* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Full-text
Sessile drop technique wikipedia , lookup
Spinodal decomposition wikipedia , lookup
Equilibrium chemistry wikipedia , lookup
Ionic liquid wikipedia , lookup
Ultraviolet–visible spectroscopy wikipedia , lookup
Stability constants of complexes wikipedia , lookup
History of electrochemistry wikipedia , lookup
Acid–base reaction wikipedia , lookup
Membrane potential wikipedia , lookup
State of matter wikipedia , lookup
Vapor–liquid equilibrium wikipedia , lookup
Liquid crystal wikipedia , lookup
Material Science and Applied Chemistry ISSN 1407-7353 print / 2255-8713 online 2013 / 27_________________________________________________________________________________________________ Separation of Cobalt(II) and Nickel(II) by Liquid Membranes during Electrodialysis Tatiana Sadyrbaeva, Riga Technical University Abstract. The article focuses on the process of separation of Co(II) and Ni(II) ions extracted from 3−4 M hydrochloric acid solutions by supported liquid membranes, containing tri-noctylamine or trialkylbenzylammonium chloride in 1,2dichloroethane, during galvanostatic electrodialysis. It is determined how the current density, composition of the liquid membrane and aqueous solutions affect the rate and selectivity of the cobalt(II) transport. An effective separation of cobalt(II) from nickel(II) is achieved. Maximum separation factors of 147 (equimolar mixture), 330 (nickel(II) in excess) and more than 400 (cobalt(II) in excess) are obtained under optimum conditions. Keywords: liquid membrane, electrodialysis, separation of cobalt and nickel, tri-n-octylamine, trialkylbenzylammonium chloride. I. INTRODUCTION Cobalt and nickel are widely used in different branches of industry. Cobalt and nickel have similar physicochemical properties; therefore, separation of the metals is of great practical value. Anion-exchange extraction by tertiary amines and quaternary ammonium salts can be used for Co(II) and Ni(II) separation in HCl solutions, where nickel(II) exists as cationic aquacomplexes, whereas cobalt(II) partially forms anionic chlorocomplexes [1]. A liquid membrane is a layer of an organic solvent separating two aqueous solutions. Liquid membranes offer a lot of advantages over solvent extraction, such as combination of extraction and stripping processes into a single stage, more effective separation of elements with similar properties and small amounts of extractants [2]. Separation of cobalt(II) from nickel(II) using supported [3, 4], emulsion [5, 6] and polymer [7] liquid membranes containing tertiary amines is reported in the literature. Application of a direct electric field significantly intensifies transport of metal ions through the liquid membranes and facilitates the stripping of metals from organic solutions of tertiary amine salts [8]. The electric field gradient is a driving force of the membrane extraction process during electrodialysis. It has been demonstrated by the author previously that tri-n–octylamine based liquid membranes ensure an effective platinum(IV) separation of iron(III) [9] and nickel [10] extracted from HCl solutions, as well as separation of palladium(II) from macroadmixtures of copper(II), nickel(II) and iron(III) during electrodialysis [11]. The aims of the present article are to study the membrane extraction of cobalt(II) from binary hydrochloric mixtures with nickel(II) by supported liquid membranes, containing trin-octylamine (TOA) or trialkylbenzylammonium chloride (TABAC) in 1,2-dichloroethane, during galvanostatic