* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Newton`s First Law
Center of mass wikipedia , lookup
Coriolis force wikipedia , lookup
Relativistic mechanics wikipedia , lookup
Classical mechanics wikipedia , lookup
Fictitious force wikipedia , lookup
Newton's theorem of revolving orbits wikipedia , lookup
Equations of motion wikipedia , lookup
Fundamental interaction wikipedia , lookup
Rigid body dynamics wikipedia , lookup
Modified Newtonian dynamics wikipedia , lookup
Seismometer wikipedia , lookup
Centrifugal force wikipedia , lookup
Classical central-force problem wikipedia , lookup
Centripetal force wikipedia , lookup
Newton’s Laws of Motion Sir Isaac Newton described the relationship between motion and force in 3 laws Newton’s First Law- aka:the law of inertia • An object at rest remains at rest and an object in motion maintains its velocity unless it experiences an unbalanced force. • An object at rest tends to stay at rest • An object in motion tends to stay in motion at the same velocity • This is known as inertia • Inertia: tendency to resist change until an outside force acts upon the object – Example: When in a car and the car stops, your body continues forward. Seat belts are used to counter this effect. • Inertia is related to an object’s mass • Mass is actually a measure of inertia – An object with a small mass has less inertia – An object with a greater mass has more inertia • Which object would be easier to change the motion of? Inertia • Why you slide into your friend on the music express • Why you can’t stop instantaneously when driving a car • We use seat belts and air bags to help our bodies slow down when inertia keeps them going • On earth objects in motion appear to slow down on their own, however an outside force is acting on them. This outside force is usually friction. • In space, where there is no friction and object in motion will continue to stay in motion and just keep going unless something acts upon it. Newton’s Second Law • Newton’s first law depends upon the net force being zero or balanced • Newton’s second law depends upon the net force being unbalanced • Newton’s Second Law: The unbalanced force acting on an object equals the object’s mass times the acceleration • Force = mass x acceleration • F = ma F = ma • The force needed will increase when the mass increases F = ma A) B) • F and m are directly proportional • Which requires more force? F = ma • The force needed will increase when the acceleration increases F = ma A) B) • F and a are directly proportional • Which requires more force? F = ma • If force is constant, then the higher the mass the lower the acceleration F = ma • m and a are inversely proportional Force is measured in Newtons • 1 Newton = 1 kg x 1 m/s2 • The pound (lb) is sometimes used as a unit of force. • 1 N = 0.225 lbs or 1 lb = 4.448 N • Example: a baseball accelerates downward at 9.8 m/s2. If the gravitational force is the only force acting on the baseball and is 1.4 N, what is the baseball’s mass? Gravity • Law of gravitational force: objects in the universe attract each other through gravitational forces. • The force of gravity is increased if one or both of the object’s masses increase • The gravitational pull between two heavy objects is greater then the gravitational pull between two light objects • The farther apart (the greater the distance) between two objects, the less the gravitational pull. • No matter how big or small an object is, it will exert a gravitational force. We just don’t notice it for small objects. • You have a gravitational attraction for all objects around you, but since the earth is so large, the pull of gravity towards the earth is greater and the only force you feel • An apple hanging from a tree; – There is a gravitational attraction between the apple and the tree – There is a gravitational attraction between the apple and the earth – When the apple stem breaks, the apple falls to the ground because the force of gravity is greater between the apple and the earth than the apple and the tree. • • • • Free-Fall Acceleration As an object falls to the earth, the distance between the object and the earth decreases, thus increasing the gravitational pull. As two objects move farther apart, the force of gravity between them decreases. When gravity is the only force acting on an object, the object is said to be in free fall. Free-fall acceleration due to gravity is abbreviated by “g” and is approx equal to 9.8 m/s2 at the earth’s surface. • In the absence of air resistance (fluid friction), all object near the earth’s surface accelerate at the same rate. • ALL objects exhibit the SAME free-fall acceleration (g). • But how can this be if the objects do not have the same mass….how can a heavy object not accelerate faster? • Well….A heavier object has greater gravitational pull, but a heavier object is more difficult to accelerate. The