Download Berkeley City College Trigonometry - Math 50

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Berkeley City College
Homework 2
Trigonometry - Math 50 - Graphs of Trigonometric Functions
Name___________________________________
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Write the
steps to arrive at your answers.
Answer the question.
1) Which one of the equations below matches the graph?
A) y = -3 sin 4x
B) y = 3 cos 4x
1)
C) y = 3 sin
1
x
4
D) y = 3 cos
1
x
4
2) Which one of the equations below matches the graph?
A) y = 2 cos
Instructor: K. Pernell
1
x
3
B) y = -2 sin
1
x
3
2)
C) y = 2 sin
1
1
x
3
D) y = 2 cos 3x
3) Which one of the equations below matches the graph?
A) y = -2 cos 3x
B) y = 2 sin
1
x
3
3)
C) y = -2 sin 3x
D) y = -2 sin
1
x
3
SHORT ANSWER. Write the steps to arrive at your answer.
Without graphing the function, determine its amplitude or period as requested.
1
Find the amplitude.
4) y = -2 sin x
3
4)
5) y = sin 5x
Find the period.
5)
1
6) y = -3 cos x
4
Find the period.
6)
5
8π
x)
7) y = sin (- 8
3
Find the period.
7)
2
Write the equation of a sine function that has the given characteristics.
8) Amplitude: 4
Period: 3π
8)
Solve the problem.
9) For what numbers x, 0 ≤ x ≤ 2π, does sin x = 0?
Match the given function to its graph.
2) y = 2 cos x
10) 1) y = sin 2x
3) y = 2 sin x
4) y = cos 2x
A
3
-2
9)
10)
B
y
3
2
2
1
1
-

2
x
-2
-
-1
-1
-2
-2
-3
y

2

2
x
-3
C D
3
-2
y
3
2
2
1
1
-

2
x
-2
-
-1
-1
-2
-2
-3
-3
3
y
x
11) Match the equations to the graphs below.
1
1
1) y = sin ( x)
2) y = cos x
2
2
1
4) y = cos ( x)
2
1
3) y = sin x 2
A
B
3
-2
11)
y
-
3

2
x
-2
-
-3

2

2
x
-3
C
D
3
-2
y
-
y
3

2
x
-2
-
-3
-3
4
y
x
12) Match the equations to the graphs below.
1
1) y = -3 sin (3x)
2) y = -3 sin ( x)
3
1
4) y = 3 cos ( x)
3
3) y = 3 cos (3x)
A
B
3
-2
12)
y
-
3

2
x
-2
-
-3

2

2
x
-3
C
D
3
-2
y
-
y
3

2
x
-2
-
-3
y
x
-3
Write the equation of a sine function that has the given characteristics.
13) Amplitude: 5
Period: 4π
π
Phase Shift: - 4
5
13)
14) Amplitude: 2
Period: π
7
Phase Shift: 2
14)
15) Amplitude: 5
Period: 6π
π
Phase Shift: 6
15)
Find the phase shift of the function.
π
16) y = -4 sin x - 2
17) y = -2 sin 2x - 18) y = -5 cos 16)
π
2
17)
1
π
x + 2
2
19) y = 2 cos -2x + 18)
π
2
19)
6
Solve the problem.
1
20) For the equation y = - sin(4x + 3π), identify (i) the amplitude, (ii) the phase shift, and
2
20)
(iii) the period.
GRAPHING. Graph the function. Identify period and phase shift - and amplitude if it applies. Label your graphs with
correct units on the x- and y- axis.
Graph the sinusoidal function.
21) y = 4 cos (πx)
22) y = 3 sin (4x)
7
1
9
23) y = cos (- x)
3
4
1
24) y = -2 sin ( x)
2
8
Graph the function.
1
25) y = sec x
3
26) y = sec (2x)
9
27) y = 6 csc (3x)
28) y = 4 tan 1
x
2
10
29) y = cot (πx)
Graph the function. Show at least one period.
30) y = 4 sin (3πx + 2)
11
31) y = 4 sin(-2x - π)
32) y = 5 cos 4x + π
2
12
Answer Key
Testname: 13SPR_MATH50_HW_3_CH2_GRAPHING
1)
2)
3)
4)
D
C
C
2
2π
5)
5
6) 8π
3
7)
4
8) y = 4 sin 2
x
3
9) 0, π, 2π
10) 1B, 2D, 3C, 4A
11) 1B, 2D, 3C, 4A
12) 1A, 2C, 3D, 4B
1
1
13) y = 5 sin x + π
8
2
14) y = 2 sin (2x - 7)
1
1
15) y = 5 sin x - π
18
3
16)
π
units to the right
2
17)
π
units to the right
4
18) π units to the left
π
19) units to the right
4
20) (i) 1
2
(ii) - 3π
4
(iii) 
2
π
2
21)
6
y
4
2
-
3
x
-2
-4
-6
13
Answer Key
Testname: 13SPR_MATH50_HW_3_CH2_GRAPHING
22)
y
6
4
2
-

2
3
x
-2
-4
-6
23)
y
6
4
2
-2
2
4
6
8 x
-2
-4
-6
24)
6
y
4
2
-

2
3
x
-2
-4
-6
14
Answer Key
Testname: 13SPR_MATH50_HW_3_CH2_GRAPHING
25)
y
3
-2
2
4
6
8
x
-3
26)
10
y
8
6
4
2
-2
-

-2
2
x
-4
-6
-8
-10
27)
10
y
8
6
4
2
-
-
2
-2

2

x
-4
-6
-8
-10
15
Answer Key
Testname: 13SPR_MATH50_HW_3_CH2_GRAPHING
28)
6
y
4
2
-
-
2

2

3
2
2
5
2
3

2

3
2
2
5
2
3
x
-2
-4
-6
29)
6
y
4
2
-
-
2
x
-2
-4
-6
30)
y
4
3
2
1
-1
-1
1
x
-2
-3
-4
16
Answer Key
Testname: 13SPR_MATH50_HW_3_CH2_GRAPHING
31)
y
5
4
3
2
1
-2
2
-1
x
-2
-3
-4
-5
32)
8
y
6
4
2
-
-2

2
3
x
-4
-6
-8
17