Download ROUGH EDITED COPY EHDI BECKHAM AUDIOLOGY FOR

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Audiology and hearing health professionals in developed and developing countries wikipedia , lookup

Sensorineural hearing loss wikipedia , lookup

Auditory system wikipedia , lookup

Transcript
ROUGH EDITED COPY
EHDI
BECKHAM
AUDIOLOGY FOR PARENTS AND CLINICIANS: DIAGNOSTICS
PRESENTER: DONALD GOLDBERG
3/9/15
2:30-3:00 P.M. ET
REMOTE CART/CAPTIONING PROVIDED BY:
ALTERNATIVE COMMUNICATION SERVICES, LLC
PO BOX 278
LOMBARD, IL 60148
1-800-335-0911
acscaptions.com
* * * * *
(This text is being provided in a rough draft format. Communication Access Realtime
Translation (CART) is provided in order to facilitate communication accessibility and
may not be a totally verbatim record of the proceedings.)
>> All right, our next presentation is titled Audiology For Parents and Clinicians:
Diagnostics presented by Donald Goldberg.
If you have those pinkish-orange forms, I'll be collecting them or you can leave them in
your chair. I'll just pick them up afterwards. That's totally fine too, okay.
>> DONALD GOLDBERG: Okay, in the interest of time, actually for advancing is it -sir?
[ speaker is off microphone ]
>> DONALD GOLDBERG: Sounds good. Okay, in the interest of time I'm just going to
get going, and my first slide asks -- although it doesn't move. Enter does not work.
He ran out so fast. Have him come run back in. Or...
All right, now we're going. You can stay around. This is not -- raise your hand, but are
there any audiologists in the room? I ask that you leave. No, just kidding.
But you really don't need to be here. But you've got an idea how I would talk about the
audiogram. Parents in the audience? Great.
Speech pathologists? Teachers of the hearing impaired?
We have a slew of audiologists. It's very slow to respond.
Cert ABTsand classroom teachers? Et cetera, et cetera.
My premise of talking about audiology and the audiogram and there is another session
in another room at 2:30, is we need excellence in audiology for all of the work that we're
doing if you're an auditory based program. In fact, it's the foundation of our auditory
teaching. And needless to say after hearing Carol Flexer probably in other sessions it's
important people walk away with the idea that regardless of the degree of hearing loss,
parents and intervention, they can and are making use of auditory information for the
development of spoken language. One of the reasons why today, being an audiologist,
being an interventionist, has never been a better time because we are seeing kids so
young. At this point I probably have started at least six kids who are two months old
whereas years ago the average age of identification of a severe to profound hearing
loss was two and a half to three years, much less a child coming fitted with hearing aids
at two months. I think it's also important to keep in mind that because of great
advances in medical technology, son-in-law to have children we're working -- some of
the children we're working with have other additional disabilities but those I find to be
the greatest fighters and maybe the most interesting patients to teach us how to be a
better clinician and counselor and there's no question, I think all of us are more inclined
to be very attentive to evidence-based research and clinical effectiveness,
measurements of our kids, and there's no getting around cochlear implants have
changed things completely for what we're doing. So the sky is the limit for children with
hearing loss and it's because of these things, including excellence in audiology and
hopefully good intervention included by individuals who have certification in listening
and spoken language, the sky is the limit for these children. But I'll still come back to
the mantra that audiology and excellence in audiology is the key to our auditory
teaching. Without it, one would really raise the question of doing an auditory-based
approach.
