Download Lesson 2 - EngageNY

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Series (mathematics) wikipedia , lookup

Factorization wikipedia , lookup

Ethnomathematics wikipedia , lookup

Elementary arithmetic wikipedia , lookup

Laws of Form wikipedia , lookup

Elementary mathematics wikipedia , lookup

Secondary School Mathematics Curriculum Improvement Study wikipedia , lookup

Addition wikipedia , lookup

Arithmetic wikipedia , lookup

Transcript
Lesson 2
NYS COMMON CORE MATHEMATICS CURRICULUM
7β€’3
Lesson 2: Generating Equivalent Expressions
Student Outcomes

Students generate equivalent expressions using the fact that addition and multiplication can be done in any
order (commutative property) and any grouping (associative property).

Students recognize how any order, any grouping can be applied in a subtraction problem by using additive
inverse relationships (adding the opposite) to form a sum and likewise with division problems by using the
multiplicative inverse relationships (multiplying by the reciprocal) to form a product.

Students recognize that any order does not apply for expressions mixing addition and multiplication, leading to
the need to follow the order of operations.
Classwork
Opening Exercise (5 minutes)
Students complete the table in the Opening Exercise that scaffolds the concept of opposite expressions from the known
concept of opposite numbers to find the opposite of the expression 3π‘₯ βˆ’ 7.
Opening Exercise
Additive inverses have a sum of zero. Fill in the center column of the table with the opposite of the given number or
expression, then show the proof that they are opposites. The first row is completed for you.
MP.8
Expression
Opposite
Proof of Opposites
𝟏
βˆ’πŸ
𝟏 + (βˆ’πŸ) = 𝟎
πŸ‘
βˆ’πŸ‘
πŸ‘ + (βˆ’πŸ‘) = 𝟎
βˆ’πŸ•
πŸ•
βˆ’πŸ• + πŸ• = 𝟎
𝟏
𝟐
𝟏
𝟐
𝟏 𝟏
βˆ’ + =𝟎
𝟐 𝟐
𝒙
βˆ’π’™
𝒙 + (βˆ’π’™) = 𝟎
πŸ‘π’™
βˆ’πŸ‘π’™
πŸ‘π’™ + (βˆ’πŸ‘π’™) = 𝟎
𝒙+πŸ‘
βˆ’π’™ + (βˆ’πŸ‘)
(𝒙 + πŸ‘) + (βˆ’π’™ + (βˆ’πŸ‘)) =
(𝒙 + (βˆ’π’™)) + (πŸ‘ + (βˆ’πŸ‘)) = 𝟎
πŸ‘π’™ βˆ’ πŸ•
βˆ’πŸ‘π’™ + πŸ•
(πŸ‘π’™ βˆ’ πŸ•) + (βˆ’πŸ‘π’™ + πŸ•) =
πŸ‘π’™ + (βˆ’πŸ•) + (βˆ’πŸ‘π’™) + πŸ• =
(πŸ‘π’™ + (βˆ’πŸ‘π’™)) + ((βˆ’πŸ•) + πŸ•) = 𝟎
βˆ’
Lesson 2:
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
28
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 2
NYS COMMON CORE MATHEMATICS CURRICULUM
7β€’3
Encourage students to provide their answers aloud. When finished, discuss the following:

In the last two rows, explain how the given expression and its opposite compare.
Recall that the opposite of a number, say π‘Ž, satisfies the equation π‘Ž + (βˆ’π‘Ž) = 0. We can use this
equation to recognize when two expressions are opposites of each other. For example, since
(π‘₯ + 3) + (βˆ’π‘₯ + (βˆ’3)) = 0, we conclude that βˆ’π‘₯ + (βˆ’3) must be the opposite of π‘₯ + 3. This is
because when either βˆ’(π‘₯ + 3) or βˆ’π‘₯ + (βˆ’3) are substituted into the blank in (π‘₯ + 3) + ________ = 0,
the resulting equation is true for every value of π‘₯. Therefore, the two expressions must be equivalent:
οƒΊ
βˆ’(π‘₯ + 3) = βˆ’π‘₯ + (βˆ’3).

MP.8
Since the opposite of π‘₯ is βˆ’π‘₯ and the opposite of 3 is βˆ’3, what can we say about the opposite of the sum of π‘₯
and 3?
We can say that the opposite of the sum π‘₯ + 3 is the sum of its opposites (βˆ’π‘₯) + (βˆ’3).
οƒΊ

Is this relationship also true for the last example 3π‘₯ βˆ’ 7?
Yes, because opposites have a sum of zero, so (3π‘₯ βˆ’ 7) + ___________ = 0. If the expression βˆ’3π‘₯ + 7 is
substituted in the blank, the resulting equation is true for every value of π‘₯. The opposite of 3π‘₯ is βˆ’3π‘₯,
the opposite of (βˆ’7) is 7, and the sum of these opposites is βˆ’3π‘₯ + 7; therefore, it is true that the
opposite of the sum 3π‘₯ + (βˆ’7) is the sum of its opposites βˆ’3π‘₯ + 7.
οƒΊ
opposite
sum
⏞
(3π‘₯ + (βˆ’7)) + ⏞
((βˆ’3π‘₯) + 7) = 0, so βˆ’(3π‘₯ + (βˆ’7)) = βˆ’3π‘₯ + 7.

Can we generalize a rule for the opposite of a sum?
οƒΊ
The opposite of a sum is the sum of its opposites.
Tell students that we can use this property as justification for converting the opposites of sums as we work to rewrite
expressions in standard form.
Example 1 (5 minutes): Subtracting Expressions
Students and teacher investigate the process for subtracting expressions where the
subtrahend is a grouped expression containing two or more terms.

Subtract the expressions in Example 1(a) first by changing subtraction of the
expression to adding the expression’s opposite.
Example 1: Subtracting Expressions
a.
Subtract: (πŸ’πŸŽ + πŸ—) βˆ’ (πŸ‘πŸŽ + 𝟐).
Scaffolding:
Finding the opposite (or
inverse) of an expression is just
like finding the opposite of a
mixed number; remember that
the opposite of a sum is equal
to the sum of its opposites:
πŸ’πŸŽ + πŸ— + (βˆ’(πŸ‘πŸŽ + 𝟐))
(πŸ’πŸŽ + πŸ—) βˆ’ (πŸ‘πŸŽ + 𝟐)
3
3
βˆ’ (2 ) = (βˆ’2) + (βˆ’ ) ;
4
4
πŸ’πŸŽ + πŸ— + (βˆ’πŸ‘πŸŽ) + (βˆ’πŸ)
πŸ’πŸ— + (βˆ’πŸ‘πŸŽ) + (βˆ’πŸ)
πŸπŸ— + (βˆ’πŸ)
πŸπŸ•
(πŸ’πŸ—) βˆ’ (πŸ‘πŸ)
βˆ’(2 + π‘₯) = βˆ’2 + (βˆ’π‘₯).
The opposite of a sum is the sum of its opposites. Order of operations
Lesson 2:
πŸπŸ•
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
29
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 2
NYS COMMON CORE MATHEMATICS CURRICULUM

Next, subtract the expressions using traditional order of operations. Does the difference yield the same
number in each case?
οƒΊ

Yes. (See previous page.)
Which of the two methods seems more efficient and why?
οƒΊ

7β€’3
Answers may vary, but students will likely choose the second method as they are more familiar with it.
Which method will have to be used in Example 1(b) and why?
οƒΊ
We must add the opposite expression because the terms in parentheses are not like terms, so they
cannot be combined as we did with the sum of numbers in Example 1(a).
b.
Subtract: (πŸ‘π’™ + πŸ“π’š βˆ’ πŸ’) βˆ’ (πŸ’π’™ + 𝟏𝟏).
πŸ‘π’™ + πŸ“π’š + (βˆ’πŸ’) + (βˆ’(πŸ’π’™ + 𝟏𝟏))
Subtraction as adding the opposite
πŸ‘π’™ + πŸ“π’š + (βˆ’πŸ’) + (βˆ’πŸ’π’™) + (βˆ’πŸπŸ)
The opposite of a sum is the sum of its opposites.
πŸ‘π’™ + (βˆ’πŸ’π’™) + πŸ“π’š + (βˆ’πŸ’) + (βˆ’πŸπŸ)
Any order, any grouping
βˆ’π’™ + πŸ“π’š + (βˆ’πŸπŸ“)
Combining like terms
βˆ’π’™ + πŸ“π’š βˆ’ πŸπŸ“
Subtraction replaces adding the opposite.
Have students check the equivalency of the expressions by substituting 2 for π‘₯ and 6 for 𝑦.
(πŸ‘π’™ + πŸ“π’š βˆ’ πŸ’) βˆ’ (πŸ’π’™ + 𝟏𝟏)
βˆ’π’™ + πŸ“π’š βˆ’ πŸπŸ“
(πŸ‘(𝟐) + πŸ“(πŸ”) βˆ’ πŸ’) βˆ’ (πŸ’(𝟐) + 𝟏𝟏)
βˆ’(𝟐) + πŸ“(πŸ”) βˆ’ πŸπŸ“
(πŸ” + πŸ‘πŸŽ βˆ’ πŸ’) βˆ’ (πŸ– + 𝟏𝟏)
βˆ’πŸ + πŸ‘πŸŽ + (βˆ’πŸπŸ“)
(πŸ‘πŸ” βˆ’ πŸ’) βˆ’ (πŸπŸ—)
πŸπŸ– + (βˆ’πŸπŸ“)
πŸ‘πŸ βˆ’ πŸπŸ—
πŸπŸ‘
πŸπŸ‘
The expressions yield the same number (πŸπŸ‘) for 𝒙 = 𝟐 and π’š = πŸ”.