electrodialysis and to find out optimal conditions for metal separation. II. METHODS AND MATERIALS A. Instrumentation The experiments were carried out in a five-compartment Teflon electrodialysis cell in the system: (−) Pt H2SO4 CoCl2 NiCl2 Liquid membrane HCl H2SO4 Pt (+) The liquid membrane (thickness of 0.5 or 0.8 cm, volume of 4 or 5.5 cm3, surface area of 7.1 cm2) was separated from the aqueous solutions by two vertical cellophane films. The cathodic solution (volume of 17 cm3) was separated from the feed solution (volume of 13 cm3) by the solid anion exchange membrane MA-40. The anodic solution was separated from the strip solution by the solid cation exchange membrane MK40. The cellophane films and the solid membranes were soaked in water for more than 24 h before use. The solutions were not agitated. The direct electric current was supplied to the plane platinum electrodes (surface area of 7.1 cm2). Potentiostat П-5827М was used as a current source. Voltage was measured by a digital voltmeter. The concentrations of cobalt(II) and nickel(II) in the aqueous solutions were determined by spectrophotometry [12], using KSCN and dimethylglyoxime, respectively. UV-Vis spectrophotometer СФ-46 was used for the analysis of metal ions. B. Reagents and Materials The solutions of tri-n-octylamine (pure grade) or trialkylbenzylammonium chloride (alkyl C7−C9, technical grade, purity of 87.8 %) in 1,2-dichloroethane were used as the liquid membranes. They contained usually 0.1 M TOA or 0.01 M TABAC. The feed solution was prepared by dissolving of CoCl2·6H2O and NiCl2·6H2O in hydrochloric acid solution. It contained, as a rule, 0.01 M CoСl2 and 0.01 M NiCl2 in 3−4 M HCl. Reagents of pro-analysis grade were used without further purification. III. RESULTS AND DISCUSSION Cobalt(II) ions were extracted by TOA and TABAC due to the interfacial anion-exchange mechanism: R3N(o) + H+(aq) + Cl−(aq) ↔ R3NH+Cl−(о) (1) CoСl42−(aq) + 2R3NH+Cl−(о) ↔ (R3NH)2CoСl4(о) + 2Cl−(aq) (2) 56 Material Science and Applied Chemistry ________________________________________________________________________________________________2013 / 27 CoСl42−(aq) + 2R4NCl(о) ↔ (R4N)2CoСl4(о) + 2Cl−(aq) (3) where subscripts aq and o – aqueous and organic species. The amine first reacted with hydrochloric acid to form the amine salt (1). Co(II) anions were transferred by diffusion to the interface feed solution / liquid membrane and interacted with the carrier forming the complex. The extracted complex could partially dissociate in a polar organic solvent. The transported compound was transferred through the liquid membrane layer and dissociated at the interface liquid membrane / strip solution. The carrier’s molecules returned back according to their concentration gradient. Chloride ions permeated across the membrane in the same direction as cobalt(II) anions. Without electric field application, the transport of cobalt(II) through the liquid membranes was not observed in practice. It was found out that the application of an electric field allowed transfering cobalt(II) through the TABAC-based liquid membranes selectively over nickel(II) into the strip solution of 0.1 M HCl. Table 1 illustrates the influence of current density and hydrochloric acid concentration in the feed solution on the rate and selectivity of cobalt(II) transport. The extraction degree of cobalt(II) into the strip solution comprises 14%, and the extraction of nickel(II) is, as a rule, about 0.1%. The increase in the current density from 4.2 to 9.9 mA/cm2 led to an increase in the