* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download The Circulatory System: Heart
History of invasive and interventional cardiology wikipedia , lookup
Cardiac contractility modulation wikipedia , lookup
Heart failure wikipedia , lookup
Antihypertensive drug wikipedia , lookup
Hypertrophic cardiomyopathy wikipedia , lookup
Electrocardiography wikipedia , lookup
Artificial heart valve wikipedia , lookup
Management of acute coronary syndrome wikipedia , lookup
Mitral insufficiency wikipedia , lookup
Lutembacher's syndrome wikipedia , lookup
Coronary artery disease wikipedia , lookup
Cardiac surgery wikipedia , lookup
Myocardial infarction wikipedia , lookup
Arrhythmogenic right ventricular dysplasia wikipedia , lookup
Quantium Medical Cardiac Output wikipedia , lookup
Heart arrhythmia wikipedia , lookup
Dextro-Transposition of the great arteries wikipedia , lookup
TheCirculatorySystem:Heart Chapter19 ThePulmonaryandSystemicCircuits Copyright©TheMcGraw-HillCompanies,Inc.Permissionrequiredforreproductionordisplay. CO 2 O2 • Leftsideofheart Pulmonarycircuit O 2 -poor, CO 2 -rich blood O 2 -rich, CO 2 -poor blood – Fullyoxygenatedbloodarrives fromlungsviapulmonaryveins – Bloodsenttoallorgansofthe bodyviaaorta • Rightsideofheart Systemiccircuit CO 2 O2 Figure 19.1 – Oxygen-poorbloodarrivesfrom inferiorandsuperiorvenacava – Bloodsenttolungsvia pulmonarytrunk 19-2 Position,Size,andShape oftheHeart • Heartlocatedinmediastinum, betweenlungs • Base—wide,superiorportion ofheart,largevesselsattach here • Apex—taperedinferiorend, tiltstotheleft • Inadult:weighs10ounces,3.5 in.wideatbase,5in.frombase toapex • Atanyage,heartissizeoffist 19-3 Copyright©TheMcGraw-HillCompanies,Inc.Permissionrequiredforreproductionordisplay. Aorta Pulmonary trunk Superior vena cava Rightlung Baseof heart Parietal pleura (cut) Pericardial sac(cut) Apex ofheart (c) Diaphragm Figure 19.2c ThePericardium • Pericardium—double-walledsacthatenclosestheheart – Allowshearttobeatwithoutfriction,providesroomtoexpand, yetresistsexcessiveexpansion – Anchoredtodiaphragminferiorlyandsternumanteriorly • Parietalpericardium—pericardialsac – Superficialfibrouslayerofconnectivetissue – Deep,thinserouslayer • Visceralpericardium(epicardium) – Serousmembranecoveringheart • Pericardialcavity—spaceinsidethepericardialsacfilledwith5 to30mLofpericardialfluid • Pericarditis—painfulinflammationofthemembranes 19-4 ThePericardium 19-5 Figure 19.3 TheHeartWall • Heartwall hasthreelayers:epicardium,myocardiumandendocardium • Epicardium (visceralpericardium) – Serousmembranecoveringheart – Coronarybloodvesselstravelthroughthislayer • Endocardium – Smoothinnerliningofheartandbloodvessels – Coversthevalvesurfacesandiscontinuouswithendotheliumofbloodvessels • Myocardium – Layerofcardiacmuscleproportionaltoworkload • Musclespiralsaroundheartwhichproduceswringingmotion – Fibrousskeletonoftheheart:frameworkofcollagenous andelasticfibers • Providesstructuralsupportandattachmentforcardiacmuscleandanchorforvalve tissue • Electricalinsulationbetweenatriaandventricles;importantintimingandcoordination ofcontractileactivity 19-6 SpiralOrientationof MyocardialMuscle Figure 19.6 TheChambers • Fourchambers – Rightandleftatria Copyright ©TheMcGraw-HillCompanies, Inc.Permission required forreproduction ordisplay. • Twosuperiorchambers Aorta • Receivebloodreturningto Rightpulmonary artery Superior venacava heart Rightpulmonary veins • Auricles(seenonsurface) Interatrial septum Rightatrium Fossaovalis Pectinate muscles enlargechamber RightAV – Rightandleftventricles • Twoinferiorchambers • Pumpbloodintoarteries 19-8 Leftpulmonaryarter Pulmonarytrunk Leftpulmonaryvein Pulmonaryvalve Leftatrium Aortic valve LeftAV(bicuspid) valve Leftventricle (tricuspid) valve Tendinous cords Trabeculaecarneae Rightventricle Inferior venacava Papillarymuscle Interventricular sept Endocardium Myocardium Epicardium Figure 19.7 Copyright ©TheMcGraw-HillCompanies,Inc.Permission requiredforreproduction ordisplay. TheChambers Ligamentum arteriosum Ascending aorta Aorticarch • Atrioventricular sulcus—separates Leftpulmonary atriaandventricles Superior venacava Branchesofthe rightpulmonary artery Rightpulmonary veins artery Pulmonarytrunk Leftpulmonary veins • Interventricular Leftauricle sulcus—overliesthe interventricular septumthatdivides therightventricle