When writing the difference as adding the expression’s opposite in Example 1(b), what happens to the
grouped terms that are being subtracted?
οƒΊ
When the subtraction is changed to addition, every term in the parentheses that follows must be
converted to its opposite.
Lesson 2:
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
30
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 2
NYS COMMON CORE MATHEMATICS CURRICULUM
7β€’3
Example 2 (5 minutes): Combining Expressions Vertically
Students combine expressions by vertically aligning like terms.

Any order, any grouping allows us to write sums and differences as vertical math problems. If we want to
combine expressions vertically, we align their like terms vertically.
Example 2: Combining Expressions Vertically
a.
Find the sum by aligning the expressions vertically.
(πŸ“π’‚ + πŸ‘π’ƒ βˆ’ πŸ”π’„) + (πŸπ’‚ βˆ’ πŸ’π’ƒ + πŸπŸ‘π’„)
(πŸ“π’‚ + πŸ‘π’ƒ + (βˆ’πŸ”π’„)) + (πŸπ’‚ + (βˆ’πŸ’π’ƒ) + πŸπŸ‘π’„)
Subtraction as adding the opposite
πŸ“π’‚ + πŸ‘π’ƒ + (βˆ’πŸ”π’„)
+πŸπ’‚ + (βˆ’πŸ’π’ƒ) + 𝟏 πŸ‘π’„
πŸ•π’‚ + (βˆ’ 𝒃) + πŸ•π’„
Align like terms vertically and combine by addition.
πŸ•π’‚ βˆ’ 𝒃 + πŸ•π’„
b.
Adding the opposite is equivalent to subtraction.
Find the difference by aligning the expressions vertically.
(πŸπ’™ + πŸ‘π’š βˆ’ πŸ’) βˆ’ (πŸ“π’™ + 𝟐)
(πŸπ’™ + πŸ‘π’š + (βˆ’πŸ’)) + (βˆ’πŸ“π’™ + (βˆ’πŸ))
Subtraction as adding the opposite
πŸπ’™ + πŸ‘π’š + (βˆ’πŸ’)
+(βˆ’πŸ“π’™)
+ (βˆ’πŸ)
βˆ’πŸ‘π’™ + πŸ‘π’š + (βˆ’πŸ”)
Align like terms vertically and combine by addition.
βˆ’πŸ‘π’™ + πŸ‘π’š βˆ’ πŸ”
Adding the opposite is equivalent to subtraction.
Students should recognize that the subtracted expression in Example 1(b) did not include a term containing the variable
𝑦, so the 3𝑦 from the first grouped expression remains unchanged in the answer.
Example 3 (3 minutes): Using Expressions to Solve Problems
Students write an expression representing an unknown real-world value, rewrite it as an equivalent expression, and use
the equivalent expression to find the unknown value.
Example 3: Using Expressions to Solve Problems
A stick is 𝒙 meters long. A string is πŸ’ times as long as the stick.
a.
Express the length of the string in terms of 𝒙.
The length of the stick in meters is 𝒙 meters, so the string is πŸ’ βˆ™ 𝒙, or πŸ’π’™, meters long.
b.
If the total length of the string and the stick is πŸπŸ“ meters long, how long is the string?
The length of the stick and the string together in meters can be represented by 𝒙 + πŸ’π’™, or πŸ“π’™. If the length of
the stick and string together is πŸπŸ“ meters, the length of the stick is πŸ‘ meters, and the length of the string is 𝟏𝟐
meters.
Lesson 2:
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
31
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
NYS COMMON CORE MATHEMATICS CURRICULUM
Lesson 2
7β€’3
Example 4 (4 minutes): Expressions from Word Problems
Students write expressions described by word problems and rewrite the expressions in standard form.
Example 4: Expressions from Word Problems
It costs Margo a processing fee of $πŸ‘ to rent a storage unit, plus $πŸπŸ• per month to keep her belongings in the unit. Her
friend Carissa wants to store a box of her belongings in Margo’s storage unit and tells her that she will pay her $𝟏 toward
the processing fee and $πŸ‘ for every month that she keeps the box in storage. Write an expression in standard form that
represents how much Margo will have to pay for the storage unit if Carissa contributes. Then, determine how much
Margo will pay if she uses the storage unit for πŸ” months.
Let π’Ž represent the number of months that the storage unit is rented.
(πŸπŸ•π’Ž + πŸ‘) βˆ’ (πŸ‘π’Ž + 𝟏)
Original expression
πŸπŸ•π’Ž + πŸ‘ + (βˆ’(πŸ‘π’Ž + 𝟏))
Subtraction as adding the opposite
πŸπŸ•π’Ž + πŸ‘ + (βˆ’πŸ‘π’Ž) + (βˆ’πŸ)
The opposite of the sum is the sum of its opposites.
πŸπŸ•π’Ž + (βˆ’πŸ‘π’Ž) + πŸ‘ + (βˆ’πŸ)
Any order, any grouping
πŸπŸ’π’Ž + 𝟐
Combined like terms
This means that Margo will have to pay only $𝟐 of the processing fee and $πŸπŸ’ per month that the storage unit is used.
πŸπŸ’(πŸ”) + 𝟐
πŸ–πŸ’ + 𝟐
πŸ–πŸ”
Margo will pay $πŸ–πŸ” toward the storage unit rental for πŸ” months of use.
If time allows, encourage students to calculate their answer in other ways and compare their answers.
Example 5 (7 minutes): Extending Use of the Inverse to Division
Students connect the strategy of using the additive inverse to represent a subtraction problem as a sum and using the
multiplicative inverse to represent a division problem as a product so that the associative and commutative properties
can then be used.