CoСl42− anion transport rate (Table 1). The increase in hydrochloric acid concentration in the feed solution from 3 to 6 M resulted in a rise of the cobalt(II) flux due to the increase in CoСl42− content in the feed solution. The maximum cobalt flux was obtained at I = 8.5 mA/cm2 in the system, containing 6 M HCl. However, the electrodialysis was accompanied by formation of emulsion in the feed solution in case of 6 M HCl in the aqueous phase. The decrease in hydrochloric acid concentration from 3 to 1 M sharply decreased the cobalt(II) flux (Table 1) as cationic aquacomplexes of cobalt(II) predominated in 1 M HCl solution. When cobalt(II) was extracted from the equimolar mixture, the maximum separation factor of 145 was obtained at the current density of 9.9 mA/cm2. Fig. 1. Change in voltage during electrodialysis for various current densities and CHCl in the feed solution (СТАBАC = 0.01 M; lm = 0.8 сm) I (mА/сm2): ● – 4.2; ▲, □, ◊, – 8.5; ○ – 9.9. СHCl (М): ▲ – 0.1; ●, ○, □ – 3.0; ◊ – 6.0. During cobalt(II) transport through TABAC-based liquid membranes from 3-6 M HCl solutions the voltage usually decreased gradually, and the duration of electrodialysis at high current densities (I > 4.2 mA/cm2) was limited by electrical breakdown – an abrupt voltage decrease in the membrane system (Fig. 1). The main reason of electrical breakdown was the water accumulation in the liquid membrane due to the transfer of ions in the hydration–solvation sheath as well as due to electroosmosis [13]. An emulsion was formed in the bulk of organic liquid membrane during electrodialysis. The voltage increased in case of 0.1 M HCl in the feed solution, which was related to the lack of anions at the interface feed solution / liquid membrane as a result of the extraction of CoСl42− and chloride ions into the liquid membrane. TABLE II EFFECT OF CURRENT DENSITY ON THE EXTRACTION DEGREE E, STRIPPING DEGREE S, FLUX J AND SEPARATION FACTOR β (CTOA = 0.1 M; strip solution – 0.5 M HCl; lm = 0.5 cm) I, mA/cm2 t, min ECo SCo % SNi JCo·106, mol/(m2s) βCo/Ni 2.8 227 34 16 0.33 2.2 48 3.5 265 27 16 0.31 1.8 52 4.2 182 20 14 0.34 2.3 41 6.4 154 25 14 0.3 2.8 47 TABLE I EFFECT OF CURRENT DENSITY AND HCl CONCENTRATION IN THE FEED SOLUTION ON THE STRIPPING DEGREES S, FLUX J AND SEPARATION FACTOR β (CTABAC = 0.01 M; strip solution – 0.1 M HCl; lm = 0.8 cm) I, mA/cm2 t, min CHCl, M 4.2 235 3.0 SCo SNi % 5 6.4 114 3.0 9 8.5 133 3.0 9.9 127 3.0 11.3 111 3.5 210 5.0 8.5 8.5 0.17 JCo·106, mol/(m2s) βCo/Ni 0.6 29 8.5 106 19 14 0.3 4.1 47 9.9 106 25 17 0.36 4.9 47 0.19 2.4 47 11 0.1 2.6 110 13 0.09 3.2 145 3.0 11 0.09 3.2 122 6.0 14 0.11 2.0 127 170 6.0 14 0.35 2.6 40 110 6.0 12 0.12 3.2 100 180 1.0 0.5 0.04 0.09 13 Liquid membranes containing 0.1 M TOA solutions had higher viscosity and were more stable if compared to 0.01 M TABAC solutions; therefore, thickness of the organic layer could be less in case of TOA-based liquid membranes. When cobalt(II) was extracted from 4 М HCl solutions by the liquid membranes containing TOA, the cobalt(II) flux and the stripping degree were higher if compared to the extraction from 3 М HCl solutions by TABAC-based liquid membranes (Table II). This may be due to the increase of CoСl42− content in the feed solution. The maximum extraction degree of 57 Material Science and Applied Chemistry 2013 / 27_________________________________________________________________________________________________ cobalt(II) into the liquid membrane of 34% and the maximum stripping degree of 17 % were obtained for a system containing TOA. Complete