Anterior interventricular fromtheleft sulcus Rightauricle Rightatrium Coronarysulcus Rightventricle Inferiorvenacava Leftventricle (a)Anteriorview Figure 19.5a Apexofheart • Sulci contain coronaryarteries 19-9 TheChambers • Interatrialseptum – Wallthatseparatesatria • Pectinatemuscles – Internalridgesofmyocardiuminrightatriumandboth auricles • Interventricularseptum – Muscularwallthatseparatesventricles • Trabeculaecarneae – Internalridgesinbothventricles – Maypreventventriclewallsfromstickingtogetherafter contraction 19-10 TheChambers 19-11 Figure 19.7 TheValves • Valvesensureone-wayflowofbloodthroughheart • Atrioventricular(AV)valves—controlbloodflowbetweenatria andventricles – RightAVvalvehasthreecusps(tricuspidvalve) – LeftAVvalvehastwocusps(mitralvalve,formerly‘bicuspid’) – Chordaetendineae:cordsconnectAVvalvestopapillarymuscles onfloorofventricles • PreventAVvalvesfromflippingorbulgingintoatriawhenventricles contract • Eachpapillarymusclehas2-3attachmentstoheartfloor(likeEiffel Tower)todistributephysicalstress,coordinatetimingofelectrical conduction,andprovideredundancy 19-12 TheValves • Semilunar valves— controlflowinto greatarteries;open andclosebecauseof bloodflowand pressure – Pulmonarysemilunar valve:inopening betweenright ventricleand pulmonarytrunk – Aorticsemilunar valve:inopening betweenleftventricle andaorta 19-13 BloodFlowThroughtheChambers • Ventriclesrelax – Pressure dropsinsidetheventricles – Semilunar valvescloseasbloodattemptstobackupinto theventriclesfromthevessels – AVvalvesopen – Bloodflowsfromatriatoventricles • Ventriclescontract – AVvalvescloseasbloodattemptstobackupintothe atria – Pressure risesinsideoftheventricles – Semilunar valvesopenandbloodflowsintogreatvessels 19-14 BloodFlowThroughtheChambers Figure 19.9 • Bloodpathwaytravelsfromtherightatriumthroughthepulmonarycircuit,then systemiccircuit(throughthebody)andbacktothestartingpoint 19-15 TheCoronaryCirculation • 5%ofbloodpumpedbyheartispumpedtotheheartitselfthrough thecoronarycirculationtosustainitsstrenuousworkload – 250mL ofbloodperminute – NeedsabundantO2 andnutrients 19-16 Figure 19.10a,b CoronaryArterialSupply • Leftcoronaryartery(LCA)branchesofftheascendingaorta – Anteriorinterventricular branch • Suppliesbloodtobothventriclesandanteriortwo-thirdsofthe interventricular septum – Circumflexbranch • Passesaroundleftsideofheartincoronarysulcus • Givesoffleftmarginalbranchandthenendsontheposteriorsideof theheart • Suppliesleftatriumandposteriorwallofleftventricle • Rightcoronaryartery(RCA)branchesofftheascendingaorta – Suppliesrightatriumandsinoatrial node(pacemaker) – Rightmarginalbranch • Supplieslateralaspectofrightatriumandventricle – Posteriorinterventricular branch • Suppliesposteriorwallsofventricles 19-17 AnginaandHeartAttack • Anginapectoris—chestpainfrompartialobstruction ofcoronarybloodflow – Paincausedbyischemiaofcardiacmuscle – Obstructionpartiallyblocksbloodflow – Myocardiumshiftstoanaerobicfermentation,producing lacticacidandthusstimulatingpain 19-18 AnginaandHeartAttack • Myocardialinfarction(MI)—suddendeathofapatchof myocardiumresultingfromlong-termobstructionof coronarycirculation – Atheroma(bloodclotorfattydeposit)oftenobstructs coronaryarteries – Cardiacmuscledownstreamoftheblockagedies – Heavypressureorsqueezingpainradiatingintotheleftarm – Somepainlessheartattacksmaydisruptelectrical conductionpathways,leadingtofibrillationandcardiac arrest • Silentheartattacksoccurindiabeticsandtheelderly – MIresponsibleforabout27%ofalldeathsintheU.S. 19-19 CoronaryVenousDrainage • 5%to10%ofcoronaryblooddrainsdirectlyintoheart chambers(mostlyrightventricle) • Mostcoronarybloodreturnstorightatriumbywayofthe coronarysinuswhichhasthreemaininputs:greatcardiac, posteriorinterventricular,andleftmarginalveins – Greatcardiacvein • Travelsalongsideanteriorinterventricular artery • Collectsbloodfromanteriorportionofheart • Emptiesintocoronarysinus 19-20 VenousDrainage (Continued) – Middlecardiacvein(posteriorinterventricular) • Foundinposteriorsulcus • Collectsbloodfromposteriorportionofheart • Drainsintocoronarysinus – Leftmarginalvein • Emptiesintocoronarysinus • Coronarysinus – Largetransverseveinincoronarysulcusonposteriorsideof heart – Collectsbloodandemptiesintorightatrium 19-21 StructureofCardiacMuscle • Cardiocytes—striated,short,thick,branchedcells,onecentral