So how many of you are -- thinking back, most of you are professionals. How many of
you can raise your hand and say hearing science was your favorite class in graduate
school. Speech science? We know one person in this room is like my wife, a scientist,
very smart, and that's why you have speech and hearing science love. But I couldn't
stand it. And now I have to teach it. So now that I have to teach it, what better way to
do it than try to think about its clinical relevance into audiology, and I'm sure you all are
aware that sound is based on the vibration of air molecules and it has to come about by
some force, and so this is physics 101, and when, in fact, you're talking about sound,
you want to stipulate what the matter is. For speech, typically it's in air but it is possible
to have sound and other acoustic stimulation and other mediums. But the real key is
sound has to do with vibration. This happens to be a website on the bottom that you
can take a look at, and some of these -- hopefully with the lights still bright are going to
be sort of vibrating and uniquely moving slides if everything works well. You all know
about a tuning fork. A tuning fork, oftentimes you get a tuning fork and look at the size
and number. It's set up to be 125 or 250 or 500-hertz. And when you bang it on your
heel, the tuning fork tines begin to vibrate. And you learn words like condensation and
rarefaction, what does it mean? It comes down to when you analyze sound, that tuning
fork is like a sine wave, pure tone, and as it vibrates air molecules come close and they
come apart. This is another example of the movement of sound and, in fact, the
condensation where it's all the molecules close together on the top right and rarefaction
where they're moving apart. And another way to represent it with these waveforms is
what you see on the bottom. So, you know, this would have been much more fun if
somebody was banging tuning forks and talking about what it did in the air and then
relate it to an audiogram. And this is your classic sine wave. It's a pure tone like 125hertz on an audiometer or 500-hertz and you have these beautiful up-and-down pattern
of condensation and rarefaction, and the way you measure, as I'm sure you recall, is in
the number of cycles in a second has to do with pitch or the frequency. So literally
years ago, because I'm old, we talked about 1,000-hertz. We used to call it 1000 cycles
per second. So literally in one second that tuning fork would have vibrated 1,000 times.
A high pitch, even more vibrations and more and more cycles up and down, a low
frequency stimuli would be a much more rounded waveform because in one cycle or in
one second you can calculate how many cycles per second and figure out also with
your math formula, because of the inverse relationship of frequency and pitch. So
getting to the audiogram in just a moment, we talk about hertz. I never like to end a
semester when I say, how does a person hear from 20 to 20,000 dB if they haven't at
the end of the semester realized they mean 20 to 20,000-hertz, because if it's 20 to
20,000 dB you would blow up a person's ear. It's essentially important that you don't
walk away not realizing that frequency and pitch are in hertz and it has to do with the
psychological attribute of the pitch. High pitch and low pitch. And there's the math
formula that I'm sure you enjoyed in physics.
And then the other component when you think the basics of an audiogram is the
amplitude. How high up and how high down or peak-to-peak amplitude is reflecting the
intensity or the strength of the sound, the loudness of the sound. So if it's just up and
down on that horizontal red line it's not very intense and if it's much more elaborate
peak-to-peak, you would have, quote, a louder sound. And then we also talk about
phase as we talk about physics.
So with amplitude it's the amount of displacement from baseline. It's perceived as
loudness. And there are lots of different ways to measure it and we refer to it -- the
reference is in decibels. But you probably also remember that decibels are logarithmic
and the only way we would ever fit it all on an audiogram is by talking about the decibel
and we convert it and name it dB with capital B after Alexander Graham Bell and there
are three different types of decibels we usually talk about. The decibel in an audiogram
is in hearing level, but it really -- the pure measurement of decibel is in sound pressure
level or the amount of power in the particular space. So with decibels, some people do
talk about intensity level, but the real issue is on a sound level meter, measure how loud
the sound is in this room, that would be a reading on dB SPL and as soon as we look at
an audiogram, we're converting it to a dB HL and then you also probably remember
there's also an SL that has to do with the relationship of a sound to the threshold. So
you do SRT measurements and get this particular number and then anything above that
SRT would be how many dB SL.
This is one of my favorite graphs, because it's measured off hundreds of college age
males and they did this measurement and it was measured in sound pressure level and
they were then able to convert the relationship at each different frequency of the
relationship of SPL to HL. So you really see very distinct differences across the
frequency range how much power is in the low frequencies versus how much power in
the mid frequencies and high frequencies.
So let's talk briefly about hearing and a little bit about audiogram and audiogram testing.
The beautiful ear, most of us think about the outer here, the external auditory medias
moving in, obviously an eardrum, three ossicles and the organ of hearing called the
cochlea. But the cool thing in the cochlea -- brace yourselves -- is those hair cells. So
you probably remember that hair cells are the sheering action. There's this chemicalelectrical change that occurs at the hair cell level. Well, if you look carefully and if the
lights were out, those are moving outer hair cells, which I sure think is pretty cool.