Why do we convert differences into sums using opposites?
οƒΊ

MP.8
The commutative and associative properties do not apply to subtraction; therefore, we convert
differences to sums of the opposites so that we can use the any order, any grouping property with
addition.
We have seen that the any order, any grouping property can be used with addition or with multiplication. If
you consider how we extended the property to subtraction, can we use the any order, any grouping property
in a division problem? Explain.
οƒΊ
Dividing by a number is equivalent to multiplying by the number’s multiplicative inverse (reciprocal), so
division can be converted to multiplication of the reciprocal, similar to how we converted the
subtraction of a number to addition using its additive inverse. After converting a quotient to a product,
use of the any order, any grouping property is allowed.
Lesson 2:
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
32
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 2
NYS COMMON CORE MATHEMATICS CURRICULUM
7β€’3
Example 5: Extending Use of the Inverse to Division
Multiplicative inverses have a product of 𝟏. Find the multiplicative inverses of the terms in the first column. Show that
the given number and its multiplicative inverse have a product of 𝟏. Then, use the inverse to write each corresponding
expression in standard form. The first row is completed for you.
Given
Multiplicative
Inverse
Proofβ€”Show that their
product is 𝟏.
Use each inverse to write its corresponding
expression below in standard form.
𝟏
πŸ‘
πŸ‘ 𝟏
βˆ™
𝟏 πŸ‘
πŸ‘
πŸ‘
𝟏
𝟏𝟐 ÷ πŸ‘
𝟏
𝟏𝟐 βˆ™
πŸ‘
πŸ’
𝟏
πŸ“
πŸ“ 𝟏
βˆ™
𝟏 πŸ“
πŸ“
πŸ“
𝟏
πŸ”πŸ“ ÷ πŸ“
𝟏
πŸ”πŸ“ βˆ™
πŸ“
πŸπŸ‘
𝟏
βˆ’πŸ βˆ™ (βˆ’ )
𝟐
𝟐
𝟏
βˆ’ βˆ™ (βˆ’ )
𝟏
𝟐
𝟐
𝟐
𝟏
πŸπŸ– ÷ (βˆ’πŸ)
𝟏
πŸπŸ– βˆ™ (βˆ’ )
𝟐
𝟏
πŸπŸ– βˆ™ (βˆ’πŸ) βˆ™ ( )
𝟐
𝟏
βˆ’πŸπŸ– βˆ™
𝟐
βˆ’πŸ—
πŸ‘
πŸ“
βˆ’ βˆ™ (βˆ’ )
πŸ“
πŸ‘
πŸπŸ“
πŸπŸ“
𝟏
πŸ‘
πŸ” ÷ (βˆ’ )
πŸ“
πŸ“
πŸ” βˆ™ (βˆ’ )
πŸ‘
πŸ“
πŸ” βˆ™ (βˆ’πŸ) βˆ™
πŸ‘
πŸ“
βˆ’πŸ” βˆ™
πŸ‘
βˆ’πŸ βˆ™ πŸ“
βˆ’πŸπŸŽ
𝟏
𝒙
𝟏
𝒙
𝒙 𝟏
βˆ™
𝟏 𝒙
𝒙
𝒙
𝟏
πŸ“π’™ ÷ 𝒙
𝟏
πŸ“π’™ βˆ™
𝒙
𝒙
πŸ“βˆ™
𝒙
πŸ“βˆ™πŸ
πŸ“
𝟏
πŸπ’™
𝟏
πŸπ’™ βˆ™ ( )
πŸπ’™
𝟏 𝟏
πŸβˆ™π’™βˆ™( βˆ™ )
𝟐 𝒙
𝟏
𝟏
πŸβˆ™ βˆ™π’™βˆ™
𝟐
𝒙
πŸβˆ™πŸ
𝟏
πŸπŸπ’™ ÷ πŸπ’™
𝟏
πŸπŸπ’™ βˆ™
πŸπ’™
πŸπŸπ’™
πŸπ’™
𝟏𝟐 𝒙
βˆ™
𝟐 𝒙
πŸ”βˆ™πŸ
πŸ”
πŸ‘βˆ™
𝟏
πŸ‘
πŸ‘
πŸ“βˆ™
𝟏
πŸ“
πŸ“
βˆ’πŸ
βˆ’
𝟏
𝟐
MP.8
βˆ’
πŸ‘
πŸ“
βˆ’
πŸ“
πŸ‘
π’™βˆ™
𝒙
πŸπ’™
Lesson 2:
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
33
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

7β€’3
Lesson 2
NYS COMMON CORE MATHEMATICS CURRICULUM
How do we know that two numbers are multiplicative inverses (reciprocals)?
οƒΊ
Recall that the multiplicative inverse of a number, π‘Ž, satisfies the equation π‘Ž βˆ™
1
= 1. We can use this
π‘Ž
equation to recognize when two expressions are multiplicative inverses of each other.

Since the reciprocal of π‘₯ is
of π‘₯ and 2?
MP.8
οƒΊ

1
π‘₯
1
, and the reciprocal of 2 is , what can we say about the reciprocal of the product
2
We can say that the reciprocal of the product 2π‘₯ is the product of its factor’s reciprocals:
1 1
βˆ™
2 π‘₯
=
1
2π‘₯
.
What is true about the signs of reciprocals? Why?
οƒΊ
The signs of reciprocals are the same because their product must be 1. This can only be obtained when
the two numbers in the product have the same sign.
Tell students that because the reciprocal is not complicated by the signs of numbers as in opposites, we can justify
converting division to multiplication of the reciprocal by simply stating multiplying by the reciprocal.
Sprint (8 minutes): Generating Equivalent Expressions
Students complete a two-round Sprint exercise (Sprints and answer keys are provided at the end of the lesson.) where
they practice their knowledge of combining like terms by addition and/or subtraction. Provide one minute for each
round of the Sprint. Refer to the Sprints and Sprint Delivery Script sections in the Module Overview for directions to
administer a Sprint. Be sure to provide any answers not completed by the students. (If there is a need for further
guided division practice, consider using the division portion of the Problem Set, or other division examples, in place of
the provided Sprint exercise.)
Closing (3 minutes)

Why can’t we use any order, any grouping directly with subtraction? With division?
οƒΊ

Subtraction and division are not commutative or associative.
How can we use any order, any grouping in expressions where subtraction or division are involved?
οƒΊ
Subtraction can be rewritten as adding the opposite (additive inverse), and division can be rewritten as
multiplying by the reciprocal (multiplicative inverse).
Relevant Vocabulary
AN EXPRESSION IN EXPANDED FORM: An expression that is written as sums (and/or differences) of products whose factors are
numbers, variables, or variables raised to whole number powers is said to be in expanded form. A single number,
variable, or a single product of numbers and/or variables is also considered to be in expanded form. Examples of
expressions in expanded form include: πŸ‘πŸπŸ’, πŸ‘π’™, πŸ“π’™ + πŸ‘ βˆ’ πŸ’πŸŽ, and 𝒙 + πŸπ’™ + πŸ‘π’™.
TERM: Each summand of an expression in expanded form is called a term. For example, the expression πŸπ’™ + πŸ‘π’™ + πŸ“
consists of πŸ‘ terms: πŸπ’™, πŸ‘π’™, and πŸ“.
COEFFICIENT OF THE TERM: The number found by multiplying just the numbers in a term together is called the coefficient. For
example, given the product 𝟐 βˆ™ 𝒙 βˆ™ πŸ’, its equivalent term is πŸ–π’™. The number πŸ– is called the coefficient of the term πŸ–π’™.
AN EXPRESSION IN STANDARD FORM: An expression in expanded form with all of its like terms collected is said to be in
standard form. For example, 𝟐𝐱 + πŸ‘π± + πŸ“ is an expression written in expanded form; however, to be written in standard
form, the like terms 𝟐𝐱 and πŸ‘π± must be combined. The equivalent expression πŸ“π± + πŸ“ is written in standard form.
Lesson 2:
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
34
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 2
NYS COMMON CORE MATHEMATICS CURRICULUM
7β€’3
Lesson Summary

Rewrite subtraction as adding the opposite before using any order, any grouping.

Rewrite division as multiplying by the reciprocal before using any order, any grouping.

The opposite of a sum is the sum of its opposites.