removal of Co(II) from the feed solution could not be achieved under the experimental conditions as cationic complexes of cobalt(II) predominated in the 4 M HCl solution. The stripping degree of nickel(II) from the organic phase containing TOA was somewhat higher if compared to TABAC-based membrane system (about 0.3%). solution. The current was transferred across the liquid membranes mainly by Cl anions from the feed HCl solution. TABLE III EFFECT OF AQUEOUS SOLUTIONS AND LIQUID MEMBRANE COMPOSITION UPON THE MEMBRANE EXTRACTION AND SEPARATION OF METALS (I = 8.5 mA/cm2; t = 90 min; CHCl = 4.0 M; lm = 0.5 cm) CCo -3 0.01 The voltage-time dependencies for the system with TOA are presented in Fig. 2. Initial voltage is significantly higher if compared to the liquid membrane system containing TABAC. During electrodialysis the voltage gradually decreased or electrical breakdown was observed in the system containing 0.1 M TOA. The initial voltage decrease was related to the rise of the total concentration of ions in the liquid membrane due to the extraction of CoСl42− and chloride ions by carrier accompanied by the formation of ion pairs. The electrical breakdowns of the liquid membrane were observed at high current density due to the water accumulation in the organic phase (Fig. 2, curve ○). The effects of cobalt(II) and nickel(II) concentrations in the feed solution on the rate and selectivity of cobalt(II) transport through the TOA-based liquid membranes are illustrated in Table III. The increase in cobalt(II) content in the feed solution from 5·10-3 to 0.1 M with the nickel(II) concentration being constant led to a sharp rise of the Co(II) flux and to an increase in the transport selectivity, whereas the Co(II) stripping degree was about 12% and practically did not vary within 1.5 hours of electrodialysis. The increase in the cobalt(II) concentration from 0.01 to 0.1 M led to a decrease in the nickel(II) stripping degree and to a sharp rise of the separation factor. The maximum separation factor βCo/Ni > 400 was achieved for a system containing 0.1 M CoCl2. The increase in cobalt(II) content in the feed solution led to a rise of the current efficiency; however, the maximum current efficiency did not exceed 10% for a system with 0.1 M CoCl2 58 CTOA M 5·10 Fig.2. Change in voltage during electrodialysis for various current densities (СТOА = 0.1 M; lm = 0.5 сm) I (mА/сm2): ● – 2.8; ▲ – 3.5; ◊ – 4,2; □ – 6.4; ○ – 8,5. CNi strip solution (0.5 M) SCo SNi JCo·106, mol/(m2s) βCo/Ni % 0.01 0.1 HCl 11 0.2 1.9 48 0.01 0.1 HCl 13 0.3 4.3 45 0.05 0.01 0.1 HCl 12 0.05 20 240 0.1 0.01 0.1 HCl 12 < 0.03 40 > 400 0.01 5·10-3 0.1 HCl 11 0.6 3.9 18 0.01 0.05 0.1 HCl 11 0.06 3.7 190 0.01 0.1 0.1 HCl 10 0.03 3.5 330 0.01 0.01 0.2 HCl 12 0.2 4.0 56 0.01 0.01 0.3 HCl 10 0.2 3.5 45 0.01 0.01 0.1 H2SO4 16 0.3 5.3 58 0.01 0.01 0.1 HclO4 11 0.2 3.6 48 0.01 0.01 0.1 HNO3 11 0.2 3.6 50 The increase in nickel(II) concentration in the feed solution from 5·10-3 to 0.1 M with the cobalt(II) concentration being constant, led to insignificant reduction in the Co(II) flux into the strip solution and cobalt(II) stripping degree, while the nickel(II) stripping degree reduced from 0.6 to 0.03%, separation factor increased, and a maximum separation factor of 330 was obtained for a system containing 0.1 M NiCl2. The influence of TOA concentration in the liquid membrane on the rate and selectivity of the cobalt(II) transport is presented in Table III. The increase in the carrier’s concentration from 0.1 to 0.3 M did not exert significant influence