nucleussurroundedbylight-stainingmassofglycogen • Repairofdamageofcardiacmuscleisalmostentirelybyfibrosis (scarring) • Intercalateddiscs—joincardiocytes endtoendwiththreefeatures: interdigitating folds,mechanicaljunctions,andelectricaljunctions – Interdigitating folds:foldsinterlockwitheachother,andincreasesurface areaofcontact 19-22 StructureofCardiacMuscle Striatedmyofibril (Continued) Glycogen Nucleus MitochondriaIntercalateddiscs – Mechanicaljunctionstightly joincardiocytes • Fasciaadherens—broadband inwhichtheactin ofthethin myofilamentsisanchoredto theplasmamembrane – Eachcellislinkedtothe nextviatransmembrane proteins • Desmosomes—mechanical linkagesthatprevent contractingcardiocytes from beingpulled apartfromeach other (b) Intercellularspace Desmosomes – Electricaljunctions(gap junctions)allowionstoflow betweencells;canstimulate neighbors Gapjunctions • Entire myocardiumofeither twoatriaortwoventricles actslikesingle,unified cell 19-23 Figure 19.11a–c (c) (a):©EdReschke MetabolismofCardiacMuscle • Cardiacmuscledependsalmostexclusivelyonaerobic respirationtomakeATP – Richinmyoglobinandglycogen – Hugemitochondria:fill25%ofcell • Adaptabletodifferentorganicfuels – Fattyacids(60%);glucose(35%);ketones,lacticacid,and aminoacids(5%) – Morevulnerabletooxygendeficiencythanlackofaspecific fuel • Fatigueresistantbecauseitmakeslittleuseofanaerobic fermentationoroxygendebtmechanisms – Doesnotfatigueforalifetime 19-24 TheConductionSystem • Coordinatestheheartbeat – Composedofaninternalpacemakerandnerve-like conductionpathways throughmyocardium • Generatesandconductsrhythmicelectricalsignalsin thefollowingorder: – Sinoatrial(SA)node:modifiedcardiocytes • Pacemakerinitiateseachheartbeatanddeterminesheart rate • Pacemakerinrightatriumnearbaseofsuperiorvenacava – Signalsspreadthroughoutatria 19-25 TheConductionSystem (Continued) – Atrioventricular(AV)node • LocatedneartherightAVvalveatlowerendofinteratrialseptum • Electricalgatewaytotheventricles • Fibrousskeleton—insulatorpreventscurrentsfromgettingtoventricles byanyotherroute – Atrioventricular(AV)bundle(bundleofHis) • Bundleforksintorightandleftbundlebranches • Branchespassthroughinterventricularseptumtowardapex – Purkinjefibers • Nerve-likeprocessesspreadthroughoutventricularmyocardium • Cardiocytesthenpasssignalfromcelltocellthroughgapjunctions 19-26 TheConductionSystem 19-27 Figure 19.12 NerveSupplytotheHeart • Sympatheticnervesincreaseheartrateandcontraction strength – FibersterminateinSAandAVnodes,inatrialandventricular myocardium(alsoaorta,pulmonarytrunk,andcoronary arteries) • Parasympatheticnervesslowheartrate – Pathwaybeginswithnucleiofthevagus nervesinthe medullaoblongata – Fibersofrightvagus nerveleadtotheSAnode – Fibersofleftvagus nerveleadtotheAVnode – Littleornovagalstimulationofthemyocardium 19-28 ElectricalandContractile ActivityoftheHeart • Cycleofeventsinheart – Systole: contraction – Diastole: relaxation • Although“systole”and“diastole”canreferto contractionandrelaxationofeithertypeof chamber,theyusuallyrefertotheactionofthe ventricles 19-29 TheCardiacRhythm • Sinusrhythm—normalheartbeattriggeredbythe SAnode – Adultatrestistypically70to80bpm(vagaltone) • Ectopicfocus—aregionofspontaneousfiringother thantheSAnode – MaygovernheartrhythmifSAnodeisdamaged – Nodalrhythm—ifSAnodeisdamaged,heartrateissetbyAV node,40to50bpm • Otherectopicfocalrhythmsare20to40bpmandtooslowto sustainlife 19-30 PacemakerPhysiology • SAnodedoesnothaveastablerestingmembrane potential – Startsat−60mVanddriftsupwardduetoslowNa+ inflow • Gradualdepolarizationiscalledpacemakerpotential – Whenitreachesthresholdof−40mV,voltage-gatedfast Ca2+ and Na+ channelsopen • Fasterdepolarization occurspeakingat0mV – K+channelsthenopenandK+ leavesthecell • Causingrepolarization • OnceK+ channelsclose,pacemakerpotentialstartsover • WhenSAnodefiresitsetsoffheartbeat – Astheinternalpacemaker,ittypicallyfiresevery0.8 seconds,settingtherestingrateat75bpm 19-31 PacemakerPhysiology Copyright©TheMcGraw-HillCompanies,Inc.Permissionrequiredforreproductionordisplay. +10 Membranepotential(mV) 0 –10 –20 Action potential Threshold –30 –40 Pacemaker potential –50 –60 SlowNa+ inflow –70 0 19-32 FastK+ outflow Fast Ca2+–Na+ inflow .4 .8 Time(sec) Figure 19.13 1.2 1.6 ImpulseConductiontotheMyocardium • SignalfromSAnodestimulatestwoatriatocontract