extra mass compensates for the additional gravitational force, thus allowing freefall acceleration (g) to remain the same. Weight • • • • • Weight is dependant upon gravity, mass is not. Weight: the force on an object due to gravity Weight = mass x free-fall acceleration w = mg Since weight is a force, we measure weight in newtons (N) • A small apple weighs approx 1N • A 1.0 Kg book has a weight of 9.8 N • Less gravity in space gives apparent weightlessness, because weight changes but mass does not. – An object can not be weightless! It can be close because of increased distance between object, so a very low gravitational pull would result. Air resistance • When air resistance balances the force of gravity (weight), the object’s velocity will be constant. • This is because the two forces are equal but opposite. • Terminal velocity: the maximum velocity that can be reached when the force of gravity and the force of air resistance are equal. • When a skydiver opens his parachute, the air resistance increases greater, thus slowing them down • A skydiver is not in free fall. This is a misnomer. • Free-fall only occurs when the only force acting upon an object is gravity. • So free-fall can only occur when there is no air resistance, in other words…it can only occur in when there is no air…..in a vacuum. • Because there is no air in space, free-fall can occur in space. • Astronauts float in space because they are in free-fall, not because they are “ weightless”! Orbiting • An object is said to be orbiting when it is travelling in a circular path around another object • Gravity pulls a space shuttle towards earth causing free-fall • The shuttle is also moving forward at a constant speed • When these two actions combine, orbiting occurs Orbiting Projectile Motion • Projectile motion: when two forces combine to form a resultant motion – Orbiting is an example of projectile motion. – When a curved path forms when an object is thrown, launched, or projected • Projectile motion combines vertical force and horizontal force. These forces are independent of each other and do not affect each other, but when they combine, they form an arc or curved path. • Horizontal force: comes from the projecting object. You are responsible for the horizontal force when throwing a ball. • Vertical force: comes from gravity • Because object always accelerate downward, your aim should be above the target when firing an arrow Newton’s Third Law • For every action force, there is an equal and opposite reaction force • When you kick a soccer ball, you are exerting force on the ball, but the ball is also exerting an equal but opposite force on your foot. • Action force: the force exerted ON the ball BY your foot • Reaction force: the force exerted ON your foot BY the ball • When you sit on a chair, you are exerting an action force by pushing on the chair and the chair is exerting a reaction force on you, by pushing upward to keep you supported. • Force always exists in pairs. • These forces are always equal but opposite. • However, they do not cancel each other out because they are acting on different objects • The force from your foot is equal to the force from the ball when you kick it, but the force from the ball on your foot is not as effective because it is coming from an object with small mass and acting on an object with greater mass Momentum • The product of the mass and velocity of an object • Momentum = mass x velocity • p = mv • When a car and a truck are traveling at the same velocity, and both brake at the same time with the same brake force, the truck takes longer to stop than the car because of its increased mass • A bowling ball has greater momentum than a kickball even though they are approximately the same size and could be travelling at the same velocity. The bowling ball has a greater mass! • The speed also affects momentum: a fast moving train has more momentum than a slow moving train even though they are the same mass • If an object is not moving its momentum is zero • Like velocity, momentum has direction. It is in the same direction as the velocity • When you catch a baseball, if you extend the time as your are changing the ball’s momentum, then you can reduce the sting on your hand by reducing the force exerted on your hand by the ball. • Momentum is conserved in collisions. It can be transferred from one object to another, but the same amount of momentum is constant. • When two cars hit head on, if they get stuck together, they will move together in the direction of the car with the greater momentum. • When two cars hit head on, if they bounce off of each other, the momentum is still conserved. • When playing billiards: the cue ball hits another ball and transfers its momentum to the ball. The other ball is moved forward by the action force from the cue ball. The cue ball stops due to the reaction force from the other ball