on the Co2+ extraction rate in the organic phase and separation factor; however, led to some reduction in cobalt(II) transfer rate through the liquid membrane and cobalt(II) stripping degree. Negative effect of TOA excess on cobalt(II) ion transfer might be connected with an increase in the viscosity of the organic phase. The optimal composition of the liquid membrane was 0.1 M TOA in 1.2-dichloroethane. The electrical conductivity of the membrane system was determined usually by the composition of the liquid membrane. The increase in TOA concentration in the organic phase led to a decrease in the Ohmic resistance of the liquid membrane and to a decrease in the voltage of galvanostatic electrodialysis (Fig. 3). In contrast to traditional membrane extraction, the nature of mineral acid in the strip solution did not exert a considerable influence on the electrodialytic transport of metals. The transfer of Co(II) proceeded with an approximately equal rate into 0.5 M solutions of sulphuric, nitric, hydrochloric and perchloric acids (Table III). The cobalt(II) flux decreases in the case of nitric acid in the strip solution due to the electrical breakdown during 1.5 hours of electrodialysis (Fig. 3, curve ●). When perchloric acid was used as a strip solution, timedependent voltage reached its maximum (Fig. 3, curve ▲). Material Science and Applied Chemistry ________________________________________________________________________________________________2013 / 27 The Ohmic resistance and composition of the liquid cobalt(II) transport rate. Increase in the initial concentration of membrane changed considerably in the course of Co(II) or Ni(II) in the feed solution led to an increase in the electrodialysis. The amine reacted with perchloric acid to form separation selectivity. The maximum separation factors βCo/Ni tri-n-octylammonium perchlorate R3NHClO4. Solutions of of 147 (equimolar mixture), 330 (excess of Ni(II)) and more R3NHClO4 in 1,2-dichloroethane had higher electrical than 400 (excess of Co(II)) were achieved under optimal conductivity than the organic solutions of tri-n- conditions. octylammonium chloride. The decrease in the concentration of perchlorate ions in the organic phase due to their backREFERENCES extraction into the strip solution led to a decrease in the [1] Shmidt, V.S. Ekstrakcija aminami. М.: Аtomizdat, 1980. 264 s. electrical conductivity and a rise in voltage. The voltage [2] Ivahnо, S.J., Jurtov, Е.V. Меmbrannaja ekstrakcija. М.: VINITI, 1990. 174 s. decrease, which followed the rise, was determined by A., Eyupoglu, V., Tutkun, O. Selective separation of cobalt extraction of Co(II) ions into the liquid membrane, as well as [3] Suruku, and nickel by flat sheet supported liquid membrane using Alamine 300 as by water accumulation in the organic phase. carrier. J. Ind. Engin. Chem., 2012. vol. 18. N 2. p. 629-634. Fig. 3. Change in voltage during electrodialysis for various CTOA in the liquid membrane and various strip solutions (I = 8.5 mА/сm2; lm = 0.5 сm) СTOA (М): ○, ●, ▲ – 0.1; ◊ – 0.2; □ – 0.3. Strip solution (C = 0.5 M): ○, ◊, □ − HCl; ● – HNO3; ▲− HclO4. IV. CONCLUSION The liquid membranes containing tri-n-octylamine or trialkylbenzylammonium chloride in 1,2-dichloroethane ensured the tansport of cobalt(II) anionic complexes into diluted solutions of HCl, HClO4, H2SO4 and HNO3 accompanied by an effective separation from nickel(II) when extracted from binary hydrochloric mixtures during galvanostatic electrodialysis. The cobalt(II) transport rate increased along with an increase in