almostsimultaneously – ReachesAVnodein50ms • SignalslowsdownthroughAVnode – Thincardiocyteswithfewergapjunctions – Delayssignal100mswhichallowstheventriclestime tofill 19-33 ImpulseConductiontotheMyocardium • SignalstravelveryquicklythroughAVbundleand Purkinjefibers – Entireventricularmyocardiumdepolarizesandcontractsin nearunison • Signalsreachpapillarymusclesslightlylaterthanrestof myocardium • Ventricularsystoleprogressesupfromtheapexofthe heart – Spiralarrangementofmyocardiumtwistsventriclesslightly; likesomeonewringingoutatowel 19-34 ElectricalBehavioroftheMyocardium • Cardiocyteshaveastablerestingpotentialof−90mV,and depolarizeonlywhenstimulated • Threephasestocardiocyteactionpotential:depolarization, plateau,repolarization – Depolarizationphase(verybrief) • Stimulusopensvoltage-regulatedNa+ gates(Na+ rushesin),membrane depolarizesrapidly • Actionpotentialpeaksat+30mV • Na+ gatesclosequickly – Plateauphaselasts200to250ms,sustainscontractionfor expulsionofbloodfromheart • Voltage-gatedslowCa2+ channelsopenadmittingCa2+ whichtriggers openingofCa2+ channelsonsarcoplasmicreticulum(SR) • Ca2+ (mostlyfromtheSR)bindstotroponintriggeringcontraction 19-35 ElectricalBehavioroftheMyocardium • Cardiocyteactionpotential(Continued) – Repolarizationphase:Ca2+ channelsclose,K+ channelsopen, rapiddiffusionofK+ outofcellreturnsittorestingpotential – Hasalongabsoluterefractoryperiodof250ms(compared to1to2msinskeletalmuscle) • Preventswavesummationandtetanuswhichwouldstopthe pumpingactionoftheheart 19-36 ElectricalBehavioroftheMyocardium Na+ gatesopen 2. Rapiddepolarization 3. 4. Na+ gatesclose SlowCa2+ Copyright©TheMcGraw-HillCompanies,Inc.Permissionrequiredforreproductionor display. 3 1 Voltage-gated Na+ channelsopen. Plateau +20 Membrane potential(mV) 1. 0 5. channelsclose,K+ 3 Na+ channelsclosewhenthecell depolarizes,andthevoltage peaksat nearly +30mV. 4 Ca2+ entering through slowCa2+ 2 channelsprolongs depolarization of membrane, creatingaplateau.Plateau falls slightlybecauseofsomeK+ leakage,but most 5 + K channelsremaincloseduntil endof plateau. Myocardial contraction Absolute refractory period channelsopen channelsopen (repolarization) 19-37 Myocardial relaxation –60 –80 Ca2+ 5 Action potential –20 –40 2 Na+ inflowdepolarizesthemembrane andtriggers theopeningofstillmoreNa+ channels,creatinga positivefeedback cycleandarapidly risingmembrane voltage. 4 1 0 .15 Time (sec) .30 Figure19.14 Ca2+ channelscloseandCa2+ istransported outofcell.K + channelsopen,andrapidK + outflowreturnsmembrane toitsresting potential. TheElectrocardiogram Copyright©TheMcGraw-HillCompanies,Inc.Permissionrequiredforreproductionordisplay. 0.8second R R Millivolts +1 PQ segment ST segment Twave Pwave 0 PR Q interval S QT interval QRSinterval –1 Atria contract Ventricles contract Atria contract Figure 19.15 19-38 Ventricles contract • Electrocardiogram (ECGor EKG) – Compositeofall actionpotentialsof nodalandmyocardial cellsdetected, amplifiedand recordedby electrodesonarms, legs,andchest TheElectrocardiogram • Pwave – SAnodefires,atriadepolarizeandcontract – Atrialsystolebegins100msafterSAsignal • QRScomplex – Ventriculardepolarization – Complexshapeofspikeduetodifferentthicknessand shapeofthetwoventricles • STsegment—ventricularsystole – Correspondstoplateauinmyocardialactionpotential • Twave – Ventricularrepolarizationandrelaxation 19-39 TheElectrocardiogram 1. 2. 3. 4. 5. 6. Atrialdepolarizationbegins Atrialdepolarization complete(atriacontracted) Ventriclesbeginto depolarizeatapex;atria repolarize(atriarelaxed) Ventriculardepolarization complete(ventricles contracted) Ventriclesbeginto repolarizeatapex Ventricularrepolarization complete(ventricles relaxed) Copyright©TheMcGraw-HillCompanies,Inc.Permissionrequiredforreproductionordisplay. Key Waveof depolarization Waveof repolarization R P P Q S 4 Ventricular depolarization complete. 1 Atria begin depolarizing. R Q S 5 Ventricular repolarization begins atapex and progresses superiorly. 