Division is equivalent to multiplying by the reciprocal.
Exit Ticket (5 minutes)
Lesson 2:
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
35
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
NYS COMMON CORE MATHEMATICS CURRICULUM
Name ___________________________________________________
Lesson 2
7β€’3
Date____________________
Lesson 2: Generating Equivalent Expressions
Exit Ticket
1.
Write the expression in standard form.
(4𝑓 βˆ’ 3 + 2𝑔) βˆ’ (βˆ’4𝑔 + 2)
2.
Find the result when 5π‘š + 2 is subtracted from 9π‘š.
3.
Write the expression in standard form.
27β„Ž ÷ 3β„Ž
Lesson 2:
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
36
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 2
NYS COMMON CORE MATHEMATICS CURRICULUM
7β€’3
Exit Ticket Sample Solutions
1.
Write the expression in standard form.
(πŸ’π’‡ βˆ’ πŸ‘ + πŸπ’ˆ) βˆ’ (βˆ’πŸ’π’ˆ + 𝟐)
2.
3.
πŸ’π’‡ + (βˆ’πŸ‘) + πŸπ’ˆ + (βˆ’(βˆ’πŸ’π’ˆ + 𝟐))
Subtraction as adding the opposite
πŸ’π’‡ + (βˆ’πŸ‘) + πŸπ’ˆ + πŸ’π’ˆ + (βˆ’πŸ)
The opposite of a sum is the sum of its opposites.
πŸ’π’‡ + πŸπ’ˆ + πŸ’π’ˆ + (βˆ’πŸ‘) + (βˆ’πŸ)
Any order, any grouping
πŸ’π’‡ + πŸ”π’ˆ + (βˆ’πŸ“)
Combined like terms
πŸ’π’‡ + πŸ”π’ˆ βˆ’ πŸ“
Subtraction as adding the opposite
Find the result when πŸ“π’Ž + 𝟐 is subtracted from πŸ—π’Ž.
πŸ—π’Ž βˆ’ (πŸ“π’Ž + 𝟐)
Original expression
πŸ—π’Ž + (βˆ’(πŸ“π’Ž + 𝟐))
Subtraction as adding the opposite
πŸ—π’Ž + (βˆ’πŸ“π’Ž) + (βˆ’πŸ)
The opposite of a sum is the sum of its opposites.
πŸ’π’Ž + (βˆ’πŸ)
Combined like terms
πŸ’π’Ž βˆ’ 𝟐
Subtraction as adding the opposite
Write the expression in standard form.
πŸπŸ•π’‰ ÷ πŸ‘π’‰
πŸπŸ•π’‰ βˆ™
𝟏
πŸ‘π’‰
Multiplying by the reciprocal
πŸπŸ•π’‰
Multiplication
πŸ‘π’‰
πŸπŸ• 𝒉
πŸ‘
βˆ™
Any order, any grouping
𝒉
πŸ—βˆ™πŸ
πŸ—
Lesson 2:
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
37
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 2
NYS COMMON CORE MATHEMATICS CURRICULUM
7β€’3
Problem Set Sample Solutions
1.
Write each expression in standard form. Verify that your expression is equivalent to the one given by evaluating
each expression using 𝒙 = πŸ“.
a.
πŸ‘π’™ + (𝟐 βˆ’ πŸ’π’™)
b.
πŸ‘π’™ + (βˆ’πŸ + πŸ’π’™)
c.
βˆ’πŸ‘π’™ + (𝟐 + πŸ’π’™)
βˆ’π’™ + 𝟐
πŸ•π’™ βˆ’ 𝟐
𝒙+𝟐
βˆ’πŸ“ + 𝟐
πŸ•(πŸ“) βˆ’ 𝟐
πŸ“+𝟐
βˆ’πŸ‘
πŸ‘πŸ“ βˆ’ 𝟐
πŸ•
πŸ‘πŸ‘
d.
πŸ‘(πŸ“) + (𝟐 βˆ’ πŸ’(πŸ“))
πŸ‘(πŸ“) + (βˆ’πŸ + πŸ’(πŸ“))
βˆ’πŸ‘(πŸ“) + (𝟐 + πŸ’(πŸ“))
πŸπŸ“ + (𝟐 + (βˆ’πŸπŸŽ))
πŸπŸ“ + (βˆ’πŸ + 𝟐𝟎)
βˆ’πŸπŸ“ + (𝟐 + 𝟐𝟎)
πŸπŸ“ + (βˆ’πŸπŸ–)
πŸπŸ“ + πŸπŸ–
βˆ’πŸπŸ“ + 𝟐𝟐
βˆ’πŸ‘
πŸ‘πŸ‘
πŸ•
πŸ‘π’™ + (βˆ’πŸ βˆ’ πŸ’π’™)
e.
f.
πŸ‘π’™ βˆ’ (βˆ’πŸ + πŸ’π’™)
βˆ’π’™ βˆ’ 𝟐
βˆ’π’™ βˆ’ 𝟐
βˆ’π’™ + 𝟐
βˆ’πŸ“ βˆ’ 𝟐
βˆ’πŸ“ βˆ’ 𝟐
βˆ’πŸ“ + 𝟐
βˆ’πŸ•
βˆ’πŸ•
βˆ’πŸ‘
πŸ‘(πŸ“) + (βˆ’πŸ βˆ’ πŸ’(πŸ“))
πŸ‘(πŸ“) βˆ’ (𝟐 + πŸ’(πŸ“))
πŸ‘(πŸ“) βˆ’ (βˆ’πŸ + πŸ’(πŸ“))
πŸπŸ“ + (βˆ’πŸ + (βˆ’πŸ’(πŸ“)))
πŸπŸ“ βˆ’ (𝟐 + 𝟐𝟎)
πŸπŸ“ βˆ’ (βˆ’πŸ + 𝟐𝟎)
πŸπŸ“ βˆ’ 𝟐𝟐
πŸπŸ“ βˆ’ (πŸπŸ–)
πŸπŸ“ + (βˆ’πŸπŸ)
πŸπŸ“ + (βˆ’πŸπŸ–)
βˆ’πŸ•
βˆ’πŸ‘
πŸπŸ“ + (βˆ’πŸ + (βˆ’πŸπŸŽ))
πŸπŸ“ + (βˆ’πŸπŸ)
βˆ’πŸ•
g.
πŸ‘π’™ βˆ’ (𝟐 + πŸ’π’™)
πŸ‘π’™ βˆ’ (βˆ’πŸ βˆ’ πŸ’π’™)
h.
πŸ‘π’™ βˆ’ (𝟐 βˆ’ πŸ’π’™)
i.
βˆ’πŸ‘π’™ βˆ’ (βˆ’πŸ βˆ’ πŸ’π’™)
πŸ•π’™ + 𝟐
πŸ•π’™ βˆ’ 𝟐
𝒙+𝟐
πŸ•(πŸ“) + 𝟐
πŸ•(πŸ“) βˆ’ 𝟐
πŸ“+𝟐
πŸ‘πŸ“ + 𝟐
πŸ‘πŸ“ βˆ’ 𝟐
πŸ•
πŸ‘πŸ•
πŸ‘πŸ‘
πŸ‘(πŸ“) βˆ’ (βˆ’πŸ βˆ’ πŸ’(πŸ“))
πŸ‘(πŸ“) βˆ’ (𝟐 βˆ’ πŸ’(πŸ“))
βˆ’πŸ‘(πŸ“) βˆ’ (βˆ’πŸ βˆ’ πŸ’(πŸ“))
πŸπŸ“ βˆ’ (βˆ’πŸ + (βˆ’πŸ’(πŸ“)))
πŸπŸ“ βˆ’ (𝟐 + (βˆ’πŸ’(πŸ“)))
βˆ’πŸπŸ“ βˆ’ (βˆ’πŸ + (βˆ’πŸ’(πŸ“)))
πŸπŸ“ βˆ’ (βˆ’πŸ + (βˆ’πŸπŸŽ))
πŸπŸ“ βˆ’ (𝟐 + (βˆ’πŸπŸŽ))
βˆ’πŸπŸ“ βˆ’ (βˆ’πŸ + (βˆ’πŸπŸŽ))
πŸπŸ“ βˆ’ (βˆ’πŸπŸ)
πŸπŸ“ βˆ’ (βˆ’πŸπŸ–)
βˆ’πŸπŸ“ βˆ’ (βˆ’πŸπŸ)
πŸπŸ“ + 𝟐𝟐
πŸπŸ“ + πŸπŸ–
βˆ’πŸπŸ“ + 𝟐𝟐
πŸ‘πŸ•
πŸ‘πŸ‘
πŸ•
Lesson 2:
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
38
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 2