the current density, cobalt(II) initial concentration and HCl concentration in the feed solution. Change in nickel(II) concentration in the feed solution, TOA concentration in the organic phase and composition of the strip solution insignificantly affected the [4] Suruku, A., Eyupoglu, V., Tutkun, O. Selective separation of cobalt and nickel by supported liquid membranes. Desalination, 2010. vol. 250. N 3. p. 1155-1156. [5] Kumbasar, R.A. Extraction and concentration of cobalt from acidic leach solutions containing Co-Ni by emulsion liquid membrane using TOA as extractant. J. Ind. Engin. Chem., 2010. vol. 16. N 3. p. 448-454. [6] Fang, J., Li, M., Xu, Zh. Separation of cobalt from a nickelhydrometallurgical effluent using an emulsion liquid membrane. Separ. Sci. Technol. 2003. vol. 38. N 14. p. 3553-3574. [7] Pospieh, B., Walkowiak, W. Separation of copper(II), cobalt(II) and nickel(II) from chloride solutions by polymer inclusion membranes. Separ. Purif. Technol. 2007. vol. 57. N 3. p. 461-465. [8] Purin, B.А. Ekstrakcionnо-elektrohimicheskij metod poluchenija osobo chistih metallov i ih sojedinenij. Izvestija АN Latv. SSR. Ser. Him., 1971, N 5, str. 31-36. [9] Sadyrbaeva,Т.Z. Razdelenije platini (IV) i zeleza (III) zidkimi membranami v uslovijah elektrodializa: Zhurnal prikladnoj himiji, 2003, t. 76, N 1, str. 78-81. [10] Sadyrbaeva, T.Zh. Membrane extraction of platinum(IV) by tri-noctylamine in the presence of nickel(II). Scientific Journal of Riga Technical University. Ser. Material Science and Applied Chemistry, 2007, vol. 15, p. 126-132. [11] Sadyrbaeva, T.Zh., Purin, B.А. Elektrodializnij perenos i razdelenije pallādija i neblagorodnih metallov v sistemah s zhidkimi membranami. Latvijas ķīmijas žurnāls, 1993, N 3, p. 301-308. [12] Маrchenkо, Z. Fotometricheskoje opredelenije elementov. Моskva: Мir, 1971. 504 s. [13] Golubev, V.N., Purin, B.А. Issledovanie elektricheskogo proboja zhidkostnih membran pri perenose cherez nih nekotorih anionov. Dokladi AN SSSR, 1977, t. 232, N 6, str. 1340-1342. Tatiana Sadyrbaeva graduated from the Latvian State University, the Faculty of Chemistry (1984). She obtained a Doctoral Degree in Chemical Engineering from the Institute of Inorganic Chemistry of the Latvian Academy of Sciences in 1993. She is a Leading Researcher at the Laboratory of Electrochemistry of the Institute of Inorganic Chemistry, RTU. Current and previous research interests include electrodialysis through liquid membranes, electrodeposition, separation of metals, liquid extraction. E-mail: [email protected]. Tatjana Sadirbajeva. Kobalta (II) atdalīšana no niķeļa (II) ar šķidrām membrānām elektrodialīzes apstākļos Izpētīts kobalta (II) ekstrakcijas process no sālsskābiem šķīdumiem, kas satur 0,01 M CoCl2 un 0,01 M NiCl2, ar šķidrām membrānām uz tri-noktilamīna un trialkilbenzilamonija hlorīda bāzes galvanostatiskās elektrodialīzes apstākļos. Noteikts, ka šķidrās membrānas īsteno kobalta (II) jonu pārnesi atšķaidītos sālsskābes, sērskābes, perhlorskābes un slāpekļskābes šķīdumos un nodrošina efektīvu kobalta (II) atdalīšanu no niķeļa (II) vienā procesa stadijā. Noteikts, ka, paaugstinot strāvas blīvumu (0 – 9,9 mA/cm2) un palielinot membrānekstrakcijas procesa ilgumu (50 – 230 min), pieaug kobalta (II) izdalīšanas pakāpe uztvērējšķīdumā. Parādīts, ka kobalta (II) koncentrācijas palielināšana izejas šķīdumā no 5·10-3 līdz 0,1 M CoCl2 palielina kobalta (II) jonu plūsmu caur šķidro membrānu, kas praktiski neietekmē kobalta (II) jonu reekstrakcijas pakāpi un negatīvi ietekmē niķeļa( II) reekstrakcijas