2 Atrial depolarization complete. R R T P P Q 3 Ventricular depolarization begins atapex and progresses superiorly as atria repolarize. Q S 6 Ventricular repolarization complete;heart is readyfor thenext cycle. Figure 19.16 19-40 T P P ECGs:NormalandAbnormal • DeviationsofECGfrom normalcanindicate: – Myocardialinfarction(MI) – Abnormalitiesin conductionpathways – Heartenlargement – Electrolyteandhormone imbalances Figure 19.17a,b 19-41 CardiacArrhythmias • Ventricularfibrillation – Seriousarrhythmia causedbyelectricalsignals travelingrandomly • Heartcannotpumpblood;nocoronaryperfusion – Hallmarkofheartattack(MI) – Killsquicklyifnotstopped • Defibrillation—strongelectricalshockwithintentto depolarizeentiremyocardiumandresethearttosinus rhythm – Notacureforarterydisease,butmayallowtimefor othercorrectiveaction 19-42 TheCardiacRhythm • Otherarrhythmias – Heartblock—failureofconductionsystemtoconduct – Prematureventricularcontraction—extrabeatsduetoa ventricularectopicfocus 19-43 Figure 19.17d,e BloodFlow,HeartSounds, andtheCardiacCycle • Cardiaccycle—onecompletecontractionand relaxationofallfourchambersoftheheart • Questionstoconsider:Howdoespressureaffectblood flow?Howareheartsoundsproduced? 19-44 PrinciplesofPressureandFlow • Twomainvariablesgovernfluid movement:pressure causesflow and resistance opposesit – Fluidwillonlyflowifthereisa pressuregradient (pressure difference) • Fluidflowsfromhigh-pressurepoint tolow-pressurepoint • PressuremeasuredinmmHgwitha manometer(sphygmomanometerfor BP) 19-45 Copyright © TheMcGraw-Hill Companies, Inc.Permission required for reproduction ordisplay. 1 Volume increases 2 Pressure decreases 3 Airflowsin P1 P 2 >P 1 Pressuregradient P2 (a) 1 Volume decreases 2 Pressure increases 3 Airflowsout P1 P 2 <P 1 Pressuregradient (b) P2 Figure 19.18 PressureGradientsandFlow • Eventsoccurringonleftsideofheart – Whenventriclerelaxesandexpands,itsinternalpressure falls – Ifmitralvalveisopen,bloodflowsintoleftventricle – Whenventriclecontracts,internalpressurerises – AVvalvesclose,theaorticvalveispushedopenandblood flowsintoaortafromleftventricle • Openingandclosingofvalvesaregovernedbythese pressurechanges – AVvalveslimpwhenventriclesrelaxed – Semilunarvalvesunderpressurefrombloodinvesselswhen ventriclesrelaxed 19-46 OperationoftheHeartValves Copyright©TheMcGraw-HillCompanies,Inc.Permissionrequiredforreproductionordisplay. Atrium Atrioventricular valve Ventricle Atrioventricularvalvesopen Atrioventricularvalvesclosed (a) Aorta Pulmonary artery Semilunar valve 19-47 Semilunarvalvesopen (b) Figure 19.19 Semilunarvalvesclosed ValvularInsufficiencyDisorders • Valvularinsufficiency(incompetence)—anyfailureofa valvetopreventreflux(regurgitation),thebackward flowofblood – Valvularstenosis:cuspsarestiffenedandopeningis constrictedbyscartissue • Resultofrheumaticfever,autoimmuneattackonthemitraland aorticvalves • Heartoverworksandmaybecomeenlarged • Heartmurmur—abnormalheartsoundproducedby regurgitationofbloodthroughincompetentvalves 19-48 ValvularInsufficiencyDisorders (Continued) – Mitralvalveprolapse:insufficiencyinwhichoneor bothmitralvalvecuspsbulgeintoatriaduring ventricularcontraction • Hereditaryin1outof40people • Maycausechestpainandshortnessofbreath 19-49 HeartSounds • Auscultation—listeningtosoundsmadebybody • Firstheartsound(S1),louderandlonger“lubb,” occurswithclosureofAVvalves,turbulenceinthe bloodstream,andmovementsoftheheartwall • Secondheartsound(S2),softerandsharper“dupp,” occurswithclosureofsemilunar valves,turbulencein thebloodstream,andmovementsoftheheartwall 19-50 PhasesoftheCardiacCycle • Ventricularfilling(duringdiastole) • Isovolumetriccontraction(duringsystole) • Ventricularejection(duringsystole) • Isovolumetricrelaxation(duringdiastole) • Theentirecardiaccycle(allfourofthesephases)are completedinlessthan1second 19-51 PhasesoftheCardiacCycle • Ventricularfilling – Ventriclesexpandandtheirpressuredropsbelowthatof theatria – AVvalvesopenandbloodflowsintotheventricles – Filling occursinthreephases: • Rapidventricularfilling:firstone-third • Diastasis:secondone-third;slowerfilling – Pwaveoccursattheendofdiastasis • Atrialsystole:finalone-third;atriacontract – End-diastolicvolume(EDV)achievedineachventricle(about 130mLofblood) 19-52 PhasesoftheCardiacCycle • Isovolumetriccontraction – Atriarepolarize,relaxandremainindiastoleforrestofcardiac cycle – Ventriclesdepolarize, causingQRScomplex,andbeginto contract – AVvalvescloseasventricularbloodsurgesbackagainstthe cusps – HeartsoundS1 occursatthebeginningofthisphase – “Isovolumetric”becausealthoughventriclescontract,theydo notejectblood • Pressuresinaortaandpulmonarytrunkarestillgreaterthan thoseintheventricles – Cardiocytesexertforce,butwithallfourvalvesclosed,the bloodcannotgoanywhere 19-53 PhasesoftheCardiacCycle • Ventricularejection – Beginswhenventricularpressureexceedsarterialpressureand semilunarvalvesopen – Pressurepeaksinleftventricleatabout120mmHgand25mm Hgintheright – First:rapidejection—blood spurtsoutofventriclesquickly – Then:reducedejection—slowerflowwithlowerpressure – Ejectionlastsabout200to250ms- correspondstoplateau phaseofcardiacactionpotential – TwaveofECGoccurslateinthisphase – Strokevolume(SV)isabout70mL • Ejectionfractionisabout54%ofEDV(130mL) • 60mLremainingbloodisend-systolicvolume(ESV)=EDV- SV 19-54 PhasesoftheCardiacCycle • Isovolumetricrelaxation – Twaveendsandventriclesbegintoexpand – Bloodfromaortaandpulmonarytrunkbrieflyflowsbackward fillingcuspsandclosingsemilunarvalves • Createspressurereboundthatappearsasdicroticnotch ingraph ofarterypressure • HeartsoundS2 occurs – “Isovolumetric”becausesemilunarvalvesareclosedandAV valveshavenotyetopened • Ventriclesarethereforetakinginnoblood • WhenAVvalvesopen,ventricularfillingbeginsagain 19-55 PhasesoftheCardiacCycle • Inarestingperson – Atrialsystolelastsabout0.1second – Ventricularsystolelastsabout0.3second – Quiescentperiod,whenallfourchambersareindiastole, lastsabout0.4second • Totaldurationofthecardiaccycleistherefore0.8 secondinaheartbeating75bpm 19-56 EventsoftheCardiacCycle Copyright © TheMcGraw-Hill Companies, Inc.Permission required for reproduction ordisplay. Diastole 120 100 Pressure (mmHg) Systole Diastole • Ventricularfilling Aortic pressure Aortic valve opens 80 Left ventricular pressure 60 40 AV valve closes Leftatrial pressure 20 Aortic valve closes (dicroticnotch) AV valve opens • Isovolumetric contraction Ventricular volume (mL) 0 End-diastolic volume 120 90 60 End-systolic volume R R T P P • Ventricularejection ECG Q Q S S Heart sounds S2 S3 Phase of cardiaccycle S1 1a 1b 0 .2 1c .4 Ventricular filling 1aRapid filling 1b Diastasis 19-57 1cAtrial systole 2 S2 3 .6 Time(sec) S3 4 1a .8 2 Isovolumetric contraction Figure 19.20 S1 1b .2 3 Ventricular ejection 1c 2 .4 4 Isovolumetric relaxation • Isovolumetric relaxation OverviewofVolumeChanges End-systolicvolume(ESV) Passivelyaddedtoventricle duringatrialdiastole Addedbyatrialsystole Total:End-diastolicvolume(EDV) Strokevolume(SV)ejected byventricularsystole Leaves:End-systolicvolume(ESV) 60mL +30mL +40mL 130mL −70mL 60mL Bothventriclesmustejectsameamountofblood 19-58 OverviewofVolumeChanges • Normally,rightandleftsidesofheartejectthesame volumeofbloodeventhoughtheyareunder differentpressure • Congestiveheartfailure(CHF)—resultsfromthe failureofeitherventricletoejectbloodeffectively – Usuallyduetoaheartweakenedbymyocardial infarction,chronichypertension,valvularinsufficiency, orcongenitaldefectsinheartstructure 19-59 OverviewofVolumeChanges • Leftventricularfailure—bloodbacksupintothelungs causingpulmonaryedema – Shortnessofbreathorsenseofsuffocation • Rightventricularfailure—bloodbacksupinthevena cavacausingsystemicorgeneralizededema – Enlargementoftheliver,ascites(poolingoffluidin abdominalcavity),distensionofjugularveins,swellingof thefingers,ankles,andfeet • Eventuallyleadstototalheartfailure 19-60 OverviewofVolumeChanges Copyright©TheMcGraw-HillCompanies,Inc.Permissionrequiredforreproductionordisplay. 1 Rightventricular outputexceedsleft Ventricularoutput. 2 Pressurebacksup. 3 Fluid accumulatesin pulmonary tissue. 1 2 3 (a)Pulmonary edema 19-61 Figure 19.21a • Iftheleftventricle pumpslessblood thantheright,the bloodpressure backsupintothe lungsandcauses pulmonaryedema OverviewofVolumeChanges Copyright©TheMcGraw-HillCompanies,Inc.Permissionrequiredforreproductionordisplay. 1 Leftventricular outputexceedsright ventricularoutput. 2 Pressurebacksup. 3 Fluid accumulatesin systemictissue. 