Download EXERCISE SET #1 1. Consider two complex numbers z and z in the

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Addition wikipedia , lookup

Big O notation wikipedia , lookup

Dirac delta function wikipedia , lookup

Function (mathematics) wikipedia , lookup

History of the function concept wikipedia , lookup

Non-standard calculus wikipedia , lookup

Mathematics of radio engineering wikipedia , lookup

Factorial wikipedia , lookup

Fundamental theorem of algebra wikipedia , lookup

Elementary mathematics wikipedia , lookup

Function of several real variables wikipedia , lookup

Transcript
EXERCISE SET #1
1. Consider two complex numbers z1 and z 2 in the first quadrant of the complex plane and
corresponding vectors u and v in the x-y plane:
(a) Show that the area of the parallelogram defined by sides z1 and z 2 is A  Im(z1z 2 )
(b) Express the dot ( u  v ) and the cross ( u  v ) products in terms of z1 and z 2 .
2. Find the value of each complex number below on the principal sheet of a multi-sheeted
complex plane when the principal branch is defined by.
(ii)   2    3 2
(i)     
(a) ln(3  4i) ,
(b) ln(3  4i) ,
(c) ln(iei ) ,
(iii) 0    2
(d) (3  4i)1 3 ,
(e) (i  1)1 4 ,
(f) (iei )2 5
3. Determine the position(s) of the branch point(s) of each function below:
(a) (z  1)5 4 ,
(b) (z  2)3 (z  2)4 5 ,
(e) (z  1)1 2 (z  2)2 3 ,
(f) ln(1 (4z  3)) ,
(c) ((z  3) (z  3))5 2 ,
(d) (z  1)3 2 (z  1)2 ,
(e) ln((z2  4z  5) (z3  z 2  z  1)) ,
(f) (z 2  4)3 2 ln(z)
4. For each function below, determine the position(s) of the branch point(s) and the number
of Riemann sheets required to make the function single-valued.
(a) (z  2)3 (z  2)4 7 ,
(e) (z  1)2 (z  1)3 2 ,
(b) (z 2  4)3 7 ,
(f) (z2  4)3 2 ln(z) ,
(c) (z  i) ,
(g) z1 2  z 2 ,
(d) ((z  4) (z  4))5 3 ,
(h) z1 6  z2 3 ,
(f) (z 2  1)3 ln(z)
5. Each function below has one or more branch points at just one value of z. For ach function
 Identify that value of z.
 Determine how many sheets are needed for the function to be single valued.
 Extend the cuts from the branch point to  along the real axis and determine the
values of the function along the two sides of the cut.
 Extend the cuts from the branch point to  along the real axis and determine the
values of the function along the two sides of the cut.
(a) (z  1)5 4 , (b) z1 2 z2 3 , (c) z3 5 ln(z) , (d) (z  1)1 6  (z  1)2 3 , (e) (z  2)2  (z  2)2 3 ,
(f) z1 2  ln(z)
6. Show that ( 3  i)n  ( 3  i)n is real for any positive integer n.
7. Show (i) algebraically and (ii) geometrically that the equation Azz  Bz  Bz  C  0 , for
real numbers A & C and complex number B represents a circline. The collective name
circline stands for a circle or straight line in the complex plane.
8. Let z k be kth root of unity, i.e. kth root of z n  1 , for k  1,2,...,n . Show that

n
k 1
zk  0 .
9. Evaluate (1  i 3)(25i) .
10. Derive the formulas

z  i log  z 

z  1  , where z  cos w 
(a) w  sin 1 z  i log iz  1  z 2 , where z  sin w  12 (eiw  eiw )
(b) w  cos1
2
1
2
(eiw  eiw )
(c) w  tan 1 z   2i log (i  z) (i  z)  , where z  tan w  12 (sin w cos w)
(d) w  cot 1 z   2i log  (z  i) (z  i)  , where z  cot w  12 (cos w sin w)

z  log  z 

z  1  , where z  cosh w 
(e) w  sinh 1 z  log z  1  z 2 , where z  sinh w  12 (ew  e w )
(f) w  cosh 1
2
1
2
(ew  e w )
11. Complex velocity of the plane irrotational incompressible flow of a downward free stream
U over a flat plate that extends from x  2a to x  2a is given by
u  iv 
iUz
z 2  4a 2
.
The multivaluedness dictates using a branch cut extending from 2a to 2a along the
real axis where the mathematical barrier presented by the cut corresponds to the physical
barrier presented by the plate. Find the velocity components u(x,0) and v(x,0) on the
top and bottom of the plate.