thickness as comprised of the number of layers, the PCB technology (and via details), the thickness of
each layer and the Cu weights on each layer. Fab drawings have a stackup or cross section figure.
The concept referenced in this document uses high density interconnect, Type 3, 4-layer board technology.
Trace width for Radio Frequency and high speed signal driver impedance must be determined per the stackup selected.
5.2.1 Two-layer boards
Intel® Curie™ module can be placed on a two-layer board for simple designs that have limited buses susceptible to
interference noise, or when the footprint is not a primary constraint and signals can be physically separated to improve noise
tolerance.
Table 13 Two-layer stackup design
Layer
Top
Bottom
Type
Material
Surface
Air
Thickness (mm)
Dielectric Constant
Trace Width (mm)
1
Solder Mask
FR-4
0.02
4.2
Conductor
Copper
0.036
4.2
Dielectric
FR-4
1.48
4.2
Conductor
Copper
0.036
4.2
Solder Mask
FR-4
0.02
4.2
Surface
Air
0.102
0.102
1
5.2.2 Four-layer stackup
Table 14 Four-layer stackup design
Layer
Top
November 2016
rev. 1.2
Type
Material
Surface
Air
Thickness (mm)
Dielectric Constant
Trace Width (mm)
1
Solder Mask
FR-4
0.05
4.5
Conductor
Copper
0.015
1
Dielectric
FR-4
0.068
4.5
0.13
Intel® Curie™
Design Guide
45
Circuit Board Recommendations
Table 14 Four-layer stackup design
Layer
L2_GND1
L3_GND2
Bottom
Type
Material
Surface
Air
Thickness (mm)
Dielectric Constant
Conductor
Copper
0.015
4.5
Dielectric
FR-4
0.55
4.5
Conductor
Copper
0.015
4.5
Dielectric
FR-4
0.068
4.5
Trace Width (mm)
1
Conductor
Copper
0.015
1
Solder Mask
FR-4
0.053
4.5
Surface
Air
0.1
0.1
0.13
1
Total Thickness: 1.6 mm
5.2.3 Six-layer stackup
This next example is a 48mil thick, 6-layer, HDI type II board with blind vias from 1-2 and 1-3, with additional thruhole vias.
This board contains 1.4 oz copper (Cu) on the outer layers and 0.25 – 0.50 oz copper on the inners layers, as detailed below.
Table 15 Six-layer stackup design
Layer
Top
L2_GND1
L3_PWR1
L4_CLK1
L5_GND2
Bottom
Type
Material
Surface
Air
Thickness (mm)
Dielectric Constant
Trace Width (mm)
1
Solder Mask
FR-4
0.05
4.5
Conductor
Copper
0.015
1
Dielectric
FR-4
0.068
4.5
Conductor
Copper
0.015
4.5
Dielectric
FR-4
0.55
4.5
Conductor
Copper
0.015
4.5
Dielectric
FR-4
0.2
4.5
Conductor
Copper
0.015
4.5
Dielectric
FR-4
0.55
4.5
Conductor
Copper
0.015
4.5
Dielectric
FR-4
0.068
4.5
Conductor
Copper
0.015
1
Solder Mask
FR-4
0.053
4.5
Surface
Air
0.13
0.1
0.1
0.1
0.1
0.13
1
Total Thickness: 1.6 mm
Intel® Curie™
Design Guide
46
November 2016
rev. 1.2

Circuit Board Recommendations
5.2.3.1 Six-layer stack up cross section
Figure 32 Thickness of a six layer stackup
§
November 2016
rev. 1.2
Intel® Curie™
Design Guide
47
Debug and Production Options
6 Debug and Production Options
6.1 JTAG connector or test pads
Traditional JTAG connections can be routed to test points or header pins as best suited for the need and design intent.
·
·
·
·
·
JTAG_TDO
JTAG_TDI
JTAG_TCK
JTAG_TMS
JTAG_RST_B
Figure 33 Block diagram of the debug ports on the Intel® Curie™ module
Figure 34 Debug ports on the Intel® Curie™ module
VDD_IO
C1005
0.1uF
10%
.0201
1
3
5
7
9
J1002
R1003
10K
5%
.
2
4
6
8
10
10 Pin Header
.
Intel® Curie™
Design Guide
48
R1004
10K
5%
.
R1005
10K
5%
.
R1016
10K
5%
NO_STUFF
R1010
10K
5%
NO_STUFF
JTAG_TMS
JTAG_TCK
JTAG_TDO
JTAG_TDI
JTAG_TRST_B
R1008
10K
5%
NO_STUFF
R1009
10K
5%.
November 2016
rev. 1.2

Debug and Production Options
6.2 Power rail test pads
Test points for primary voltage rails, LDO outputs; and a clean ground are very helpful to debug and for device
measurements.
6.3 UART test pads
Intel® Curie™ module, when in manufacturing mode, sends out messages on the UART right from power up. Thus access to
the UART will provide additional access to system functions and information logs.
· AIO_05_UART_RX
· AIO_05_UART_TX
6.4 Bluetooth® low energy test pads
A Jlink emulator can be sued to program, or reprogram, the Bluetooth® low energy firmware. The board digital ground needs
to be connected between the board and Jlink emulator. Also vref from Jlink emulator needs to connect to the same voltage
level as the VDD_BLE_SEN, This allows the emulator to communicate to the Bluetooth® low energy with correct logic level.
· BLE_SWDIO
· BLE_SW_CLK
Note: Jlink software utility allow the users to program a BLE image in .bin or .hex format. Refer to Jlink users manual and Nordic* website for
more information.
November 2016
rev. 1.2
Intel® Curie™
Design Guide
49