NYS COMMON CORE MATHEMATICS CURRICULUM
j.
7β€’3
In problems (a)–(d) above, what effect does addition have on the terms in parentheses when you removed
the parentheses?
By the any grouping property, the terms remained the same with or without the parentheses.
k.
In problems (e)–(i), what effect does subtraction have on the terms in parentheses when you removed the
parentheses?
The opposite of a sum is the sum of the opposites; each term within the parentheses is changed to its
opposite.
2.
Write each expression in standard form. Verify that your expression is equivalent to the one given by evaluating
each expression for the given value of the variable.
a.
πŸ’π’š βˆ’ (πŸ‘ + π’š); π’š = 𝟐
b.
(πŸπ’ƒ + 𝟏) βˆ’ 𝒃; 𝒃 = βˆ’πŸ’
c.
(πŸ”π’„ βˆ’ πŸ’) βˆ’ (𝒄 βˆ’ πŸ‘); 𝒄 = βˆ’πŸ•
πŸ‘π’š βˆ’ πŸ‘
𝒃+𝟏
πŸ“π’„ βˆ’ 𝟏
πŸ‘(𝟐) βˆ’ πŸ‘
βˆ’πŸ’ + 𝟏
πŸ“(βˆ’πŸ•) βˆ’ 𝟏
πŸ”βˆ’πŸ‘
βˆ’πŸ‘
βˆ’πŸ‘πŸ“ βˆ’ 𝟏
πŸ‘
βˆ’πŸ‘πŸ”
πŸ’(𝟐) βˆ’ (πŸ‘ + 𝟐)
(𝟐(βˆ’πŸ’) + 𝟏) βˆ’ (βˆ’πŸ’)
(πŸ”(βˆ’πŸ•) βˆ’ πŸ’) βˆ’ (βˆ’πŸ• βˆ’ πŸ‘)
πŸ–βˆ’πŸ“
(βˆ’πŸ– + 𝟏) + πŸ’
(βˆ’πŸ’πŸ βˆ’ πŸ’) βˆ’ (βˆ’πŸπŸŽ)
πŸ– + (βˆ’πŸ“)
(βˆ’πŸ•) + πŸ’
βˆ’πŸ’πŸ + (βˆ’πŸ’) + (𝟏𝟎)
πŸ‘
βˆ’πŸ‘
βˆ’πŸ’πŸ” + 𝟏𝟎
βˆ’πŸ‘πŸ”
d.
(𝒅 + πŸ‘π’…) βˆ’ (βˆ’π’… + 𝟐);
𝒅=πŸ‘
πŸ“π’… βˆ’ 𝟐
e.
(βˆ’πŸ“π’™ βˆ’ πŸ’) βˆ’ (βˆ’πŸ βˆ’ πŸ“π’™);
𝒙=πŸ‘
βˆ’πŸ
πŸ“(πŸ‘) βˆ’ 𝟐
(βˆ’πŸ“(πŸ‘) βˆ’ πŸ’) βˆ’ (βˆ’πŸ βˆ’ πŸ“(πŸ‘))
πŸπŸ“ βˆ’ 𝟐
(βˆ’πŸπŸ“ βˆ’ πŸ’) βˆ’ (βˆ’πŸ βˆ’ πŸπŸ“)
πŸπŸ‘
(βˆ’πŸπŸ—) βˆ’ (βˆ’πŸπŸ•)
(πŸ‘ + πŸ‘(πŸ‘)) βˆ’ (βˆ’πŸ‘ + 𝟐)
(βˆ’πŸπŸ—) + πŸπŸ•
(πŸ‘ + πŸ—) βˆ’ (βˆ’πŸ)
βˆ’πŸ
𝟏𝟐 + 𝟏
πŸπŸπ’‡ βˆ’ (βˆ’πŸπ’‡ + 𝟐); 𝒇 =
𝟏
𝟐
πŸπŸ‘π’‡ βˆ’ 𝟐
𝟏
πŸπŸ‘ ( ) βˆ’ 𝟐
𝟐
πŸπŸ‘
βˆ’πŸ
𝟐
𝟏
πŸ” βˆ’πŸ
𝟐
𝟏
πŸ’
𝟐
𝟏
𝟏
𝟏𝟏 ( ) βˆ’ (βˆ’πŸ ( ) + 𝟐)
𝟐
𝟐
𝟏𝟏
βˆ’ (βˆ’πŸ + 𝟐)
𝟐
𝟏𝟏
βˆ’πŸ
𝟐
𝟏𝟏
𝟐
+ (βˆ’ )
𝟐
𝟐
πŸ—
𝟐
𝟏
πŸ’
𝟐
πŸπŸ‘
Lesson 2:
f.
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
39
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 2
NYS COMMON CORE MATHEMATICS CURRICULUM
g.
βˆ’πŸ“π’ˆ + (πŸ”π’ˆ βˆ’ πŸ’); π’ˆ = βˆ’πŸ
h.
π’ˆβˆ’πŸ’
(πŸ–π’‰ βˆ’ 𝟏) βˆ’ (𝒉 + πŸ‘);
𝒉 = βˆ’πŸ‘
i.
(πŸ• + π’˜) βˆ’ (π’˜ + πŸ•); π’˜ = βˆ’πŸ’
𝟎
πŸ•π’‰ βˆ’ πŸ’
βˆ’πŸ βˆ’ πŸ’
βˆ’πŸ”
βˆ’πŸ“(βˆ’πŸ) + (πŸ”(βˆ’πŸ) βˆ’ πŸ’)
πŸ•(βˆ’πŸ‘) βˆ’ πŸ’
(πŸ• + (βˆ’πŸ’)) βˆ’ (βˆ’πŸ’ + πŸ•)
βˆ’πŸπŸ βˆ’ πŸ’
πŸ‘βˆ’πŸ‘
βˆ’πŸπŸ“
πŸ‘ + (βˆ’πŸ‘)
𝟏𝟎 + (βˆ’πŸπŸ βˆ’ πŸ’)
𝟎
(πŸ–(βˆ’πŸ‘) βˆ’ 𝟏) βˆ’ (βˆ’πŸ‘ + πŸ‘)
𝟏𝟎 + (βˆ’πŸπŸ + (βˆ’πŸ’))
(βˆ’πŸπŸ’ βˆ’ 𝟏) βˆ’ (𝟎)
𝟏𝟎 + (βˆ’πŸπŸ”)
(βˆ’πŸπŸ“) βˆ’ 𝟎
βˆ’πŸ”
j.
7β€’3
βˆ’πŸπŸ“
(πŸπ’ˆ + πŸ—π’‰ βˆ’ πŸ“) βˆ’ (πŸ”π’ˆ βˆ’ πŸ’π’‰ + 𝟐); π’ˆ = βˆ’πŸ and 𝒉 = πŸ“
βˆ’πŸ’π’ˆ + πŸπŸ‘π’‰ βˆ’ πŸ•
(𝟐(βˆ’πŸ) + πŸ—(πŸ“) βˆ’ πŸ“) βˆ’ (πŸ”(βˆ’πŸ) βˆ’ πŸ’(πŸ“) + 𝟐)
βˆ’πŸ’(βˆ’πŸ) + πŸπŸ‘(πŸ“) βˆ’ πŸ•
(βˆ’πŸ’ + πŸ’πŸ“ βˆ’ πŸ“) βˆ’ (βˆ’πŸπŸ + (βˆ’πŸ’(πŸ“)) + 𝟐)
πŸ– + πŸ”πŸ“ + (βˆ’πŸ•)
(πŸ’πŸ βˆ’ πŸ“) βˆ’ (βˆ’πŸπŸ + (βˆ’πŸπŸŽ) + 𝟐)
πŸ•πŸ‘ + (βˆ’πŸ•)
(πŸ’πŸ + (βˆ’πŸ“)) βˆ’ (βˆ’πŸ‘πŸ + 𝟐)
πŸ”πŸ”
πŸ‘πŸ” βˆ’ (βˆ’πŸ‘πŸŽ)
πŸ‘πŸ” + πŸ‘πŸŽ
πŸ”πŸ”
3.
Write each expression in standard form. Verify that your expression is equivalent to the one given by evaluating
both expressions for the given value of the variable.
a.
βˆ’πŸ‘(πŸ–π’™); 𝒙 =
𝟏
πŸ’
b.
πŸ“ βˆ™ π’Œ βˆ™ (βˆ’πŸ•); π’Œ =
πŸ‘
πŸ“
c.
𝟐(βˆ’πŸ”π’™) βˆ™ 𝟐; 𝒙 =
βˆ’πŸπŸ’π’™
βˆ’πŸ‘πŸ“π’Œ
βˆ’πŸπŸ’π’™
𝟏
βˆ’πŸπŸ’ ( )
πŸ’
πŸπŸ’
βˆ’
πŸ’
βˆ’πŸ”
πŸ‘
βˆ’πŸ‘πŸ“ ( )
πŸ“
πŸπŸŽπŸ“
βˆ’
πŸ“
βˆ’πŸπŸ
πŸ‘
βˆ’πŸπŸ’ ( )
πŸ’
πŸ•πŸ
βˆ’
πŸ’
βˆ’πŸπŸ–
𝟏
βˆ’πŸ‘ (πŸ– ( ))
πŸ’
πŸ‘
𝟐 (βˆ’πŸ” ( )) βˆ™ 𝟐
πŸ’
βˆ’πŸ‘(𝟐)
πŸ‘
πŸ“ ( ) (βˆ’πŸ•)
πŸ“
πŸ‘(βˆ’πŸ•)
βˆ’πŸ”
βˆ’πŸπŸ
πŸ‘
πŸ’
πŸ‘
𝟐 (βˆ’πŸ‘ ( )) βˆ™ 𝟐
𝟐
πŸ‘
𝟐(βˆ’πŸ‘) ( ) (𝟐)
𝟐
βˆ’πŸ”(πŸ‘)
βˆ’πŸπŸ–
Lesson 2:
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
40
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 2
NYS COMMON CORE MATHEMATICS CURRICULUM
d.
βˆ’πŸ‘(πŸ–π’™) + πŸ”(πŸ’π’™); 𝒙 = 𝟐
e.
𝟎