1 2 (b)Systemicedema 3 19-62 Figure 19.21b • Iftherightventricle pumpslessbloodthan theleft,pressure backsupinthe systemiccirculation andcausessystemic edema CardiacOutput • Cardiacoutput(CO)—amountejectedbyeachventricle in1minute • Cardiacoutput=heartratexstrokevolume – About4to6L/minatrest – ARBCleavingtheleftventriclewillarrivebackattheleft ventricleinabout1minute – VigorousexerciseincreasesCOto21L/minforafitpersonand upto35L/minforaworld-classathlete • Cardiacreserve—thedifferencebetweenaperson’s maximumandrestingCO – Increases withfitness,decreases withdisease 19-63 HeartRate • Pulse—surgeofpressureproducedbyheartbeatthat canbefeltbypalpatingasuperficialartery – – – – 19-64 InfantshaveHRof120bpmormore Youngadultfemalesaverage72to80bpm Youngadultmalesaverage64to72bpm Heartraterisesagainintheelderly HeartRate • Tachycardia—restingadultheartrateabove100 bpm – Stress,anxiety,drugs,heartdisease,orfever – Lossofbloodordamagetomyocardium • Bradycardia—restingadultheartrateoflessthan60 bpm – Insleep,lowbodytemperature,andendurance-trained athletes • Positivechronotropicagents—factorsthatraisethe heartrate • Negativechronotropicagents—factorsthatlower theheartrate 19-65 ChronotropicEffectsofthe AutonomicNervousSystem • Autonomicnervoussystemdoesnotinitiatethe heartbeat,itmodulatesrhythmandforce • Cardiaccentersinthereticularformationofthe medullaoblongata initiateautonomicoutputtothe heart • Cardiostimulatoryeffect—someneuronsofthecardiac centertransmitsignalstotheheartbywayof sympathetic pathways • Cardioinhibitoryeffect—otherstransmit parasympathetic signalsbywayofthevagusnerve 19-66 ChronotropicEffectsofthe AutonomicNervousSystem • Sympathetic postganglionicfibersareadrenergic – Theyrelease norepinephrine – Bindtoβ-adrenergicfibersintheheart – ActivatecAMP second-messengersystemincardiocytes andnodal cells – LeadtoopeningofCa2+channelsinplasmamembrane – IncreasedCa2+inflowacceleratesdepolarizationofSAnode – cAMP acceleratesuptakeofCa2+bysarcoplasmic reticulumallowing cardiocytes torelaxmorequickly – Byacceleratingbothcontractionandrelaxation,norepinephrine (throughcAMP)increasesheartrateashighas230bpm – Butatexcessivelyhighheartrates(>180bpm)diastolebecomestoo briefforadequatefilling • Bothstrokevolumeandcardiacoutputarereduced 19-67 ChronotropicEffectsofthe AutonomicNervousSystem • Parasympatheticvagusnerveshavecholinergic, inhibitoryeffectsonSAandAVnodes – Acetylcholine(ACh)bindstomuscarinicreceptors – OpensK+gatesinthenodalcells – AsK+ leavesthecells,theybecomehyperpolarized andfire lessfrequently – Heartslowsdown 19-68 ChronotropicEffectsofthe AutonomicNervousSystem • Withoutinfluencefromcardiaccenters,thehearthas an intrinsicfiringrateof100bpm • Vagaltone—holdsdowntheheartrateto70to80 bpmatrest – Steadybackgroundfiringrateofthevagusnerves 19-69 ChronotropicEffectsofthe AutonomicNervousSystem • Inputstocardiaccentersinmedullaarediverse – Sourcesincludehigherbraincenterssuchascerebralcortex,limbic system,hypothalamus • Sensoryoremotionalstimuli – Medullaalsoreceivesinputfrommuscles,joints,arteries,and brainstem • Proprioceptors inmusclesandjoints informcardiaccentersabout changesinactivity,soHRincreases beforemetabolicdemandson musclearise – Baroreceptors signalcardiaccenter • Pressuresensorsinaortaandinternalcarotidarteries • Bloodpressuredecreases,signalratedrops,cardiaccenterincreases heartrate • Ifbloodpressureincreases,signalraterises,cardiaccenterdecreases heartrate 19-70 ChronotropicEffectsofthe AutonomicNervousSystem • Inputstocardiaccenters(Continued) – Chemoreceptors • Inaorticarch,carotidarteries,andmedullaoblongata • SensitivetobloodpH,CO2 andO2 levels • Moreimportantinrespiratorycontrolthancardiaccontrol,butwill triggeranincreaseinheartratewhenhighCO2levels(hypercapnia) leadtoacidosis • Alsorespondtohypoxemia(oxygendeficiencyinblood)usuallyby slowingdowntheheart – Baroreflexes and chemoreflexes—responsestofluctuationinblood pressureandchemistry—arebothnegativefeedbackloops 19-71 ChronotropicEffectsofChemicals • Severalchemicalsaffectheartrate – Autonomicneurotransmitters(NEandAch) – Blood-borneadrenalcatecholamines(NEandepinephrine) arepotentcardiacstimulants • Nicotine stimulatescatecholaminesecretion • Thyroidhormoneincreasesnumberofadrenergicreceptors onheartsoitismoreresponsivetoadrenergicstimulation • Caffeine inhibitscAMPbreakdown,prolongingadrenergic effect 19-72 ChronotropicEffectsofChemicals • Electrolytes – K+ hasgreatestchronotropiceffect • Hyperkalemia—excessK+ diffusesintocardiocytes – Myocardiumlessexcitable,heartrateslowsand becomesirregular • Hypokalemia—deficiencyinK+ – Cellshyperpolarized,requireincreasedstimulation – Calcium • Hypercalcemia—excessofCa2+ – Decreasesheartrateandcontractionstrength • Hypocalcemia—deficiencyofCa2+ – Increasesheartrateandcontractionstrength 19-73 StrokeVolume • Theotherfactorincardiacoutput,besidesheartrate, isstrokevolume(SV) • Threevariablesgovernstrokevolume – Preload – Contractility – Afterload • Examples – Increasedpreloadorcontractilityincreasesstroke volume – Increasedafterloaddecreasesstrokevolume 19-74 Preload • Preload—theamountoftensioninventricular myocardiumimmediatelybeforeitbeginstocontract – Increasedpreloadcausesincreasedforceof contraction – Exerciseincreasesvenousreturnandstretches myocardium – Cardiocytesgeneratemoretensionduringcontraction – Increasedcardiacoutputmatchesincreasedvenous return 19-75 Preload • Frank–Starlinglawoftheheart:SVµEDV – Strokevolumeisproportionaltotheenddiastolic volume – Ventriclesejectalmostasmuchbloodastheyreceive – Themoretheyarestretched,thehardertheycontract – Relatestothelength-tensionrelationshipofstriated muscle 19-76 Contractility • Contractility referstohowhardthemyocardium contractsforagivenpreload • Positiveinotropicagentsincreasecontractility – Hypercalcemia cancausestrong,prolongedcontractions andevencardiacarrestinsystole – Catecholamines increasecalciumlevels – Glucagon stimulatescAMPproduction – Digitalisraisesintracellularcalciumlevelsand contractionstrength 19-77 Contractility • Negativeinotropicagents reducecontractility – Hypocalcemia cancauseweak,irregularheartbeatand cardiacarrestindiastole – Hyperkalemia reducesstrengthofmyocardialaction potentialsandthereleaseofCa2+intothesarcoplasm – Vagusnerveshaveeffectonatria,buttoofewnervesto ventriclesforasignificanteffect 19-78 Afterload • Afterload—sumofallforcesopposingejectionofblood fromventricle • Largestpartofafterloadisbloodpressureinaortaand pulmonarytrunk – Opposestheopeningofsemilunarvalves – Limitsstrokevolume • Hypertension increasesafterloadandopposes ventricularejection 19-79 Afterload • Anythingthatimpedesarterialcirculationcanalso increaseafterload – Lungdiseasesthatrestrictpulmonarycirculation – Corpulmonale:rightventricularfailureduetoobstructed pulmonarycirculation • Inemphysema,chronicbronchitis,andblacklungdisease 19-80 ExerciseandCardiacOutput • Exercisemakestheheartworkharderandincreases cardiacoutput • Proprioceptorssignalcardiaccenter – Atbeginningofexercise,signalsfromjointsandmuscles reachthecardiaccenterofbrain – Sympatheticoutputfromcardiaccenterincreasescardiac output • Increasedmuscularactivityincreasesvenousreturn – Increasespreloadandultimatelycardiacoutput 19-81 ExerciseandCardiacOutput • Increasesinheartrateandstrokevolumecausean increaseincardiacoutput • Exerciseproducesventricularhypertrophy – Increasedstrokevolumeallowshearttobeatmoreslowly atrest – Athleteswithincreasedcardiacreservecantoleratemore exertionthanasedentaryperson 19-82 CoronaryArteryDisease • Coronaryarterydisease(CAD)—aconstrictionofthe coronaryarteries – Usuallytheresultofatherosclerosis:anaccumulationof lipiddepositsthatdegradethearterialwallandobstruct thelumen – Beginswhenendotheliumdamagedbyhypertension, diabetes,orothercauses 19-83 CoronaryArteryDisease (Continued) – Monocytespenetratewallsofdamagedvesselsandtransform intomacrophages • Absorbcholesterolandfatstobecalledfoamcells – Cangrowintoatheroscleroticplaques(atheromas) – Plateletsadheretodamagedareasandsecreteplateletderivedgrowthfactor • Attractingimmunecellsandpromotingmitosisofmuscleand fibroblasts,andthedepositionofcollagen • Bulging massgrowstoobstructarteriallumen 19-84 CoronaryArteryDisease • Causesanginapectoris, intermittentchestpain,by obstructing75%ormoreofthebloodflow • Immunecellsofatheromastimulateinflammation – Mayrupture,resultingintravelingclotsorfattyemboli • Causecoronaryarteryspasmsduetolackofsecretion ofnitricoxide(vasodilator) • Inflammationtransformsatheromaintoahardened complicatedplaque – Onecauseofarteriosclerosis 19-85 CoronaryArteryDisease • MajorriskfactorforCADisexcessoflow-density lipoprotein(LDL)inthebloodcombinedwithdefective LDLreceptorsinarterialwalls – LDLs—protein-coateddropletsofcholesterol,neutralfats, freefattyacids,andphospholipids – Dysfunctionalreceptorsinarterialcellscausethemto accumulateexcesscholesterol 19-86 CoronaryArteryDisease • Unavoidableriskfactors:heredity,aging,beingmale • Preventableriskfactors:obesity,smoking,lackof exercise,anxiouspersonality,stress,aggression,and diet • Treatment – Coronarybypasssurgery • Usesgreatsaphenousveinfromlegorsmallthoracicarteries – Balloonorlaserangioplasty – Insertionofastenttopreventrestenosis 19-87