Anyway, then, of course, you also know from this morning's talk, it starts at the ear.
That's just the entry way, but it's going to make it to the brain. So if you look over to the
right, the classic three outer hair cell rows on the right. You have one inner hair cell in
that triangle. And watch the electrical firing starting at the cochlea and then going up
the brainstem to eventually -- whoops -- to eventually the gyrus in the temporal lobe of
the auditory cortex. You have to look carefully. It's about to fire. And it crosses over
and goes to the auditory complex. We do listen with our brain.
Then another thing that you all learned and you probably spell correctly now, tonotopic
representation of the ear. I'm sure I learned that was a definition of something about
tuning, but no one ever told me that, look at that beautiful cochlea! And it's tuned at the
base end on the right. I wish I had a pointer, but the base end where it says 20,000hertz, that section in the base is fine-tuned for high frequencies and as you go through
the two and a half or two and three quarters of the cochlea, you'll eventually get to the
apex for low frequency hearing. How do you think the left cochlea is doing? Not too
well because there are no hair cells on the cochlea on the left. Probably needs a
cochlear implant. But the beauty of the cochlea and the whole idea that with the
insertion of electrical arrays, why wouldn't kids hear a sss and shhh with great finesse
because you're getting wonderful stimulation in the basal end of the cochlea and
certainly kids with implants, after an implant, rarely have difficulty. So, of course, the
little boy that you just saw wasn't responding to sss. Kind of be curious if he responded
to S-H, shh, but with an implant I'm imagine he'll hear those with great ease in distance
and norms. All of the enthusiasm of testing early, I do want to make a caution, certainly
a supporter and you can't come to EHDI and not support universal newborn hearing
screenings, but I think it's very important that we realize not every kid is tested. Some
kids are not born in hospitals. Isolated kids escape and don't have the testing done. In
addition, some kids in various states are born at home and with midwives. One of the
presentations I think earlier this afternoon was teaching midwives how to do universal
newborn hearing screenings.
You should be aware that we have lots of undocumented individuals in the United
States. What happens to the follow-up of those children who might be born in a hospital
but don't make it back and are a continued problem of about half of our kids not coming
back for the follow-up. In addition, in the United States, the majority of states use OAE
testing. OAE measures our response of the cochlea. It is not a response beyond the
cochlea. So because of time and money, many programs are doing OAEsin the
absence of a two-stage program with OAEsand ABR, we will be missing many kids with
something called auditory neuropathy spectrum disorder where you can have the
presence of OAEsand absent or abnormal ABR responses.
So universal newborn hearing screening is a wonderful thing, but when families are told
pass or everything is fine at 24 hours, it does not remove the importance that all of us
have to remember about speech and language milestones and the ever-vigilant and the
next time a physician says to a parent, you're a worrisome mother or the classic, he's a
boy, so they're slow, or he has an older sister and she talks for the kid, all we have to do
is teach physicians to eventually say, if you're concerned about hearing, go see a
pediatric audiologist. Today we are still seeing kids who have been missed and parents
not heard. And needless to say, there are some children that develop disease
processes where they're fine at birth and then in fact lose their hearing. So we have to
be very careful to not just keep resonating pass, pass, pass, when there are other
indications that the child is not hearing.
Moving on to hearing testing. Acronym soup. We have AVRsand we have AAVRsand
OAEs, but we also have behavioral testing and I skipped over ASSR auditory steadystate response. And, of course, the classic behavioral measures of BOA, VRA and
CPA. This is just obviously one of the sponsors of the conference. And ABR, this is a
measure of OAEs. And then we have a child who hopefully has tympanometry before
other physiological measures. Hopefully we get ABR with clicks, and we also can do
ABRswith clicks, bone conduction, but we also need to do tone specific ABR, because
the problem with click stimuli is it's primarily 2,000 to 4,000-hertz, most of our kids can't
hear and it might be possible that if we did click of 250, we might see many of those
kids have some hearing in different frequency ranges. So it's not uncommon for a
comprehensive program to do click as well as frequency specific ABR measure to catch
a happy baby.