πŸ–(πŸ“π’Ž) + 𝟐(πŸ‘π’Ž); π’Ž = βˆ’πŸ
f.
πŸ’πŸ”π’Ž
βˆ’πŸ‘(πŸ–(𝟐)) + πŸ”(πŸ’(𝟐))
𝟐
πŸ‘
βˆ’πŸ–πŸŽ + (βˆ’πŸπŸ)
βˆ’πŸπŸπ’— + πŸ—π’‚
𝟏
𝟐
βˆ’πŸπŸ ( ) + πŸ— ( )
πŸ‘
πŸ‘
𝟏𝟐 πŸπŸ–
βˆ’
+
πŸ‘
πŸ‘
βˆ’πŸ’ + πŸ”
βˆ’πŸ—πŸ
𝟐
βˆ’πŸ—πŸ
βˆ’πŸ‘(πŸπŸ”) + πŸ”(πŸ–)
βˆ’πŸ’πŸ– + πŸ’πŸ–
πŸ–(πŸ“(βˆ’πŸ)) + 𝟐(πŸ‘(βˆ’πŸ))
𝟎
πŸ–(βˆ’πŸπŸŽ) + 𝟐(βˆ’πŸ”)
𝟏
πŸ‘
βˆ’πŸ”(πŸπ’—) + πŸ‘π’‚(πŸ‘); 𝒗 = ;
𝒂=
πŸ’πŸ”(βˆ’πŸ)
7β€’3
𝟏
𝟐
βˆ’πŸ” (𝟐 ( )) + πŸ‘ ( ) (πŸ‘)
πŸ‘
πŸ‘
𝟐
βˆ’πŸ” ( ) + 𝟐(πŸ‘)
πŸ‘
βˆ’πŸ’ + πŸ”
𝟐
4.
Write each expression in standard form. Verify that your expression is equivalent to the one given by evaluating
both expressions for the given value of the variable.
a.
πŸ–π’™ ÷ 𝟐; 𝒙 = βˆ’
𝟏
πŸ’
b.
πŸπŸ–π’˜ ÷ πŸ”; π’˜ = πŸ”
c.
πŸ‘π’˜
πŸ’π’™
𝟏
πŸ’ (βˆ’ )
πŸ’
βˆ’πŸ
πŸ‘(πŸ”)
𝟏
πŸ– (βˆ’ ) ÷ 𝟐
πŸ’
βˆ’πŸ ÷ 𝟐
πŸπŸŽπŸ– ÷ πŸ”
πŸπŸ“π’“ ÷ πŸ“π’“; 𝒓 = βˆ’πŸ
πŸ“
πŸπŸ“(βˆ’πŸ) ÷ (πŸ“(βˆ’πŸ))
πŸπŸ–
βˆ’πŸ“πŸŽ ÷ (βˆ’πŸπŸŽ)
πŸπŸ–(πŸ”) ÷ πŸ”
πŸ“
πŸπŸ–
βˆ’πŸ
d.
πŸ‘πŸ‘π’š ÷ πŸπŸπ’š; π’š = βˆ’πŸ
e.
πŸ“πŸ”π’Œ ÷ πŸπ’Œ; π’Œ = πŸ‘
πŸ‘
πŸπŸ–
πŸ‘πŸ‘(βˆ’πŸ) ÷ (𝟏𝟏(βˆ’πŸ))
πŸ“πŸ”(πŸ‘) ÷ (𝟐(πŸ‘))
(βˆ’πŸ”πŸ”) ÷ (βˆ’πŸπŸ)
πŸπŸ”πŸ– ÷ πŸ”
πŸ‘
πŸπŸ–
f.
πŸπŸ’π’™π’š ÷ πŸ”π’š; 𝒙 = βˆ’πŸ; π’š = πŸ‘
πŸ’π’™
πŸ’(βˆ’πŸ)
βˆ’πŸ–
πŸπŸ’(βˆ’πŸ)(πŸ‘) ÷ (πŸ”(πŸ‘))
βˆ’πŸ’πŸ–(πŸ‘) ÷ πŸπŸ–
βˆ’πŸπŸ’πŸ’ ÷ πŸπŸ–
βˆ’πŸ–
5.
For each problem (a)–(g), write an expression in standard form.
a.
Find the sum of βˆ’πŸ‘π’™ and πŸ–π’™.
βˆ’πŸ‘π’™ + πŸ–π’™
πŸ“π’™
Lesson 2:
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
41
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 2
NYS COMMON CORE MATHEMATICS CURRICULUM
b.
7β€’3
Find the sum of βˆ’πŸ•π’ˆ and πŸ’π’ˆ + 𝟐.
βˆ’πŸ•π’ˆ + (πŸ’π’ˆ + 𝟐)
βˆ’πŸ‘π’ˆ + 𝟐
c.
Find the difference when πŸ”π’‰ is subtracted from πŸπ’‰ βˆ’ πŸ’.
(πŸπ’‰ βˆ’ πŸ’) βˆ’ πŸ”π’‰
βˆ’πŸ’π’‰ βˆ’ πŸ’
d.
Find the difference when βˆ’πŸ‘π’ βˆ’ πŸ• is subtracted from 𝒏 + πŸ’.
(𝒏 + πŸ’) βˆ’ (βˆ’πŸ‘π’ βˆ’ πŸ•)
πŸ’π’ + 𝟏𝟏
e.
Find the result when πŸπŸ‘π’— + 𝟐 is subtracted from 𝟏𝟏 + πŸ“π’—.
(𝟏𝟏 + πŸ“π’—) βˆ’ (πŸπŸ‘π’— + 𝟐)
βˆ’πŸ–π’— + πŸ—
f.
Find the result when βˆ’πŸπŸ–π’Ž βˆ’ πŸ’ is added to πŸ’π’Ž βˆ’ πŸπŸ’.
(πŸ’π’Ž βˆ’ πŸπŸ’) + (βˆ’πŸπŸ–π’Ž βˆ’ πŸ’)
βˆ’πŸπŸ’π’Ž βˆ’ πŸπŸ–
g.
What is the result when βˆ’πŸπ’™ + πŸ— is taken away from βˆ’πŸ•π’™ + 𝟐?
(βˆ’πŸ•π’™ + 𝟐) βˆ’ (βˆ’πŸπ’™ + πŸ—)
βˆ’πŸ“π’™ βˆ’ πŸ•
6.
Marty and Stewart are stuffing envelopes with index cards. They are putting 𝒙 index cards in each envelope. When
they are finished, Marty has πŸπŸ“ stuffed envelopes and πŸ’ extra index cards, and Stewart has 𝟏𝟐 stuffed envelopes
and πŸ” extra index cards. Write an expression in standard form that represents the number of index cards the boys
started with. Explain what your expression means.
They inserted the same number of index cards in each envelope, but that number is unknown, 𝒙. An expression that
represents Marty’s index cards is πŸπŸ“π’™ + πŸ’ because he had πŸπŸ“ envelopes and πŸ’ cards left over. An expression that
represents Stewart’s index cards is πŸπŸπ’™ + πŸ” because he had 𝟏𝟐 envelopes and πŸ” left over cards. Their total number
of cards together would be:
πŸπŸ“π’™ + πŸ’ + πŸπŸπ’™ + πŸ”
πŸπŸ“π’™ + πŸπŸπ’™ + πŸ’ + πŸ”
πŸπŸ•π’™ + 𝟏𝟎
This means that altogether, they have πŸπŸ• envelopes with 𝒙 index cards in each, plus another 𝟏𝟎 leftover index cards.
Lesson 2:
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
42
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 2
NYS COMMON CORE MATHEMATICS CURRICULUM
7.
7β€’3
The area of the pictured rectangle below is πŸπŸ’π’ƒ 𝐟𝐭 𝟐. Its width is πŸπ’ƒ 𝐟𝐭. Find the height of the rectangle and name
any properties used with the appropriate step.
πŸπ’ƒ 𝐟𝐭.
πŸπŸ’π’ƒ ÷ πŸπ’ƒ
πŸπŸ’π’ƒ βˆ™
𝟏
πŸπ’ƒ
Multiplying the reciprocal
πŸπŸ’π’ƒ
Multiplication
πŸπ’ƒ
πŸπŸ’ 𝒃
𝟐
βˆ™
___ 𝐟𝐭.
πŸπŸ’π’ƒ 𝐟𝐭 𝟐