pakāpi. Noteikts, ka, palielinot sālsskābes koncentrāciju izejas šķīdumā no 1,0 līdz 6,0 M, pieaug kobalta (II) pārneses ātrums caur šķidro membrānu. Konstatēts, ka sistēmā, kas satur 6,0 M HCl izejas šķīdumā, iespējama organisko katjonu izdalīšana no organiskās fāzes ūdens šķīdumā. Noteikts optimāls izejas šķīduma skābums: 3,0 – 4,0 M HCl. Noteikts, ka niķeļa (II) satura palielināšana izejas šķīdumā no 5·10−3 līdz 0,1 M, tri-n-oktilamīna daudzuma izmaiņa organiskajā fāzē no 0,1 59 Material Science and Applied Chemistry 2013 / 27_________________________________________________________________________________________________ līdz 0,3 M, sālsskābes koncentrācijas izmaiņas uztvērējšķīdumā no 0,5 līdz 5,0 M un skābes raksturs uztvērējšķīdumā maz ietekmē kobalta (II) transmembrānās pārneses ātrumu un izdalīšanas selektivitāti. Konstatēts, ka izpētītajās sistēmās var notikt šķidrās membrānas elektriskās caursites – krasa sprieguma samazināšana elektrodialīzes beigu periodā atkarībā no strāvas blīvuma un procesa ilguma. Noteikts, ka, kobalta (II) vai niķeļa (II) koncentrācijas palielināšana izejas šķīdumā dod metālu sadalīšanas koeficienta pieaugumu. Optimālajos apstākļos iegūti metālu sadalīšanas koeficienti βCo/Ni = 147 (0,01 M CoCl2 un 0,01 M NiCl2), βCo/Ni = 330 (0,01 M CoCl2 un 0,1 M NiCl2), βCo/Ni > 400 (0,1 M CoCl2 un 0,01 M NiCl2). Татьяна Садырбаева. Разделение кобальта(II) и никеля(II) жидкими мембранами в процессе электродиализа. Разделение кобальта(II) и никеля(II) с помощью анионообменных экстрагентов основано на различной устойчивости анионных хлоридных комплексов этих металлов в растворах соляной кислоты. Процесс электродиализного разделения ионов Co(II) и Ni(II) изучали с помощью пятикамерной ячейки с объемной жидкой мембраной толщиной 0,5-0,8 см, заключенной между вертикальными целлофановыми пленками. Исследован процесс мембранной экстракции ионов кобальта(II) из бинарных солянокислых смесей, содержащих, как правило, 0.01 M CoCl2 и 0.01 M NiCl2 в 3 – 4 M HCl растворами три-н-октиламина и хлорида триалкилбензиламмония в 1,2-дихлорэтане в условиях гальваностатического электродиализа. Было установлено, что при наложении электрического поля происходит перенос ионов Со(II) из исходного раствора. НСl через жидкие мембраны, в растворы разбавленной соляной кислоты, и осуществляется эффективное отделение кобальта(II) от никеля(II). Установлено, что скорость трансмембранного переноса ионов Co(II) повышается при увеличении плотности тока электродиализа в интервале 0 – 9.9 мА/см2, концентрации ионов кобальта(II) (5·10-3 – 0.1 M) в исходном растворе и концентрации соляной кислоты (1.0 – 6.0 M) в исходном растворе. Определена оптимальная кислотность исходного раствора: 3 – 4 M HCl. Установлено, что в изученных системах могут происходить электрические пробои – резкое падение напряжения вследствие накопления воды в оранической фазе. Показано, что изменение содержания никеля(II) в исходном растворе (5·10-3 – 0.1 M) и содержания три-н-октиламина в органической фазе (0.1 – 0.3 M), а также природа кислоты в принимающем растворе (HCl, HClO4, H2SO4, HNO3) незначительно влияют на скорость мембранной экстракции кобальта(II). Показано, что селективность разделения кобальта(II) и никеля(II) возрастает при повышении концентрации одного из металлов в исходной смеси. Полученные в оптимальных условиях коэффициенты разделения металлов βCo/Ni составляют 147 при извлечении из эквимолярной смеси, достигают 330 в условиях десятикратного избытка никеля(II) и превышают 400 при десятикратном избытке кобальта(II) в исходном растворе. 60