We have children watching silly people with suction cups on their head and sound
comes out of the speaker and it scares the heck out of the child. Sometimes they cry.
And I don't know about you, but I'm pretty sure I don't see any headphone on that kid.
The challenge with behavioral measures is we are not getting ear specific data. Even if
it comes out of the left speaker, you are not testing the left ear. It does get to the left
and to the right ear. And should an ear difference exist, we will not know. So then we
also have boxes that light up and monkeys that bang things and children who cry when
that happens and is worse than trying to continue testing with a screaming child. And
because the lights are so exciting, you have wobbly heads. Whack, whack, whack!
And then you have to give a guess, was that because they wanted it to move or they
just happened to move when the sound came out? So unless you see Jane Midell, VA
testing is not that easy. You need a team of testing but you can only get so much
information. In the absence of specific information, we're not getting enough, send them
for electrophysiology if are required. Then we have the cooperative child who will hold
the ring for 474 more presentations and give us a right ear/left ear audiogram and just
want to do even more. But some children are not cooperative.
In the world of audiological testing, before we see the audiograms we obviously need to
make sure ideally that you have audiology in your intervention program. No child at the
Cleveland clinic can be tested unless we have a second audiologist. In fact, the person
in the booth may be more important than the person pushing the buttons and the
coordination between the tester on the machine and the person inside, and
collaboration about your observation. Parents should be participants, protect their ears
if it's getting loud, because why create a hearing loss in the parent? And make sure the
parents knees don't move every time the sound comes on. They do need to be
counseled and we need comprehensive testing.
As you look at the audiogram, this makes complete sense to me now that if the problem
is in the outer and/or the middle ear, it's a conductive problem. If it's a problem in the
cochlea, it's called sensory. If it's a problem in the nerve, the auditory nerve, it's neural.
And really the only way you can figure that out is with fairly sophisticated testing,
sometimes at autopsy. So at the absence of having dead patients, it's good to have
other ways to try to figure out with acoustic emittance and other measures. But to me
this is a beautiful example when you have a headphone or an ear insert, you're
measuring the whole system. Outer ear, middle ear, to get to the cochlea. For bone
conduction, you're vibrating the can skull and it really is a response right to the inner
ear, bypassing the outer ear. By con pairing air and bone conduction thresholds, you
have a general idea of the site of lesion, the source of the problem. So pretty important
slide as you look at audiograms. And then, of course, it's easy to remember red,
because that's right. Got to remember blue. And, oh, my gosh, the right bone
conduction is really to the left of the line and then the left bone is really to the right of the
line but eventually you can look at the key and never go wrong.
You being a speech pathologist, I want you to be the best speech pathologist that
everyone turns to say, help me understand this audiogram. Teachers of the hearing
impaired, we really do need wise clinicians to help families understand their audiogram
because you don't always have an audiologist on your staff or in all sites. As you look
at audiograms, you may see an A for aided, an aided measurement. Sometimes you
get a measure for just the right hearing aid or just the left hearing aid or the right
implant, left implant, but in the end, you want comprehensive assessment. The Ssyou
were seeing on Wendy's audiogram was in sound field, not specifying right ear or left
ear. And I'm sure you remember, calculated pure tone average, you look at 500,000,
2,000-hertz, add them up, all my college students bring a calculator, because 50 plus 50
plus 50 is 150 divided by 3 on a calculator, you tell me, 50 dB HL.
I think if I one day can give an exam and they don't use a calculator for counting up 50,
50, 50, I know it's time for me to retire. Man, they don't know basic math in college. But
then they become smart as they move on.
This is a cheat sheet from someone in the first year's program years back, and it's a
nice look at right ear/left ear, bone, left and right. And there are those measures where
the arrow is pointing downwards where it means we're at the limits of the audiometer.
When you look at an audiogram, bone conduction has a limit sooner than air conduction
because you can only vibrate to a certain power level with the bone vibrator. So when
you look at an audiogram with bone conduction kind of pointing to the arrow, it may only
mean we cannot get loud enough to get a response or the kid could be profound.