Any order, any grouping in multiplication
𝒃
𝟏𝟐 βˆ™ 𝟏
𝟏𝟐
The height of the rectangle is 𝟏𝟐 𝐟𝐭.
Lesson 2:
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
43
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 2
NYS COMMON CORE MATHEMATICS CURRICULUM
7β€’3
Number Correct: ______
Generating Equivalent Expressionsβ€”Round 1
Directions: Write each as an equivalent expression in standard form as quickly and as accurately as possible within the
allotted time.
1.
1+1
23. 4π‘₯ + 6π‘₯ βˆ’ 12π‘₯
2.
1+1+1
24. 4π‘₯ βˆ’ 6π‘₯ + 4π‘₯
3.
(1 + 1) + 1
25. 7π‘₯ βˆ’ 2π‘₯ + 3
4.
(1 + 1) + (1 + 1)
26. (4π‘₯ + 3) + π‘₯
5.
(1 + 1) + (1 + 1 + 1)
27. (4π‘₯ + 3) + 2π‘₯
6.
π‘₯+π‘₯
28. (4π‘₯ + 3) + 3π‘₯
7.
π‘₯+π‘₯+π‘₯
29. (4π‘₯ + 3) + 5π‘₯
8.
(π‘₯ + π‘₯) + π‘₯
30. (4π‘₯ + 3) + 6π‘₯
9.
(π‘₯ + π‘₯) + (π‘₯ + π‘₯)
31. (11π‘₯ + 2) βˆ’ 2
10. (π‘₯ + π‘₯) + (π‘₯ + π‘₯ + π‘₯)
32. (11π‘₯ + 2) βˆ’ 3
11. (π‘₯ + π‘₯ + π‘₯) + (π‘₯ + π‘₯ + π‘₯)
33. (11π‘₯ + 2) βˆ’ 4
12. 2π‘₯ + π‘₯
34. (11π‘₯ + 2) βˆ’ 7
13. 3π‘₯ + π‘₯
35. (3π‘₯ βˆ’ 9) + (3π‘₯ + 5)
14. 4π‘₯ + π‘₯
36. (11 βˆ’ 5π‘₯) + (4π‘₯ + 2)
15. 7π‘₯ + π‘₯
37. (2π‘₯ + 3𝑦) + (4π‘₯ + 𝑦)
16. 7π‘₯ + 2π‘₯
38. (5π‘₯ + 1.3𝑦) + (2.9π‘₯ βˆ’ 0.6𝑦)
17. 7π‘₯ + 3π‘₯
39. (2.6π‘₯ βˆ’ 4.8𝑦) + (6.5π‘₯ βˆ’ 1.1𝑦)
3
1
7
5
40. ( π‘₯ βˆ’ 𝑦) + (βˆ’ π‘₯ βˆ’ 𝑦)
4
2
4
2
2
7
7
2
41. (βˆ’ π‘₯ βˆ’ 𝑦) + (βˆ’ π‘₯ βˆ’ 𝑦)
5
9
10
3
1
1
3
5
42. ( π‘₯ βˆ’ 𝑦) + (βˆ’ π‘₯ + 𝑦)
2
4
5
6
3
3
43. (1.2π‘₯ βˆ’ 𝑦) βˆ’ (βˆ’ π‘₯ + 2.25𝑦)
4
5
5
2
44. (3.375π‘₯ βˆ’ 8.9𝑦) βˆ’ (βˆ’7 π‘₯ βˆ’ 5 𝑦)
8
5
18. 10π‘₯ βˆ’ π‘₯
19. 10π‘₯ βˆ’ 5π‘₯
20. 10π‘₯ βˆ’ 10π‘₯
21. 10π‘₯ βˆ’ 11π‘₯
22. 10π‘₯ βˆ’ 12π‘₯
Lesson 2:
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
44
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
7β€’3
Lesson 2
NYS COMMON CORE MATHEMATICS CURRICULUM
Generating Equivalent Expressionsβ€”Round 1 [KEY]
Directions: Write each as an equivalent expression in standard form as quickly and as accurately as possible within the
allotted time.
1.
1+1
𝟐
23. 4π‘₯ + 6π‘₯ βˆ’ 12π‘₯
βˆ’πŸπ’™
2.
1+1+1
πŸ‘
24. 4π‘₯ βˆ’ 6π‘₯ + 4π‘₯
πŸπ’™
3.
(1 + 1) + 1
πŸ‘
25. 7π‘₯ βˆ’ 2π‘₯ + 3
πŸ“π’™ + πŸ‘
4.
(1 + 1) + (1 + 1)
πŸ’
26. (4π‘₯ + 3) + π‘₯
πŸ“π’™ + πŸ‘
5.
(1 + 1) + (1 + 1 + 1)
πŸ“
27. (4π‘₯ + 3) + 2π‘₯
πŸ”π’™ + πŸ‘
6.
π‘₯+π‘₯
πŸπ’™
28. (4π‘₯ + 3) + 3π‘₯
πŸ•π’™ + πŸ‘
7.
π‘₯+π‘₯+π‘₯
πŸ‘π’™
29. (4π‘₯ + 3) + 5π‘₯
πŸ—π’™ + πŸ‘
8.
(π‘₯ + π‘₯) + π‘₯
πŸ‘π’™
30. (4π‘₯ + 3) + 6π‘₯
πŸπŸŽπ’™ + πŸ‘
9.
(π‘₯ + π‘₯) + (π‘₯ + π‘₯)
πŸ’π’™
31. (11π‘₯ + 2) βˆ’ 2
πŸπŸπ’™
10. (π‘₯ + π‘₯) + (π‘₯ + π‘₯ + π‘₯)
πŸ“π’™
32. (11π‘₯ + 2) βˆ’ 3
πŸπŸπ’™ βˆ’ 𝟏
11. (π‘₯ + π‘₯ + π‘₯) + (π‘₯ + π‘₯ + π‘₯)
πŸ”π’™
33. (11π‘₯ + 2) βˆ’ 4
πŸπŸπ’™ βˆ’ 𝟐
12. 2π‘₯ + π‘₯
πŸ‘π’™
34. (11π‘₯ + 2) βˆ’ 7
πŸπŸπ’™ βˆ’ πŸ“
13. 3π‘₯ + π‘₯
πŸ’π’™
35. (3π‘₯ βˆ’ 9) + (3π‘₯ + 5)
πŸ”π’™ βˆ’ πŸ’
14. 4π‘₯ + π‘₯
πŸ“π’™
36. (11 βˆ’ 5π‘₯) + (4π‘₯ + 2)
πŸπŸ‘ βˆ’ 𝒙
or βˆ’ 𝒙 + πŸπŸ‘
15. 7π‘₯ + π‘₯
πŸ–π’™
37. (2π‘₯ + 3𝑦) + (4π‘₯ + 𝑦)
πŸ”π’™ + πŸ’π’š
16. 7π‘₯ + 2π‘₯
πŸ—π’™
38. (5π‘₯ + 1.3𝑦) + (2.9π‘₯ βˆ’ 0.6𝑦)
πŸ•. πŸ—π’™ + 𝟎. πŸ•π’š
17. 7π‘₯ + 3π‘₯
πŸπŸŽπ’™
39. (2.6π‘₯ βˆ’ 4.8𝑦) + (6.5π‘₯ βˆ’ 1.1𝑦)
πŸ—. πŸπ’™ βˆ’ πŸ“. πŸ—π’š
18. 10π‘₯ βˆ’ π‘₯
πŸ—π’™
19. 10π‘₯ βˆ’ 5π‘₯
πŸ“π’™
20. 10π‘₯ βˆ’ 10π‘₯
𝟎
21. 10π‘₯ βˆ’ 11π‘₯
βˆ’πŸπ’™ or βˆ’ 𝒙
22. 10π‘₯ βˆ’ 12π‘₯
βˆ’πŸπ’™
Lesson 2:
3
1
7
5
40. ( π‘₯ βˆ’ 𝑦) + (βˆ’ π‘₯ βˆ’ 𝑦)
4
2
4
2
2
7
7
2
41. (βˆ’ π‘₯ βˆ’ 𝑦) + (βˆ’ π‘₯ βˆ’ 𝑦)
5
9
10
3
1
1
3
5
42. ( π‘₯ βˆ’ 𝑦) + (βˆ’ π‘₯ + 𝑦)
2
4
5
6
3
3
43. (1.2π‘₯ βˆ’ 𝑦) βˆ’ (βˆ’ π‘₯ + 2.25𝑦)
4
5
5
2
44. (3.375π‘₯ βˆ’ 8.9𝑦) βˆ’ (βˆ’7 π‘₯ βˆ’ 5 𝑦)
8
5
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
βˆ’π’™ βˆ’ πŸ‘π’š
𝟏𝟏
πŸπŸ‘
π’™βˆ’
π’š
𝟏𝟎
πŸ—
𝟏
πŸ•
βˆ’
𝒙+
π’š
𝟏𝟎
𝟏𝟐
πŸ—
𝒙 βˆ’ πŸ‘π’š
πŸ“
πŸ•
πŸπŸπ’™ βˆ’ π’š
𝟐
βˆ’
45
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 2
NYS COMMON CORE MATHEMATICS CURRICULUM
7β€’3
Number Correct: ______
Improvement: ______
Generating Equivalent Expressionsβ€”Round 2
Directions: Write each as an equivalent expression in standard form as quickly and as accurately as possible within the
allotted time.
1.
1+1+1
23. 3π‘₯ + 5π‘₯ βˆ’ 4π‘₯
2.
1+1+1+1
24. 8π‘₯ βˆ’ 6π‘₯ + 4π‘₯
3.
(1 + 1 + 1) + 1
25. 7π‘₯ βˆ’ 4π‘₯ + 5
4.
(1 + 1 + 1) + (1 + 1)
26. (9π‘₯ βˆ’ 1) + π‘₯
5.
(1 + 1 + 1) + (1 + 1 + 1)
27. (9π‘₯ βˆ’ 1) + 2π‘₯
6.
π‘₯+π‘₯+π‘₯
28. (9π‘₯ βˆ’ 1) + 3π‘₯
7.
π‘₯+π‘₯+π‘₯+π‘₯
29. (9π‘₯ βˆ’ 1) + 5π‘₯
8.
(π‘₯ + π‘₯ + π‘₯) + π‘₯
30. (9π‘₯ βˆ’ 1) + 6π‘₯
9.
(π‘₯ + π‘₯ + π‘₯) + (π‘₯ + π‘₯)
31. (βˆ’3π‘₯ + 3) βˆ’ 2
10. (π‘₯ + π‘₯ + π‘₯) + (π‘₯ + π‘₯ + π‘₯)
32. (βˆ’3π‘₯ + 3) βˆ’ 3
11. (π‘₯ + π‘₯ + π‘₯ + π‘₯) + (π‘₯ + π‘₯)
33. (βˆ’3π‘₯ + 3) βˆ’ 4
12. π‘₯ + 2π‘₯
34. (βˆ’3π‘₯ + 3) βˆ’ 5
13. π‘₯ + 4π‘₯
35. (5π‘₯ βˆ’ 2) + (2π‘₯ + 5)
14. π‘₯ + 6π‘₯
36. (8 βˆ’ π‘₯) + (3π‘₯ + 2)
15. π‘₯ + 8π‘₯
37. (5π‘₯ + 𝑦) + (π‘₯ + 𝑦)
5
3
11
3
38. ( π‘₯ + 𝑦) + ( π‘₯ βˆ’ 𝑦)
2
2
2
4
1
3
2
7
39. ( π‘₯ βˆ’ 𝑦) + ( π‘₯ βˆ’ 𝑦)
6
8
3
4
16. 7π‘₯ + π‘₯
17. 8π‘₯ + 2π‘₯
18. 2π‘₯ βˆ’ π‘₯
40. (9.7π‘₯ βˆ’ 3.8𝑦) + (βˆ’2.8π‘₯ + 4.5𝑦)
19. 2π‘₯ βˆ’ 2π‘₯
41. (1.65π‘₯ βˆ’ 2.73𝑦) + (βˆ’1.35π‘₯ + 3.76𝑦)
20. 2π‘₯ βˆ’ 3π‘₯
42. (6.51π‘₯ βˆ’ 4.39𝑦) + (βˆ’7.46π‘₯ + 8.11𝑦)
2
7
1
43. (0.7π‘₯ βˆ’ 𝑦) βˆ’ (βˆ’ π‘₯ + 2 𝑦)
9
5
3
1
3
44. (8.4π‘₯ βˆ’ 2.25𝑦) βˆ’ (βˆ’2 π‘₯ βˆ’ 4 𝑦)
2
8
21. 2π‘₯ βˆ’ 4π‘₯
22. 2π‘₯ βˆ’ 8π‘₯
Lesson 2:
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
46
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
7β€’3
Lesson 2
NYS COMMON CORE MATHEMATICS CURRICULUM
Generating Equivalent Expressionsβ€”Round 2 [KEY]
Directions: Write each as an equivalent expression in standard form as quickly and as accurately as possible within the
allotted time.
1.
1+1+1
πŸ‘
23. 3π‘₯ + 5π‘₯ βˆ’ 4π‘₯
πŸ’π’™
2.
1+1+1+1
πŸ’
24. 8π‘₯ βˆ’ 6π‘₯ + 4π‘₯
πŸ”π’™
3.
(1 + 1 + 1) + 1
πŸ’
25. 7π‘₯ βˆ’ 4π‘₯ + 5
πŸ‘π’™ + πŸ“
4.
(1 + 1 + 1) + (1 + 1)
πŸ“
26. (9π‘₯ βˆ’ 1) + π‘₯
πŸπŸŽπ’™ βˆ’ 𝟏
5.
(1 + 1 + 1) + (1 + 1 + 1)
πŸ”
27. (9π‘₯ βˆ’ 1) + 2π‘₯
πŸπŸπ’™ βˆ’ 𝟏
6.
π‘₯+π‘₯+π‘₯
πŸ‘π’™
28. (9π‘₯ βˆ’ 1) + 3π‘₯
πŸπŸπ’™ βˆ’ 𝟏
7.
π‘₯+π‘₯+π‘₯+π‘₯
πŸ’π’™
29. (9π‘₯ βˆ’ 1) + 5π‘₯
πŸπŸ’π’™ βˆ’ 𝟏
8.
(π‘₯ + π‘₯ + π‘₯) + π‘₯
πŸ’π’™
30. (9π‘₯ βˆ’ 1) + 6π‘₯
πŸπŸ“π’™ βˆ’ 𝟏
9.
(π‘₯ + π‘₯ + π‘₯) + (π‘₯ + π‘₯)
πŸ“π’™
31. (βˆ’3π‘₯ + 3) βˆ’ 2
βˆ’πŸ‘π’™ + 𝟏
10. (π‘₯ + π‘₯ + π‘₯) + (π‘₯ + π‘₯ + π‘₯)
πŸ”π’™
32. (βˆ’3π‘₯ + 3) βˆ’ 3
βˆ’πŸ‘π’™
11. (π‘₯ + π‘₯ + π‘₯ + π‘₯) + (π‘₯ + π‘₯)
πŸ”π’™
33. (βˆ’3π‘₯ + 3) βˆ’ 4
βˆ’πŸ‘π’™ βˆ’ 𝟏
12. π‘₯ + 2π‘₯
πŸ‘π’™
34. (βˆ’3π‘₯ + 3) βˆ’ 5
βˆ’πŸ‘π’™ βˆ’ 𝟐
13. π‘₯ + 4π‘₯
πŸ“π’™
35. (5π‘₯ βˆ’ 2) + (2π‘₯ + 5)
πŸ•π’™ + πŸ‘
14. π‘₯ + 6π‘₯
πŸ•π’™
36. (8 βˆ’ π‘₯) + (3π‘₯ + 2)
𝟏𝟎 + πŸπ’™
15. π‘₯ + 8π‘₯
πŸ—π’™
37. (5π‘₯ + 𝑦) + (π‘₯ + 𝑦)
πŸ”π’™ + πŸπ’š
16. 7π‘₯ + π‘₯
πŸ–π’™
17. 8π‘₯ + 2π‘₯
πŸπŸŽπ’™
18. 2π‘₯ βˆ’ π‘₯
𝒙 or πŸπ’™
19. 2π‘₯ βˆ’ 2π‘₯
5
3
11
3
38. ( π‘₯ + 𝑦) + ( π‘₯ βˆ’ 𝑦)
2
2
2
4
1
3
2
7
39. ( π‘₯ βˆ’ 𝑦) + ( π‘₯ βˆ’ 𝑦)
6
8
3
4
πŸ‘
πŸ–π’™ + π’š
πŸ’
πŸ“
πŸπŸ•
π’™βˆ’
π’š
πŸ”
πŸ–
40. (9.7π‘₯ βˆ’ 3.8𝑦) + (βˆ’2.8π‘₯ + 4.5𝑦)
πŸ”. πŸ—π’™ + 𝟎. πŸ•π’š
𝟎
41. (1.65π‘₯ βˆ’ 2.73𝑦) + (βˆ’1.35π‘₯ + 3.76𝑦)
𝟎. πŸ‘π’™ + 𝟏. πŸŽπŸ‘π’š
20. 2π‘₯ βˆ’ 3π‘₯
βˆ’π’™ or βˆ’ πŸπ’™
42. (6.51π‘₯ βˆ’ 4.39𝑦) + (βˆ’7.46π‘₯ + 8.11𝑦)
21. 2π‘₯ βˆ’ 4π‘₯
βˆ’πŸπ’™
22. 2π‘₯ βˆ’ 8π‘₯
βˆ’πŸ”π’™
Lesson 2:
2
7
1
43. (0.7π‘₯ βˆ’ 𝑦) βˆ’ (βˆ’ π‘₯ + 2 𝑦)
9
5
3
1
3
44. (8.4π‘₯ βˆ’ 2.25𝑦) βˆ’ (βˆ’2 π‘₯ βˆ’ 4 𝑦)
2
8
Generating Equivalent Expressions
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G7-M3-TE-1.3.0-08.2015
βˆ’πŸŽ. πŸ—πŸ“π’™
+ πŸ‘. πŸ•πŸπ’š
𝟐𝟏
πŸπŸ‘
π’™βˆ’
π’š
𝟏𝟎
πŸ—
πŸπŸŽπŸ—
πŸπŸ•
𝒙+
π’š
𝟏𝟎
πŸ–
47
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.