Beautiful audiogram. Many colors. And then there's the question of degree of hearing
loss. In this, you could drive me crazy and tell me 45 is moderate and 80 severe and
then we're at 2,000, 100 is profound or you can just potentially do the pure tone average
and talk about the degree of hearing loss or more importantly you describe it as a
moderate sloping to profound hearing loss in the right ear.
I go crazy when you tell me about each threshold. No one should do that.
Configuration. In all my years, rarely will you have a flat audiogram. Majority,
especially for adults, have a sloping pattern. Best responses in the lows. Worst
response in the highs. But once in a while we'll see a rising configuration and I won't
really bite into this, but I always amuse people in teaching, I took a bite and the
audiogram would look like a cookie bite. How many did that in your college class?
Tracy, I'm really sorry. I bit the other side. It's a memento.
Most hearing loss are not flat. This is what I hope for, that we get right ear and left ear
information. Good way to figure out which ear to implant. With binaural measures,
that's nice, with two hearing aids, but how could we possibly make a judgment unless
we see the right hearing aid results and the left hearing aid results separately. In all our
enthusiasm for bimodal fittings, we need to make sure we're measuring hearing aid and
implant, because unless you have loudness balancing between the hearing aid and the
implant, it could be worse when they're wearing the hearing aid with the implant. Or it
may need to be reprogrammed. And, again, at this point, 70% of my caseload are
bilateral CIs. Some simultaneous. Most of the babies are simultaneous. But if we
measure with both and you're not measuring with one implant alone, you're missing out
on a lot of information.
So just as Wendy was showing us doing Ling in therapy, do Ling in therapy but get the
kid early on to take off an implant and quickly do one ear. Put the implant back on, take
the other off. Because why should audiology be the first time some mean person says,
I'm going to take off one of your ears. At least if you've done it in therapy they've had
that experience. And I've learned through the years that you have to be doing this and
be fast, and the kid will trust you, that you're not going to do the rest of the lesson with
one ear on. We have wonderful technology. We have wonderful implants. I like the
one on the right. Nice insertion. And we also have children who don't keep their ears
on put swimmies on their biceps -- watch my hands -- and as they go to their ear, they
can't get it and then they put their hand down and stop complaining. But this little boy
did get two ears, two implants, but there are other options. There's a wonderful booklet
in everybody's pamphlet or in your bag. This comes from Oticon and has wonderful
information about a study that was looking at different ways to keep things on kids'
heads, and for that little cap boy, I love the button recommendation. My request on the
caps, unless you do do material that has some transparency, pop a hole in your pilot
cap and put mesh. Why would we want to attenuate the signal by covering up a
microphone? That would be stupid.
Anyway, I think children should also wear medical bracelets, especially implanted kids,
so they don't go by MRI machines, and people, should they separate with their child,
keep their child safe.
And seriously, we may not all turn out to be audiologists, although there are a lot in the
room than I had expected, but the more we know about audiology, the better we will
serving the children. Please come by the booth and get a cell phone wiper. Go to our
website for a gold standard of assessment recommendations. Learn about nine
domains of listening in spoken language. And come to Baltimore for a conference -- I
couldn't make the nice slide come. Are there any questions under two minutes? I've
never been on time in my life. I've never had a slide presentation only 66 slides. My
presentation in another room is down to 44 slides. And I did not wake up at 4:00 a.m.
and change my slides. Any questions?
Yes?
[ speaker is off microphone ]
>> DONALD GOLDBERG: The question was about the swimmie things. He didn't look
mad. He just got used to it when he came to see Don and had to go swimming. As
soon as it came off, he yanked his hearing aids out. I think the caps came after the
swimmie things, but I am concerned about caps covering up microphones.
But there are Hannah Anderson winter caps that are way too thick, and Hannah is way
expensive. I say you get -- we have Amish folks back in Ohio. You can get cheaper
Amish ones and we have a store at the Cleveland Clinic that we can sell you caps. Just
kidding. Hannah Anderson is very expensive. But the real issue is the mesh. Great. If
you want to learn about speech audiometer, because I tantalized you, you have to go to
another room.
[Applause]
>> If anyone has their surveys, you can leave them on your chair or take them up to me
and I'll take them.